-ur‘m-

;## “"‘“"A‘h‘mfﬂ"ﬁ#
&mm) qﬂﬂf
e

v

YYFormeR

pyFormex Documentation
Release 2.2

Benedict Verhegghe

Feb 10, 2021

8

9

Introduction to pyFormex
Installing pyFormex
pyFormex tutorial
pyFormex user guide
pyFormex example scripts
pyFormex reference manual
pyFormex FAQ ‘n TRICKS
pyFormex file formats

BuMPix Live GNU/Linux system

10 GNU GENERAL PUBLIC LICENSE

11 About the pyFormex documentation

12 Glossary

Python Module Index

Index

CONTENTS

11
35
69
83
653
659
663
669
679
681
683

685

CHAPTER
ONE

INTRODUCTION TO PYFORMEX

Abstract

This part explains shortly what pyFormex is and what it is not. It sets the conditions under which you are allowed to
use, modify and distribute the program. Next is a list of prerequisite software parts that you need to have installed
in order to be able to run this program. We explain how to download and install pyFormex. Finally, you’ll find out
what basic knowledge you should have in order to understand the tutorial and succesfully use pyFormex.

1.1 What is pyFormex?

You probably expect to find here a short definition of what pyFormex is and what it can do for you. I may have to
disappoint you: describing the essence of pyFormex in a few lines is not easy to do, because the program can be (and
is being) used for very different tasks. So I will give you two answers here: a short one and a long one.

The short answer is that pyFormex is a program to generate large structured sets of coordinates by means of subsequent
mathematical transformations gathered in a script. If you find this definition too dull, incomprehensible or just not
descriptive enough, read on through this section and look at some of the examples in this documentation and on the
pyFormex website. You will then probably have a better idea of what pyFormex is.

The initial intent of pyFormex was the rapid design of three-dimensional structures with a geometry that can easier be
obtained through mathematical description than through interactive generation of its subparts and assemblage thereof.
Although the initial development of the program concentrated mostly on wireframe type structures, surface and solid
elements have been part of pyFormex right from the beginning. There is already an extensive plugin for working with
triangulated surfaces, and pyFormex is increasingly being used to generate solid meshes of structures. Still, many of
the examples included with the pyFormex distribution are of wireframe type, and so are most of the examples in the
pyFormex tutorial.

A good illustration of what pyFormex can do and what it was intended for is the stent' structure in the figure WireStent
example. It is one of the many examples provided with pyFormex.

The structure is composed of 22032 line segments, each defined by 2 points. Nobody in his right mind would ever
even try to input all the 132192 coordinates of all the points describing that structure. With pyFormex, one could
define the structure by the following sequence of operations, illustrated in the figure First three steps in building the
WireStent example:

1. Create a nearly planar base module of two crossing wires. The wires have a slight out-of-plane bend, to enable
the crossing.

2. Extend the base module with a mirrored and translated copy.

1A stent is a tubular structure that is e.g. used to reopen (and keep open) obstructed blood vessels.

http://pyformex.org

pyFormex Documentation, Release 2.2

Fig. 1: WireStent example

3. Replicate the base module in both directions to create a (nearly planar) rectangular grid.
4. Roll the planar grid into a cylinder.

pyFormex provides all the operations needed to define the geometry in this way.

xvxvxvxvxvxvxvxvxvxvxvx*éx* AeTele x‘é*‘x’&f&f&f&f&f&fﬂfﬂfﬂfﬂfﬂi
xxxxxxxxxxxxxxxxxxxxxa‘x‘x‘x

I I N

Fig. 2: First three steps in building the WireStent example

pyFormex does not fit into a single category of traditional (mostly commercial) software packages, because it is not
being developed as a program with a specific purpose, but rather as a collection of tools and scripts which we needed
at some point in our research projects. Many of the tasks for which we now use pyFormex could be done also with
some other software package, like a CAD program or a matrix calculation package or a solid modeler/renderer or a
finite element pre- and postprocessor. Each of these is probably very well suited for the task it was designed for, but
none provides all the features of pyFormex in a single consistent environment, and certainly not as free software.

Perhaps the most important feature of pyFormex is that it was primarily intended to be an easy scripting language
for creating geometrical models of 3D-structures. The graphical user interface (GUI) was only added as a convenient
means to visualize the designed structure. pyFormex can still run without user interface, and this makes it ideal for
use in a batch toolchain. Anybody involved in the simulation of the mechanical behavior of materials and structures
will testify that most of the work (often 80-90%) goes into the building of the model, not into the simulations itself.
Repeatedly building a model for optimization of your structure quickly becomes cumbersome, unless you use a tool

2 Chapter 1. Introduction to pyFormex

pyFormex Documentation, Release 2.2

like pyFormex, allowing for automated and unattended building of model variants.

The author of pyFormex, professor in structural engineering and heavy computer user and programmer since main-
frame times, deeply regrets that computing skills of nowadays engineering students are often limited to using graphical
interfaces of mostly commercial packages. This greatly limits their skills, because in their way of thinking: ‘If there
is no menu item to do some task, then it can not be done!” The hope to get some of them back into coding has been a
stimulus in continuing our work on pyFormex. The strength of the scripting language and the elegance of Python have
already attracted many users on this path.

Finally, pyFormex is, and always will be, free software in both meanings of free: guaranteeing the freedom of the user
(see License and Disclaimer) and without charging a fee for it.”

1.2 License and Disclaimer

pyFormex is ©2004-2021 Benedict Verhegghe

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License (GNU GPL), as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The full details of the GNU GPL are available in the GNU GENERAL PUBLIC LICENSE part of the documentation,
in the file COPYING included with the distribution, under the Help->License item of the pyFormex Graphical User
Interface or from http://www.gnu.org/copyleft/gpl.html.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

The main author claims that he wrote this software in his free time, for his joy, not as a commissioned task. Any
copyright claims made by his employer (previous, current or future) should therefore be considered void.

Over the years, other members of the pyFormex team have made valuable contributions. These were made with full
consent of the contributor that they could be used at will inside the pyFormex project and were free of other copyright
claims.

1.3 Installation

Information on how to obtain and install pyFormex can be found in the /nstalling pyFormex document.

1.4 Using pyFormex

Once you have installed and want to start using pyFormex, you will probably be looking for help on how to do it.

If you are new to pyFormex, you should start with the pyFormex tutorial, which will guide you step by step, using
short examples, through the basic concepts of Python, NumPy and pyFormex. You have to understand there is a lot to
learn at first, but afterwards the rewards will prove to be huge. You can skip the sections on Python and NumPy if you
already have some experience with it.

If you have used pyFormex before or you are of the adventurous type that does not want to be told where to go and
how to do it, skip the tutorial and go directly to the pyFormex user guide. It provides the most thorough information
of all aspects of pyFormex.

2 Third parties may offer pyFormex extensions and/or professional support that are fee-based.

1.2. License and Disclaimer 3

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://fsf.org
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/copyleft/gpl.html

pyFormex Documentation, Release 2.2

1.5 Getting Help

If you get stuck somewhere with using (or installing) pyFormex and you need help, the best way is to go to the
pyFormex website and ask for help via the Support tracker. There’s a good change you will get helped quickly there.
Remember though that pyFormex is a free and open source software project and its developers are not paid to develop
or maintain pyFormex, they just do this because they find pyFormex very helpful in their normal daily activities.

If you are a professional pyFormex user and require guaranteed support, you can check with FEops, a young company
providing services with and support for pyFormex.?

4 Chapter 1. Introduction to pyFormex

http://pyformex.org
http://savannah.nongnu.org/support/?group=pyformex
http://www.feops.com

CHAPTER
TWO

INSTALLING PYFORMEX

Abstract

This document explains the different ways for obtaining a running pyFormex installation. You will learn how to
obtain pyFormex, how to install it, and how to get it running.

Warning: This document is under construction

2.1 Installing pyFormex-2.0

This installation manual is for the pyFormex 2.0 series. For older versions see Installing pyFormex-1.0 or Installing
pyFormex-0.9.

pyFormex is being developed on GNU/Linux systems and currently only runs on Linux. On other systems your best
option is to run Linux in a virtual machine or boot your machine from a USB stick with a Linux Live system.

pyFormex is software under continuous development, and many users run it directly from the latest development
sources. This holds a certain risk however, because the development version may at times become unstable or incom-
patible with previous versions and thus break your applications. At regular times we therefore create official releases,
which provide a more stable and better documented and supported version, together with an easy install procedure.

If you can meet the requirements for using an officially packed release, and you can not use the deb packages, this is
the recommended way to install pyFormex. All the software packages needed to compile and run pyFormex can be
obtained for free.

To install an official pyFormex release, you need a working GNU/Linux system, root privileges to the system (whether
through su or sudo, and you need to make sure that the Dependencies listed below are installed first on the system.
Then preceed to Install an official pyFormex release.

If you need to install a new GNU/Linux system from scratch, and have the choice to pick any distribution, we highly
recommend Debian GNU/Linux or derivatives. This is because most of the pyFormex development is done on Debian
systems, and below you’ll find precise instructions to install dependencies on Debian. Also, the Debian software
repositories are amongst the most comprehensive to be found on the Internet. Furthermore, we often provide deb
packages as well, making installation really a no-brainer.

Most popular GNU/Linux distributions provide appropriately packed recent versions of the dependencies, so that you
can install them easily from the pacakge manager of your system. In case a package or version is not available for
your system, you can always install it from source. We provide the websites where you can find the source packages.

http:///pyformex.nongnu.org/doc-1.0/install.html
http:///pyformex.nongnu.org/doc-0.9/install.html
http:///pyformex.nongnu.org/doc-0.9/install.html
http://www.debian.org

pyFormex Documentation, Release 2.2

2.2 Dependencies

Whether you install an official release package of pyFormex, or you run pyFormex from the development source tree,
you need to have the following installed (and working) on your computer:

Python Version 3.6 or higher, 3.7 is recommended. Nearly all GNU/Linux distributions come with Python installed.
Some may however still have Python2.x installed as the default Python. Python2.x is however no longer sup-
ported by pyFormex, so you may have to install the Python3 version. Usually, the Python 3.x executable is
named ‘python3’, and pyFormex expects it that way. To check your version, do:

python3 —-version

NumPy Version 1.10 or higher, 1.12 recommended. NumPy is the package used for efficient numerical array opera-
tions in Python and is essential for pyFormex.

PIL The Python Imaging Library from the pillow fork, used for loading and saving images in lots of formats.

QtS or Qt4 Qtis the widget toolkit on which the pyFormex Graphical User Interface (GUI) is built. We recommended
Qt5, but the older Qt4 version should also still work.

PySide2 or PyQt5 These are Python bindings for the Qt5 libraries. We recommend Pyside2, though it should not be
too difficult to make PyQt5 work as well. If you opted for the older Qt4 libraries instead, you should use one of
PySide (recommended) or PyQt4. In any case, make sure you have the bindings for Python3.

PyOpenGL Python bindings for OpenGL, used for drawing and manipulating the 3D-structures.
admesh Used to check and fix STL files. We need the binary, not the Python library.
libgts-0.7-5 A library for operating on triangulated surfaces.

To compile the acceleration library (highly recommended!), you will also need the appropriate Python and OpenGL
header files, GNU make and the GNU compiler gcc:

* make
* gcc
* python3-dev
¢ libglul-mesa-dev
Furthermore, we recommend to install the following for extended functionality:
 python3-gnuplot or python3-matplotlib
* python3-pydicom
* python3-docutils
* python3-scipy
* units
* imagemagick
¢ tetgen
¢ libdxflib3

Finally, while pyFormex has interfaces to use some of the functionality of vtk and vmtk, we can not really advise you to
install ‘python3-vtk7’ or ‘vmtk’, unless you really need these packages. The reason is that their list of dependencies is
too long. On my Debian Buster ‘python3-vtk7’ pulls 76 other packages, and that is with the ‘—no-install-recommends’
option. And ‘vmtk’ pulls in another 92, many of them the same as the vtk ones, but Python2 versions.

6 Chapter 2. Installing pyFormex

http://python.org
http://numpy.org
http://python-pillow.org
http://doc.qt.io
https://doc.qt.io/archives/
http://wiki.qt.io/Qt_for_Python
http://www.riverbankcomputing.co.uk/software/pyqt/
http://www.pyside.org
http://www.riverbankcomputing.co.uk/software/pyqt/
http://pyopengl.sourceforge.net

pyFormex Documentation, Release 2.2

2.2.1 Installing dependencies on Debian and alikes

On Debian GNU/Linux systems (and Debian-derivatives like Ubuntu) you can install all basic prerequisites and rec-
ommended packages and all their dependencies with the following command:

(sudo) apt install \
python3 make gcc git \
python3-numpy python3-scipy python3-pil python3-opengl \
python3-pyside2.qtcore python3-pyside2.qgtgui python3-pyside2.gtwidgets \
python3-pyside2.gtopengl \
python3-matplotlib python3-pydicom python3-docutils python3-sphinx \
python3-dev libglul-mesa-dev libfreetype6-dev \
libgts—-dev libgts-bin admesh tetgen units libdxflib-dev \
python3-pytest

2.3 Install an official pyFormex release

2.3.1 Download pyFormex

Official pyFormex releases can be downloaded from Releases. As of the writing of this manual, the latest release is
2.2.

pyFormex is distributed in the form of a .tar.gz (tarball) archive. See Install pyFormex: the short version for how to
proceed further with the downloaded file.

2.3.2 Install pyFormex: the short version

Once you have downloaded the tarball, unpack it with the command

’tar xvzf pyformex-VERSION.tar.gz

where you replace VERSION with the correct version from the downloaded file. Then go to the created pyformex
directory

cd pyformex-VERSION

and execute the following commands:

make build
sudo make install

This will build pyFormex and install it under /usr/local/. You need root privileges for the install step only.
The executables are put in /usr/local/bin. If all goes well, you can safely remove the source tree and build
temporaries

cd ..
rm —-rf pyformex-VERSION

and you may start pyFormex with the command:

pyformex

If not, or if you want more details about the install procedure, or want to customize the installation procedure, read on
in the next section.

2.3. Install an official pyFormex release 7

http://www.debian.org
http://download.savannah.gnu.org/releases/pyformex/

pyFormex Documentation, Release 2.2

2.3.3 Install pyFormex: the long version

The make commands in Install pyFormex: the short version do two things. As can be seen from the Makefile, make
build actually executes:

python3 setup.py build
make -C pyformex/extra build

The first of these commands builds the Python code of pyFormex and compiles some acceleration libraries. The second
command compiles some external programs that are located under pyformex/extra.

If something goes wrong with the make build, or if you need to do some customized build/install procedures, you can
use these commands separately, or customize the Makefile.

As you expect, the make install command executes the same two commands as above, with install in place of build.
The installation procedure installs everything into a single directory (default under a subdirectory of /usr/local/
lib/Python3.x/), and creates an executable pyformex in /usr/local/bin. If you have xdg-utils on your
system, the installation procedure will also install a menu and desktop starter for pyFormex.

If installation succeeded, you can use the command

pyformex --whereami

to find out where pyFormex is installed. If the binary install path /usr/local/bin is not up front in your PATH
settings, you may have to use the full path name: /usr/local/bin/pyformex.

You can not run the py f ormex command from inside the unpacked py formex—-VERSION directory. This will force
a failure, because doing so would use the Python source files in that directory instead of the built and installed ones.

Next you can run

pyformex —-detect

to give you a list of installed and detected software that pyFormex is able to use as helpers. Check that you have
pyFormex_installtype (R) and pyFormex_libraries (pyformex.lib.misc_, pyformex.lib.nurbs_). The
gts, gts-bin and gts-extra packages do not have a version, and just display “:’.

If you have troubles with building the externals, you can build each of the externals separately. In each of the subdirec-
tories of pyformex/extra you can do make build and sudo make install. Actually only the pyformex/extra/
gts/ is of high importance. Most users can do without the other ones.

2.3.4 Uninstall pyFormex

When pyFormex is installed by the procedure above, it can be removed by executing the command

’pyformex ——remove

and answering ‘yes’ to the question. You may want to do this before installing a new version.

2.4 deb packages

Currently we have no .deb packages ready for pyFormex 2.0. When they become available, this documentation will
be updated.

8 Chapter 2. Installing pyFormex

pyFormex Documentation, Release 2.2

2.5 Running pyFormex from sources

If the officially released pyFormex packages are not suitable for your needs, and you can not find proper packages for
your distribution, you can try running pyFormex directly from the source in the git repository. Besides the Dependen-
cies for the official release, you will also need to have git installed.

The ‘GIT repository‘_ on the developer site is accessible anonymously. The command

’git clone https://git.savannah.nongnu.org/git/pyformex.git MYDIR

will checkout the source to a local directory MYDIR. Provided you have all the prerequisites installed, pyFormex can
then be run directly from the checked out source with the command:

’MYDIR/pyformex/pyformex

If you want to use the compiled accelerator library however, you will have to create it first:

cd MYDIR
make 1lib

Once you have a checked-out source tree, you can easily sync it to the latest repository version by just issuing the
following command from your checkout directory:

git pull

2.5. Running pyFormex from sources 9

pyFormex Documentation, Release 2.2

10 Chapter 2. Installing pyFormex

CHAPTER
THREE

PYFORMEX TUTORIAL

Abstract

This tutorial will guide you step by step through the most important concepts of the pyFormex scripting language

and the pyFormex Graphical User Interface (GUI). It is intended for first time users, giving explicit details of what
to do and what to expect as result.

3.1 The philosophy

pyFormex is a Python implementation of Formex algebra. Using pyFormex, it is very easy to generate large geomet-
rical models of 3D structures by a sequence of mathematical transformations. It is especially suited for the automated
design of spatial structures. But it can also be used for other tasks, like operating on 3D geometry obtained from other
sources, or for finite element pre- and postprocessing, or just for creating some nice pictures.

By writing a simple script, a large and complex geometry can be created by copying, translating, rotating, or otherwise
transforming geometrical entities. pyFormex will interpret the script and draw what you have created. This is clearly
very different from the traditional (mostly interactive) way of creating a geometrical model, like is done in most CAD
packages. There are some huge advantages in using pyFormex:

* It is especially suited for the automated design of spatial frame structures. A dome, an arc, a hypar shell, ...,
when constructed as a space frame, can be rather difficult and tedious to draw with a general CAD program;
using scripted mathematical transformations however, it may become a trivial task.

 Using a script makes it very easy to apply changes in the geometry: you simply modify the script and re-execute
it. You can easily change the value of a geometrical parameter in any way you want: set it directly, interactively
ask it from the user, calculate it from some formula, read it from a file, etcetera. Using CAD, you would have
often have to completely redo your drawing work. The power of scripted geometry building is illustrated in
figure Same script, different domes: all these domes were created with the same script, but with different values
of some parameters.

* At times there will be operations that are easier to perform through an interactive Graphical User Interface
(GUI). The GUI gives access to many such functions. Especially occasional and untrained users will benefit
from it. As everything else in pyFormex, the GUI is completely open and can be modified at will by the user’s
application scripts, to provide an interface with either extended or restricted functionality.

 pyformex scripts are written in the Python programming language. This implies that the scripts are also Python-
based. It is a very easy language to learn, and if you are interested in reading more about it, there are good
tutorials and beginner’s guides available on the Python documentation website. However, if you’re only using
Python to write pyFormex scripts, the tutorial you’re reading right now should be enough.

11

http://python.org
http://python.org/doc

pyFormex Documentation, Release 2.2

; ‘A-E:AVA AV i’r’" "/ b\ \V‘ N
F" /«»/«nnn‘b WY N
//;;ﬂm\m \\\\9

mn m't
4!& uﬂm‘)

Fig. 1: Same script, different domes

3.2 Getting started

* Start the pyFormex GUI by entering the command pyformex in a terminal. Depending on your instalation,
there may also be a menu item in the application menu to start pyFormex, or even a quickstart button in the
panel. Using the terminal however can still be useful, especially in the case of errors, because otherwise the
GUI might suppress some of the error messages that normally are sent to the terminal.

* Create a new pyFormex script using the File— Create new script option. This will open a file dialog: enter a
filename exampleO . py (be sure to be in a directory where you have write permissions). Pressing the Save
button will open up your favorite editor with a pyFormex script template like the one below.

#

##

Copyright (C) 2011 John Doe (j.doe@somewhere.orqg)

Distributed under the GNU General Public License version 3 or later.
##

This program is free software: you can redistribute it and/or modify
1t under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

##

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

##

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.
##

" yFormex Script/App Template

This 1is a template file to show the general layout of a pyFormex
script or app.

A pyFormex script is just any simple Python source code file with
extension '.py' and is fully read and execution at once.

A pyFormex app can be a '.py' of '.pyc' file, and should define a function
'run() ' to be executed by pyFormex. Also, the app should import anything that
it needs.

(continues on next page)

12

Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

(continued from previous page)

This template is a common structure that allows the file to be used both as
a script or as an app, with almost identical behavior.

For more details, see the user guide under the "Scripting’ section.

The script starts by preference with a docstring (like this),
composed of a short first line, then a blank line and
one or more lines explaining the intention of the script.

If you distribute your script/app, you should set the copyright holder

at the start of the file and make sure that you (the copyright holder) has
the intention/right to distribute the software under the specified
copyright license (GPL3 or later).

This helps in getting same code working with both Python2 and Python3
from _ future import absolute_import, division, print_function

The pyFormex modeling language is defined by everything in

the gui.draw module (if you use the GUI). For execution without
the GUI, you should import from pyformex.script instead.

from pyformex.gui.draw import =«

Definitions
def run{():
"""Main function.

This is automatically executed on each run of an app.

mon

print ("This is the pyFormex template script/app")

Code in the outer scope:
— for an app, this is only executed on loading (module initialization).
— for a script, this is executed on each run.

print ("This is the initialization code of the pyFormex template script/app")
The following is to make script and app behavior alike

When executing a script in GUI mode, the global variable __name__ is set
to 'draw', thus the run method defined above will be executed.

if name == "'__draw__':
print ("Running as a script")
run ()

End

Note: If the editor does not open, you may need to configure the editor command: see Settings —> Commands.

Make sure you are using an editor that understands Python code. Most modern editors will give you syntax highlighting
and help with indentation.

* The template script shows the typical layout of a pyFormex script:

— The script starts with some comment lines (all lines starting with a ‘#’). For the sake of this tutorial, you

3.2. Getting started

13

pyFormex Documentation, Release 2.2

can just disregard the comments. But this section typical displays a file identification, the copyright notice
and the license conditions.

— Then comes a multiline documentation string, contained between two """ delimiters. By preference, this
docstring is composed of a short first line, then a blank line and finally one or more lines explaining the
intention of the script.

— Next are the pyFormex instructions.

— The script ends with a comment line # End. We recommend you to do this also. It serves as a warning
for inadvertent truncation of your file.

¢ In the status bar at the bottom of the pyFormex GUI, you will now see the name of the script, together with a
green dot. This tells you that the script has been recognized by the system as a pyFormex script, and is ready to
run.

* Read the docstring of the template script: it gives some basic information on the two application models in
pyFormex. For this tutorial we will however stick to the simpler script model. Therefore, replace the whole
code section between the from __ future__ line and # End with just this single line:

print ("This is a pyFormex script")

Note: The from __ future__ import print_function line makes Python import a feature from the
future Python3 language, turning the print statement into a function. This means that you have to write
print (something) instead of print something. If you are acquainted with Python and it hinders you,
remove that line (but remember that you will have to learn the newer syntax sooner or later). If you are a starting
Python user, leave it there and learn to use the future syntax right from the start.

» Save your changes to the script (in your editor), and execute it in pyFormex by selecting the File — Play menu

option, or by just pushing the } button in the toolbar. In the message area (just above the bottom status bar),
a line is printed announcing the start and end of execution. Any output created by the script during execution is
displayed in between this two lines. As expected, the template script just prints the text from the print statement.

* Now change the text of the string in the print statement, but do not save your changes yet. Execute the script
again, and notice that the printed text has not changed! This is because the editor is an external program to
pyFormex, and the executed script is always the text as read from file, not necessarily equal to what is displayed
in your editor.

Save the script, run it again, and you will see the output has changed.

» Next, change the text of the script to look like the one below, and save it as examplel .py. Again, note that
the editor and pyFormex are separate programs, and saving the script does not change the name of the current
script in pyFormex.

examplel.py

”""EXample l”""
F = Formex([[[0O.,0.],[1.,0.1],([[1.,1.],[0.,1.111)
End

Selecting an existing script file for execution in pyFormex is done with the File — Open option. Open the
examplel.py file you just saved and check that its name is indeed displayed in the status bar. You can now
execute the script if you want, but it will not produce anything visible. We’ll learn you how to visualize geometry
later on.

14

Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

* Exit pyFormex (using the File — Exit) and then restart it. You should again see the examplel.py displayed
as the current script. On exit, pyFormex stores your last script name, and on restart it prepares to run it again.
You can also easily select one the most recent scripts you used from the File — History option. Select the oldest
(bottom) one. Then close all your editor windows.

* Open the examplel . py again, either using File — Open or File — History. The script will not be loaded into
your editor. That is becaused often you will just want to run the script, not change it. Use the File — Edit option
to load the current script into the editor.

Now that you know how to load, change and execute scripts in pyFormex, we’re all set for exploring its power. But
first, let’s introduce you to some basic Python and NumPy concepts. If you are already familiar with them, you can
just skip these sections.

3.3 Some basic Python concepts

pyFormex is written in the Python language, and Python is also the scripting language used by pyFormex. Since the
whole intent of pyFormex is to generate geometrical structures from scripts, you will at least need to have some basic
knowledge of Python before you can use it for your own projects.

The Python documentation website contains a variety of good documents to introduce you. If you are new to Python,
but have already some programming experience, the Python tutorial may be a good starting point. Or else, you can
take a look at one of the other beginners’ guides. Stick with the Python 2.x documentation for now. Though pyFormex
might one day use Python 3.x, we are still far off that day, because all the underlying packages need to be converted
to Python 3 first.

Do not be afraid of having to learn a new programming language. Python is known as own of the easiest languages
to get started with: just a few basic concepts suffice to produce quite powerful scripts. Most developers and users of
pyFormex have started without any knowledge of Python.

For the really impatient who do not want to go through the Python tutorial before diving into pyFormex, we have
gathered hereafter some of the most important Python concepts, hopefully enabling you to continue with this tutorial.

Here is a small example Python script.

#!/usr/bin/env python
"""pPython intro

A short introduction to some aspects of the Python programming language

mmwn

from _ future import print_function

for light in ['green', 'yellow', 'red', 'black',None]:
if light == 'red':
print ('stop'")
elif light == 'yellow':
print ('brake')
elif light == 'green':
print ('drive')
else:

print ('THE LIGHT IS BROKEN!')

appreciation = {
0: 'not driving',
30:'slow’',

60:'normal',
90: 'dangerous',
120:"'suicidal'

(continues on next page)

3.3. Some basic Python concepts 15

http://python.org/doc
http://docs.python.org/3/tutorial
http://docs.python.org/3/tutorial

24

25

26

27

28

29

pyFormex Documentation, Release 2.2

(continued from previous page)

for i in range (5):
speed = 30«1
print ("%s. Driving at speed is " % (i, speed, appreciation[speed]))

* A ‘# starts a comment: the ‘#’, and anything following it on the same line, is disregarded. A Python script
typically starts with a comment line like line 1 of the above script.

* Strings in Python can be delimited either by single quotes (‘), double quotes () or by triple double quotes (“*).
The starting and ending delimiters have to be equal though. Strings in triple quotes can span several lines, like
the string on lines 2-5.

* Indentation is essential. Indentation is Python’s way of grouping statements. In small, sequential scripts, inden-
tation is not needed and you should make sure that you start each new line in the first column. An if test or
a for loop will however need indentation to mark the statement(s) inside the condition or loop. Thus, in the
example, lines 8-15 are the block of statements that are executed repeatedly under the for loop construct in line
7. Notice that the condition and loop statements end with a “:’.

You should make sure that statements belonging to the same block are indented consistently. We advice you not
to use tabs for indenting. A good practice commonly followed by most Python programmers is to indent with 4
spaces.

The indentation makes Python code easy to read for humans. Most modern editors will recognize Python code
and help you with the indentation.

* Variables in Python do not need to be declared before using them. In fact, Python has no variables, only typed
objects. An assignment is just the binding of a name to an object. That binding can be changed at each moment
by a new assignment to the same name.

» Sequences of objects can be grouped in tuples or lists, and individual items of them are accessed by an index
starting from O.

 Function definitions can use both positional arguments and keyword arguments, but the keyword arguments
must follow the positional arguments. The order in which keyword arguments are specified is not important.

* You can use names defined in other modules, but you need to import those first. This can be done by importing
the whole module and then using a name relative to that module:

import mymodule
print (mymodule.some_variable)

or you can import specific names from a module:

from mymodule import some_variable
print (some_variable)

or you can import everything from a module (not recommended, because you can easily clutter your name
space):

from mymodule import x
print (some_variable)

16 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

3.4 Some basic NumPy concepts

Warning: This section still needs to be written!

Numerical Python (or NumPy for short) is an extension to the Python language providing efficient operations on large
(numerical) arrays. relies heavily on NumPy, and most likely you will need to use some NumPy functions in your
scripts. As NumPy is still quite young, the available documentation is not so extensive yet. Still, the tentative NumPy
tutorial http://www.scipy.org/Tentative_NumPy_Tutorial already provides the basics.

If you have ever used some other matrix language, you will find a lot of similar concepts in NumPy.
To do: Introduce the (for users) most important NumPy concepts.

pyFormex uses the NumPy ndarray as implementation of fast numerical arrays in Python.

3.5 Formex data model

The most important geometrical object in pyFormex is the Formex class. A Formex (plural:Formices) can describe a
variety of geometrical objects: points, lines, surfaces, volumes. The most simple geometrical object is the point, which
in three dimensions is only determined by its coordinates (x, y, z), which are numbered (0, 1, 2) in pyFormex to
be consistent with Python and NumPy indexing. Higher order geometrical objects are defined as a collection of points.
The number of points of an object is called the plexitude of the object.

A Formex is a collection of geometrical objects of the same plexitude. The objects in the collection are called the
elements of the Formex. A Formex whose elements have plexitude n is also called an n-plex Formex. Internally,
the coordinates of the points are stored in a NumPy ndarray with three dimensions. The coordinates of a single
point are stored along the last axis (2) of the Formex; all the points of an element are stored along the second axis (1);
different elements are stored along the first axis (0) of the Formex. The figure The structure of a Formex schematizes
the structure of a Formex.

Warning: The beginning user should be aware not to confuse the three axes of a Formex with the axes of the 3D
space. Both are numbered 0..2. The three coordinate axes form the components of the last axis of a Formex.

For simplicity of the implemented algorithms, internally pyFormex only deals with 3D geometry. This means that the
third axis of a Formex always has length 3. You can however import 2D geometry: all points will be given a third
coordinate z = 0.0. If you restrict your operations to transformations in the (x, y)-plane, it suffices to extract just the
first two coordinates to get the transformed 2D geometry.

The Formex object F can be indexed just like a Num Py numerical array: F [i] returns the element with index ¢
(counting from 0). For a Formex with plexitude n, the result will be an array with shape (n, 3), containing all the
points of the element. Further, F[1] [§] will be a (3,)-shaped array containing the coordinates of point j of element
¢. Finally, F [1] [j] [k] is a single floating point value representing one coordinate of that point.

In the following sections of this tutorial, we will first learn you how to create simple geometry using the Formex data
model and how to use the basic pyFormex interface functions. The real power of the Formex class will then be
established starting from the section Transforming a Formex.

3.4. Some basic NumPy concepts 17

http://www.scipy.org/Tentative_NumPy_Tutorial

pyFormex Documentation, Release 2.2

axis 0: elements: length = self.nelems()

i axis 2: coordinates (x,y,2): length = 3

axis 1: points: length = self.nplex()

Fig. 2: The structure of a Formex

3.6 Creating a Formex

There are many, many ways to create Formex instances in your scripts. Most of the geometrical operations and
transformations in pyFormex return geometry as a Formex. But how do you create a new geometric structure from
simple coordinate data? Well, there are several ways to do that too, and we’ll introduce them one by one.

3.6.1 Direct input of structured coordinate data

The most straightforward way to create a Formex is by directly specifying the coordinates of the points of all its
elements in a way compatible to creating a 3D ndarray:

F = Formex([[[0.,0.],([1.,0.1],[[2.,2.],([0.,1.110)

The data form a nested list of three levels deep. Each innermost level list holds the coordinates of a single point. There
are four of them: [0.,0.], [1.,0.], [1.,1.] and [0.,1.]. Remark that we left out the third (z) coordinate and it will be set
equal to zero. Also, though the values are integer, we added a dot to force floating point values.

Warning: Python by default uses integer math on integer arguments! We advice you to always write the decimal
point in values that initialize variables that can have floating point values, such as lengths, angles, thicknesses. Use
integer values only to initialize variables that can only have an integer value, such as the number of elements.

The second list level groups the points into elements. In this case there are two elements, each containing two points.
The outermost list level then is the Formex: it has plexitude 2 and contains 2 elements. But what geometrical entities

18 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

does this represent? The plexitude alone does not specify what kind of geometric objects we are dealing about. A
2-plex element would presumably represent a straight line segment between two points in space, but it could just as
well be used to represent a sphere (by its center and a point on the surface) or a plane (by a point in the plane and the
direction of the normal).

By default, pyFormex will interprete the plexitude as follows:

Plexitude | Geometrical interpretation

1 Points
2 Straight line segments
3 Triangles

4 or higher | Polygons (possibly nonplanar)

We will see later how to override this default. For now, let’s draw Formices with the default. Go back to the
examplel.py script in your editor, containing the line above, and add the draw (F) instruction to make it look
like:

F = Formex([[[0.,0.],([1.,0.7],([1.,1.1,[0.,1.111)
draw (F)

Save the script and execute it in pyFormex. You will see the following picture appear in the canvas.

Fig. 3: Two parallel lines

Now let’s remove the two central ‘]” and ‘[brackets in the first line:

F = Formex ([[[0.,0.],[1.,0.7,[2.,2.1,00.,2.111)
draw (F, color=blue)

With the same data we have now created a 4-plex Formex with only one element. Execute the script again (do not
forget to save it first) and you will see a square. Note that the draw command allows you to specify a color.

Fig. 4: A square.

But wait a minute! Does this represent a square surface, or just the four lines constituting the circumference of the
square? Actually, it is a square surface, but since the pyFormex GUI by default displays in wireframe mode, unless

3.6. Creating a Formex 19

pyFormex Documentation, Release 2.2

you have changed it, you will only see the border of the square. You can make surfaces and solids get fully rendered

by selecting the Viewport — Render Mode — Flat option or using the shortcut l button in the toolbar. You will
then see

Fig. 5: The square in smooth rendering.

pyFormex by default uses wireframe rendering, because in a fully rendered mode many details are obscured. Switch

back to wireframe mode using the Viewport — Render Mode — Wireframe menu option or % toolbar button.

Now suppose you want to define a Formex representing the four border lines of the square, and not the surface inside
that border. Obviously, you need a 4 element 2-plex Formex, using data structured like this:

F = Formex ([

== o

[10.,0.1,1
(o, 1.1, [
[[1, a0

[[1.,0.1, (0.
draw (F,color=blue, clear= Tru

O}—‘}—‘O

1.
/1.
,O
, 0.

11,
11,
11,
111)
e)

Try it, and you will see an image identical to the earlier figure A square.. But now this image represents four straight
lines, while the same image formerly represented a square plane surface.

Warning: When modeling geometry, always be aware that what you think you see is not necessarily what it really
is!

The clear=True option in the draw statement makes sure the screen is cleared before drawing. By default the
pyFormex draw statement does not clear the screen but just adds to what was already drawn. You can make the
clear=True option the default from the Viewport — Drawing Options menu. Do this now before continuing.

Changing the rendering mode, the perspective and the viewpoint can often help you to find out what the image is really
representing. But interrogating the Formex data itself is the definite way to make sure:

F = Formex ([[[0.,0.],[1.,0.7,[2.,2.1,00.,2.111)
print (F.shape)

F = Formex ([[[0.,0.],[1.,0.11, [[1.,2.1,00.,1.111)
print (F.shape)

This will print the length of the three axes of the coordinate array. In the first case you get (1, 4, 3) (I element of
plexitude 4), while the second one gives (2, 2, 3) (2 elements of plexitude 2).

You can also print the whole Formex, using print (F), giving you the coordinate data in a more readable fashion
than the list input. The last example above will yield: {[0.0,0.0,0.0; 1.0,0.0,0.0], [1.0,1.0,0.0;
0.0,1.0,0.0]1}. In the output, coordinates are separated by commas and points by semicolons. Elements are
contained between brackets and the full Formex is placed inside braces.

20 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

Until now we have only dealt with plane structures, but 3D structures are as easy to create from the coordinate data.
The following Formex represents a pyramid defined by four points (a tetrahedron):

F = Formex([[[0.,0.,0.7,0[1.,0.,0.7,00.,1.,0.7,100.,0.,1.1]1]1,eltype="tetd")
draw (F)

Depending on your current rendering mode, this will produce an image like one of the following:

Fig. 6: The tetrahedron in wireframe and smoothwire (transparent) rendering

The smoothwire mode can be set from the Viewport — Render Mode — Smoothwire option or the ; button.

The transparent mode can be toggled using the i button.

Hold down the left mouse button and move the mouse: the pyramid will rotate. In the same way, holding down the
rigth button will zoomin and out. Holding down the middle button (possibly the mouse wheel, or the left and right
button together) will move the pyramid over the canvas. Practice a bit with these mouse manipulations, until you get
a feeling of what they do. All these mouse operations do not change the coordinates of the structure: they just change

4
X
the way you’re looking at it. You can restore the default view with the Views — Front menu or the T—’ button.

The default installation of pyFormex provides seven default views: Front, Back, Left, Right, Top, Bottom and
Iso. They can be set from the Views menu items or the corresponding view buttons in the toolbar. The default Front
corresponds to the camera looking in the —z direction, with the = axis oriented to the right and the y axis upward.

We explicitely added the element type t et 4 when creating the pyramid. Without it, pyFormex would have interpreted
the 4-plex Formex as a quadrilateral (though in this case a non-planar one).

3.6.2 Using the pattern () function

In the previous examples the Formices were created by directly specifying the coordinate data. That is fine for small
structures, but quickly becomes cumbersome when the structures get larger. The pattern () function can reduce
the amount of input needed to create a Formex from scratch.

This function creates a series of points that lie on a regular grid with unit step. These points can then be used to create
some geometry. Do not worry about the regularity of the grid: pyFormex has many ways to transform it afterwards.

The points are created from a string input, interpreting each character as a code specifying how to move from the
previous point to the new point. The start position on entry is the origin [0.,0.,0.].

3.6. Creating a Formex 21

pyFormex Documentation, Release 2.2

Currently the following codes are defined:
* 0: goto origin (0.,0.,0.)
* 1..8: move in the x,y plane, as specified below
* 9 or.: remain at the same place (i.e. duplicate the last point)
e A.I: same as 1..9 plus step +1. in z-direction
* a.i: same as 1..9 plus step -1. in z-direction
¢ /: do not insert the next point

When looking at the x,y-plane with the x-axis to the right and the y-axis up, we have the following basic moves: 1 =
East, 2 = North, 3 = West, 4 = South, 5 = NE, 6 = NW, 7 =SW, 8 = SE.

Adding 16 to the ordinal of the character causes an extra move of +1. in the z-direction. Adding 48 causes an extra
move of -1. This means that ‘ABCDEFGHTI’, resp. ‘abcdefghi’, correspond with ‘123456789’ with an extra z +/-= 1.
This gives the following schema:

z+=1 z unchanged z —= 1
F B E 6 2 5 £ b e
\ \ \

\ \ \
C——-I-——A 3-——=-9-——-1 c-————-1i----a
\ \ \

\ \ \

G D H 7 4 8 g d h

The special character ¢/’ can be put before any character to make the move without inserting the new point. You need
to start the string with a ‘0’ or ‘9’ to include the origin in the output.

For example, the string ‘0123 will result in the following four points, on the corners of a unit square:

[

-]
-]
-]
-]

O - = O
= = O O
o O O O

[
[
[
[]

Run the following simple script to check it:

P = pattern('0123")
print (P)

Now you can use these points to initialize a Formex

F = Formex (pattern('0123"))
draw (F)

This draws the four points. But the Formex class allows a lot more. You can directly initialize a Formex with the
pattern input string, preceded by a modifier field. The modifier specifies how the list of points should be grouped
into multipoint elements. It normally consists of a number specifying the plexitude of the elements, followed by a *:’
character. Thus, after the following definitions:

F = Formex ('1:0123")
G Formex ('2:0123")
H Formex ('4:0123")

22 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

F will be a set of 4 points (plexitude 1), G will be 2 line segments (plexitude 2) and H will a single square (plexitude
4).

Furthermore, the special modifier ‘I:> can be used to create line elements between each point and the previous one.
Note that this in effect doubles the number of points in the Formex and always results in a 2-plex Formex. Here’s an
example:

F Formex ('1:1234")
draw (F)

It creates the same circumference of a unit square as above (see figure A square.), but is much simpler than the explicit
specification of the coordinates we used before. Notice that we have used here ‘1234 instead of ‘0123’ to get the four
corners of the unit square. Check what happens if you use ‘0123’, and try to explain why.

Note: Because the creation of line segments between subsequent points is such a common task, the Formex class
even allows you to drop the ‘1:"” modifier. If a Formex is initialized by a string without modifier field, the ‘l:’ is silently
added.

Figure Images generated from the patterns ‘127°, ‘11722" and ‘22584433553388° shows some more examples.

Fig. 7: Images generated from the patterns ‘127°, ‘11722 and ‘22584433553388’
Some simple wireframe patterns are defined in simple.py and are ready for use. These pattern strings are stacked
in a dictionary called ‘Pattern’. Items of this dictionary can be accessed like Pattern['cube'].
from simple import Pattern F = Formex(Pattern[‘cube’]) print(F.shape) draw(F,color=blue,view="is0)

The printed out shape of the Formex is (12, 2, 3), confirming that what we have created here is not a 3D solid cube,
nor the planes bounding that cube, but merely twelve straight line segments forming the edges of a cube.

The view="iso"' option in the draw statement rotates the camera so that it looks in the [-1,-1,-1] direction. This is

While the pattern () function can only generate points lying on a regular cartesian grid, pyFormex provides a
wealth of transformation functions to move the points to other locations after they were created. Also, the Turtle
plugin module provides a more general mechanism to create planar wireframe structures.

one of the predefined viewing directions and can also be set from the Views menu or using the button.

3.6.3 Reading coordinates from a file or a string

Sometimes you want to read the coordinates from a file, rather than specifying them directly in your script. This is
especially handy if you want to import geometry from some other program that can not export data in a format that is

3.6. Creating a Formex 23

pyFormex Documentation, Release 2.2

Fig. 8: A wireframe cube

24 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

understood by pyFormex. There usually is a way to write the bare coordinates to a file, and the pyFormex scripting
language provides all the necessary tools to read them back.

As an example, create (in the same folder where you store your scripts) the text file square.txt with the following
contents:

Then create and execute the following script.

chdir(file)
F = Formex.fromfile ('square.txt',sep="',"',nplex=4)
draw (F)

It will generate two squares, as shown in the figure Two squares with coordinates read from a file.

Fig. 9: Two squares with coordinates read from a file

The chdir (__file_) statement sets your working directory to the directory where the script is located, so that the
filename can be specified without adding the full pathname. The Formex . fromfile () call reads the coordinates
(as specified, separated by *,’) from the file and groups them into elements of the specified plexitude (4). The grouping
of coordinates on a line is irrelevant: all data could just as well be given on a single line, or with just one value per
line. The separator character can be accompanied by extra whitespace. Use a space character if your data are only
separated by whitespace.

There is a similar Formex . fromstring () method, which reads coordinates directly from a string in the script. If
you have a lot of coordinates to specify, this may be far more easy than using the list formatting. The following script
yields the same result as the above one:

F = Formex.fromstring ("""
000 010 110 100
110 210 220 120

Here we used the default separator, which is a space.

Note: Make sure to use Formex.fromfile (), to distinguish it from Coords.fromfile () and numpy.
fromfile ().

3.6. Creating a Formex 25

pyFormex Documentation, Release 2.2

3.7 Concatenation and lists of Formices

Multiple Formices can be concatenated to form one new Formex. There are many ways to do this, but the simplest is
to use the + or += operator. Notice the diffference: the + operator does not changing any of the arguments, but the +=
operator adds the second argument to the first, changing its definition:

F = Formex ('1234")

G = Formex ('5")
H=F + G
draw (H)

displays the same Formex as:

F += G
draw (F)

but in the latter case, the original definition of F is lost.

The += operator is one of the very few operations that change an existing Formex. Nearly all other operations return
a resulting Formex without changing the original ones.

Because a Formex has a single plexitude and element type, concatenation is restricted to Formices of the same plex-
itude and with the same eltype. If you want to handle structures with elements of different plexitude as a single
object, you have to group them in a list:

F = Formex ('1234")

G = Formex([0.5,0.5,0.1)
H [F,G]

draw (H, color=red)

This draws the circumference of a unit square (F: plexitude 2) and the center point of the square (G: plexitude 1), both
in red.

Fig. 10: A square and its center point.

3.8 Formex property humbers

Apart from the coordinates of its points, a Formex object can also store a set of property numbers. This is a set of
integers, one for every element of the Formex. The property numbers are stored in an attribute prop of the Formex.
They can be set, changed or deleted, and be used for any purpose the user wants, e.g. to number the elements in a
different order than their appearence in the coordinate array. Or they can be used as pointers into a large database
that stores all kind of properties for that element. Just remember that a Formex either has no property numbers, or a
complete set of numbers: one for every element.

26 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

Property numbers can play an important role in the modeling process, because they present some means of tracking
how the resulting Formex was created. Indeed, each transformation of a Formex that preserves its structure, will also
preserve the property numbers. Concatenation of Formices with property numbers will also concatenate the property
numbers. If any of the concatenated Formices does not have property numbers, it will receive value O for all its
elements. If all concatenated Formices are without properties, so will be the resulting Formex.

On transformations that change the structure of the Formex, such as replication, each element of the created Formex
will get the property number of the Formex element it was generated from.

To add properties to a Formex, use the setProp () method. It ensures that the property array is generated with the
correct type and shape. If needed, the supplied values are repeated to match the number of elements in the Formex.
The following script creates four triangles, the first and third get property number 1, the second and fourth get property
3.

F = Formex ('3:.12.34.14.32")
F.setProp(I[1,3])
print (F.prop) # ——> [1 3 1 3]

As a convenience, you can also specify the property numbers as a second argument to the Formex constructor. Once
the properties have been created, you can safely change individual values by directly accessing the prop attribute.

F = Formex ('3:.12.34.14.32",1[1,31)

F.prop[3] = 4
print (F.prop) # ——> [1 3 1 4]
draw (F)

drawNumbers (F)

When you draw a Formex with property numbers using the default draw options (i.e. no color specified), pyFormex
will use the property numbers as indices in a color table, so different properties are shown in different colors. The de-
fault color table has eight colors: [black, red, green, blue, cyan, magenta, yellow, white]
and will wrap around if a property value larger than 7 is used. You can however specify any other and larger colorset
to be used for drawing the property colors. The following figure shows different renderings of the structure created by
the above script. The drawNumbers () function draws the element numbers (starting from 0).

Fig. 11: A Formex with property numbers drawn as colors. From left to right: wireframe, flat, flat (transparent),
flatwire (transparent).

In flat rendering mode, the element numbers may be obscured by the faces. In such case, you can make the numbers

visible by using the transparent mode, which can be toggled with the i button.

Adding properties to a Formex is often done with the sole purpose of drawing with multiple colors. But remember

3.8. Formex property humbers 27

pyFormex Documentation, Release 2.2

you are free to use the properties for any purpose you want. You can even save, change and restore them throughout
the lifetime of a Formex object, thus you can attibrute multiple property sets to a Formex.

3.9 Getting information about a Formex

While the visual feedback on the canvas usually gives a good impression of the structure you created, at times the view
will not provide enough information or not precise enough. Viewing a 3D geometry on a 2D screen can at times even
be very misleading. The most reliable source for checking your geometry will always be the Formex data itself. We
have already seen that you can print the coordinates of the Formex F just by printing the Formex itself: print (F).
Likewise you can see the property numbers from a print (F.prop) instruction.

But once you start using large data structures, this information may become difficult to handle. You are usually better
off with some generalized information about the Formex object. The Formex class provides a number of methods
that return such information. The following table lists the most interesting ones.

Function Return value

F.nelems () | The number of elements in the Formex

F.nplex () The plexitude of the Formex (the number of points in each element of the Formex)
F.bbox () The bounding box of the Formex

F.center () | The center of the bbox of the Formex

F.sizes () The size of the bbox of the Formex

3.10 Saving geometry

Sometimes you want to save the created geometry to a file, e.g. to reread it in a next session without having to create it
again, or to pass it to someone else. While pyFormex can export geometry in a large number of formats, the best and
easiest way is to use the writeGeomFile () function. This ensures a fast and problem free saving and read back
of the geometry. The geometry is saved in pyFormex’s own file format, in a file with extension ‘.pgf’. This format is
well documented (see pyFormex file formats) and thus accessible for other programs.

A = Formex ('3:012/1416") .setProp (1)

B = Formex ('4:0123") .translate([1.,1.,0.1)
draw (B)

writeGeomFile ('saved.pgf', [A,B])

When reading back such a file, the objects end up in a dictionary. Quit pyFormex, restart it and read back the just
saved file.

D = readGeomFile ('saved.pgf')
print (D)

print (D.keys ())

draw (D.values ())

In this case the keys were auto-generated. We could however specified the keys when creating the file, by specifying
a dictionary instead of a list of the objects to save.

writeGeomFile ('saved.pgf', {'two_triangles':A, 'a_square':B})
D = readGeomFile ('saved.pgf')
print (D.keys ())

28 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

3.11 Saving images

Often you will want to save an image of the created geometry to a file, e.g. to include it in some document. This can
readily be done from the File — Save Image menu. You just have to fill in the file name and click the Save buttton.
You can specify the file format by using the appropriate extension in the file name. The default and recommended
format is png, but pyFormex can save in commonly used bitmap formats like jpg or gif as well.

But you can also create the images from inside your script. Just import the image module and call the image.
save () function:

import gui.image
image.save ("my_image.png")

Often you will want to change some settings, like rendering mode or background color, to get a better looking picture.
Since the main goal of pyFormex is to automate the creation and transformation of geometrical models, all these
settings can be changed from inside your script as well. The following code was used to create the four images in
figure A Formex with property numbers drawn as colors. From left to right: wireframe, flat, flat (transparent), flatwire
(transparent). above.

import gui.image

chdir(file)

reset ()

bgcolor (white)

linewidth (2)
canvasSize (200, 300)

F = Formex ('3:.12.34.14.32",1[1,31)
F.propl[3] = 4

clear ()

draw (F)

drawNumbers (F)

wireframe ()

image.save ('props-000.png")
flat ()

transparent (False)
image.save ('props—-001.png")
transparent (True)
image.save ('props-002.png')
flatwire ()

image.save ('props-003.png')

The following table lists the interactive menu option and the correspondant programmable function to be used to
change some of the most common rendering settings.

Purpose Function(s) Menu item

Background color | bgcolor() Viewport — Background Color
Line width linewidth() Viewport — LineWidth

Canvas Size canvasSize() Viewport — Canvas Size
Render Mode wireframe(), flat(), flatwire(), smooth(), smoothwire() | Viewport — Render Mode
Transparency transparent()

3.12 Transforming a Formex

Until now, we’ve only created simple Formices. The strength of pyFormex however is the ease to generate large
geometrical models by a sequence of mathematical transformations. After creating a initial Formex, you can transform

3.11. Saving images 29

pyFormex Documentation, Release 2.2

it by creating copies, translations, rotations, projections,. . .

The Formex class has an wide range of powerful transformation methods available, and this is not the place to treat
them all. The reference manual pyFormex reference manual describes them in detail.

We will illustrate the power of the Formex transformations by studying one of the examples included with pyFormex.
The examples can be accessed from the Examples menu option.

Note: If you have installed multiple script directories, the examples may be found in a submenu Scripts — Examples.

When a script is selected from this menu, it will be executed automatically. Select the Examples — Level — Beginner
— Helix example. You will see an image of a complex helical frame structure:

o

P S
e
T

}ii! 'ﬁ.i@.ff

Fig. 12: A helical frame structure (Helix example)

Yet the geometry of this complex structure was built from the very simple pyFormex script shown below (Use File —
Edit script to load it in your editor. Leaving out the comments and docstring, the relevant part of the script looks like
this:

"""Helix example from pyFormex"""

m = 36 # number of cells along helix

n = 10 # number of cells along circular cross section
reset ()

setDrawOptions ({'clear':True})

= Formex ('1:164"),[1,2,3]);draw(F)
.replic(m,1.,0); draw(F)

.replic(n,1.,1); draw(F)

.translate(2,1.); draw(F,view='iso")
.cylindrical([2,1,0],[1.,360./n,1.]1); draw(F)
.replic(5,mx1.,2); draw(F)

.rotate (-10.,0); draw(F)

.translate(0,5.); draw(F)
.cylindrical([0,2,1]1,[1.,360./m,1.]); draw(F)
F,view='right")

L I e B I e B e B |
([
~ | = /oo e

Q,
5
o)
=

The script shows all steps in the building of the helical structure. We will explain and illustrate them one by one. If
you want to see the intermediate results in pyFormex during execution of the script, you can set a wait time between

30 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

subsequent drawing operations with Settings — Draw Wait Time. Or alternatively, you can start the script with the

H button: pyFormex will then halt before each draw function and wait until you push the H again.

The script starts with setting the two parameters m and n. It is always a good idea to put constants in a variable. That
makes it easy to change the values in a single place when you want to create another structure: your model has become
a parametric model.

Lines 3 resets the drawing options to the defaults. It is not essential in this script but it is often a good idea to restore
the defaults, in case they would have been changed by a script that was run previously. Setting the clear=True
option in line 4 makes sure the subsequent drawing instructions will remove the previous step from the canvas.

In line 5 we create the basic geometrical entity for this structure: a triangle consisting of three lines, which we give
the properties 1, 2 and 3, so that the three lines are shown in a different color:

F = Formex('l:164"',[1,2,31)

Fig. 13: The basic Formex

This basic Formex is copied m times with a translation step 1.0 (this is precisely the length of the horizontal edge of
the triangle) in the O direction:

F = F.replic(m,1.,0)

Fig. 14: Replicated in x-direction

Then, the new Formex is copied n times with the same step size in the direction 1.

F = F.replic(n,1.,1)

Now a copy of this last Formex is translated in direction ‘2’ with a translation step of ‘1’. This necessary for the
transformation into a cylinder. The result of all previous steps is a rectangular pattern with the desired dimensions, in
a plane z=1.

F = F.translate(2,1); drawit (F, 'iso')

This pattern is rolled up into a cylinder around the 2-axis.

3.12. Transforming a Formex 31

pyFormex Documentation, Release 2.2

Fig. 15: Replicated in y-direction

’F = F.cylindrical([2,1,0],([1.,360./n,1.]); drawit(F, 'iso"') ‘

This cylinder is copied 5 times in the 2-direction with a translation step of ‘m’ (the lenght of the cylinder).

’F = F.replic(5,m,2); drawit(F, 'iso') ‘

The next step is to rotate this cylinder -10 degrees around the 0-axis. This will determine the pitch angle of the spiral.

’F = F.rotate(-10,0); drawit(F, 'iso') ‘

This last Formex is now translated in direction ‘0’ with a translation step of ‘5’.

’F = F.translate(0,5); drawit (F, 'iso") ‘

Finally, the Formex is rolled up, but around a different axis then before. Due to the pitch angle, a spiral is created. If
the pitch angle would be O (no rotation of -10 degrees around the 0-axis), the resulting Formex would be a torus.

F = F.cylindrical([0,2,1],[1.,360./m,1.]); drawit(F,'iso")
drawit (F, 'right")

3.13 Converting a Formex to a Mesh model

pyFormex contains other geometry models besides the Formex. The Mesh model e.g. is important in exporting the
geometry to finite element (FE) programs. A Formex often contains many points with (nearly) the same coordinates.
In a Finite Element model, these points have to be merged into a single node, to express the continuity of the material.
The toMesh () method of a Formex performs exactly that. It returns a Me sh instance, which has two import array
attributes ‘coords’ and ‘elems’:

¢ coords is a float array with shape (ncoords,3), containing the coordinates of the merged points (nodes),

* elems is an integer array with shape (F.nelems(),F.nplex()), describing each element by a list of node numbers.
These can be used as indices in the coords array to find the coordinates of the node. The elements and their
nodes are in the same order as in F.

from simple import =«
F = Formex (Pattern['cube'])
draw (F)

(continues on next page)

32 Chapter 3. pyFormex tutorial

pyFormex Documentation, Release 2.2

(continued from previous page)

M = F.toMesh ()
print ('Coords',M.coords)
print ('Elements',M.elems)

The output of this script are the coordinates of the unique nodes of the Mesh, and the connectivity of the elements. The
connectivity is an integer array with the same shape as the first two dimensions of the Formex: (F.nelems(),F.nplex()):

Nodes
[[0.

o O O
H R PP OO OO0

1.
Element

[

0
[0
[1
[1.
[0.
[0
[1
[1
S

o
w =

O OB WERE ONWRE
oy J 0oy O b O

The inverse operation of transforming a Mesh model back into a Formex is also quite simple:
Formex (nodes [elems]) will indeed be identical to the original F (within the tolerance used in merging of the
nodes).

>>> G = Formex (nodes[elems])
>>> print(allclose(F.£,G.f))
True

The allclose function in the second line tests that all coordinates in both arrays are the same, within a small
tolerance.

3.13. Converting a Formex to a Mesh model 33

pyFormex Documentation, Release 2.2

34 Chapter 3. pyFormex tutorial

CHAPTER
FOUR

PYFORMEX USER GUIDE

Warning: This document and the sections below it are still very incomplete!

Abstract

The user guide explains in depth the most important components of pyFormex. It shows you how to start pyFormex,
how to use the Graphical User Interface (GUI), how to use the most important data classes, functions and GUI
widgets in your scripts. It also contains sections dedicated to customization and extension of pyFormex.

Sections of the user guide:

4.1 Running pyFormex

To run pyFormex, simply enter the command pyformex in a terminal window. This will start the Graphical User
Interface (GUI), from where you can launch examples or load, edit and run your own scripts.

The installation procedure may have installed into your desktop menu or even have created a start button in the desktop
panel. These provide convenient shortcuts to start the GUI by the click of a mouse button.

The program takes some optional command line arguments, that modify the behaviour of the program. Appendix
Command line options gives a full list of all options. For normal use however you will seldom need to use any of
them. Therefore, we will only explain here the more commonly used ones.

By default, sends diagnostical and informational messages to the terminal from which the program was started. Some-
times this may be inconvenient, e.g. because the user has no access to the starting terminal. You can redirect these
messages to the message window of the GUI by starting pyformex with the command pyformex --redirect.
The desktop starters installed by the installation procedure use this option.

In some cases the user may want to use the mathematical power of without the GUI. This is e.g. useful to run complex
automated procedures from a script file. For convenience, will automatically enter this batch mode (without GUI) if
the name of a script file was specified on the command line; when a script file name is absent, start in GUI mode. Even
when specifying a script file, You can still force the GUI mode by adding the option —gui to the command line.

4.2 Command line options

The following is a complete list of the options for the pyformex command.This output can also be generated by the
command pyformex —--help.

35

pyFormex Documentation, Release 2.2

usage: pyformex [-h] [--version] [-v VERBOSE] [--gui] [--nogui] [--nocanvas]
[-—interactive] [--uselib] [--nouselib] [--config CONFIG]
[--nodefaultconfig] [--redirect] [--noredirect]
[-—debug DEBUG] [--debuglevel DEBUGLEVEL] [--debugitems]
[--mesa] [--dri] [--nodri] [--opengl OPENGL] [--shader SHADER]
[-—nomultisample] [--vtk VIK] [--testcamera] [--memtrack]
[-—fastnurbs] [--pathlib] [--bindings BINDINGS]
[-—experimental] [--listfiles] [-—-listmodules [PKG [PKG 111
[-—search] [--remove] [—--whereami] [--detect]
[-—doctest [MODULE [MODULE .11
[-—pytest [MODULE [MODULE L1711
[-—docmodule [MODULE [MODULE .1]11 [-c SCRIPT]
[FILE [FILE .11

pyFormex is a tool for generating,

manipulating and transforming large

geometrical models of 3D structures by sequences of mathematical

transformations.

positional arguments:
FILE

optional arguments:
-h, —--help
—--version
-v VERBOSE,

—-—verbose
-—gui

--nogui

—--nocanvas
—-—interactive

--uselib

—--nouselib
—-—config CONFIG

--nodefaultconfig

—--redirect

—--noredirect
—-—debug DEBUG

pyFormex script files to be executed on startup. The
files should have a .py extension. Their contents will
be executed as a pyFormex script. While mostly used
with the --nogui option, this will also work in GUI
mode.

Show this help message and exit

Show program's version number and exit

VERBOSE

Set the verbosity level (0..5). Default is 2.

Start the GUI (this is the default when no scriptname
argument 1is given)

Do not start the GUI (this is the default when a
scriptname argument is given)

Do not add an OpenGL canvas to the GUI
development purposes only!)

Go into interactive mode after processing the command
line parameters. This is implied by the --gui option.
Use the pyFormex C lib if available. This is the
default.

Do not use the pyFormex C-1lib.
Use file CONFIG for settings.
addition to the normal configuration files and
overwrites their settings. Any changes will be saved
to this file.

Skip the default site and user config files. This
option can only be used in conjunction with the
—-—config option.

Redirect standard output to the message board
with —--nogui)

Do not redirect standard output to the message board.
Display debugging information to sys.stdout. The value
is a comma-separated list of (case-insensitive) debug
items. Use option --debugitems to list them. The

'all' can be used to switch on all debug

(use for

This file is loaded in

(ignored

special value
info.

——debuglevel DEBUGLEVEL

(continues on next page)

36

Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

(continued from previous page)

—-—debugitemns

——mesa

——dri

——-nodri

——opengl OPENGL

——-shader SHADER

——-nomultisample
--vtk VTK

——testcamera
—-—-memtrack
-—fastnurbs
—--pathlib

——bindings BINDINGS

—-—experimental

——listfiles
—-listmodules [PKG

—-—search

Display debugging info to sys.stdout. The value is an
int with the bits of the requested debug levels set. A
value of -1 switches on all debug info. If this option
is used, it overrides the --debug option.

Show all available debug items. Each of these can be
used with the -debug option.

Force the use of software 3D rendering through the
mesa libs. The default is to use hardware accelerated
rendering whenever possible. This flag can be useful
when running pyFormex remotely on another host. The
hardware accelerated version will not work over remote
X.

Use Direct Rendering Infrastructure. By default,
direct rendering will be used if available.

Do not use the Direct Rendering Infrastructure. This
may be used to turn off the direc rendering, e.g. to
allow better capturing of images and movies.

Force the use of a specific OpenGL version. The
version should be specified as a string 'a.b'. The
default is 2.0

Force the use of an alternate GPU shader for the
OpenGL rendering. If the default selected shader does
not work well for your hardware, you can use this
option to try one of the alternate shaders. See
'pyformex —--detect' for a list of the available
shaders.

Switch off the use of multisample buffers in OpenGL.
Specify which version of python-vtk to use in vtk_itf
plugin. The value can be one of: 'standard', 'light',
or 'default'. 'standard' is the version as distributed
from python-vtk. 'light' is the trimmed vtk6 version
as distributed with pyFormex.

Print camera settings whenever they change.

Track memory for leaks. This is only for developers.
Test C library nurbs drawing: only for developers!

Use the Python3 pathlib library. Use only for
development and testing purposes.

Override the configuration setting for the Qt5/4
bindings. Available bindings are 'pyside2' or 'pygt5'
for Qt5 and 'pyside' or 'pyqgt4' for Qt4. A value 'any'
may be given to let pyFormex find out which bindings
are available and use one of these.

Allow the pyformex/experimental modules to be loaded.
Beware: use only if you know what you are doing!

List the pyFormex Python source files and exit.

[PKG ...]]

List the Python modules in the specified pyFormex
subpackage and exit. Specify 'core' to just list the
modules in the pyFormex top level. Specify 'all' to
list all modules. The default is to list the modules
in core, lib, plugins, gui, opengl.

Search the pyformex source for a specified pattern and
exit. This can optionally be followed by —-- followed
by options for the grep command and/or '-a' to search
all files in the extended search path. The final
argument is the pattern to search. '-e' before the
pattern will interprete this as an extended regular

(continues on next page)

4.2. Command line options 37

pyFormex Documentation, Release 2.2

(continued from previous page)

expression. '-1' option only lists the names of the
matching files.

——remove Remove the pyFormex installation and exit. This option
only works when pyFormex was installed from a tarball
release using the supplied install procedure. If you
install from a distribution package (e.g. Debian), you
should use your distribution's package tools to remove
pyFormex. If you run pyFormex directly from the git
source, you should just remove the whole cloned source

tree.
——whereami Show where the pyformex package is installed and exit.
——detect Show detected helper software and exit.

—-—doctest [MODULE [MODULE ...]]
Run the docstring tests for the specified pyFormex
modules and exit. MODULE name is specified in Python
syntax, relative to the pyformex package (e.g. coords,
plugins.curve) .

--pytest [MODULE [MODULE ...]]
Run the pytest tests for the specified pyFormex
modules and exit. MODULE name is specified in Python
syntax, relative to the pyformex package (e.g. coords,
plugins.curve) .

——docmodule [MODULE [MODULE ...]]
Print the autogenerated documentation for module
MODULE and exit. This is mostly useful during the
generation of the pyFormex reference manual, as the
produced result still needs to be run through the
Sphinx documentation generator. MODULE is the name of
a pyFormex module (Python syntax).

—-c SCRIPT, --script SCRIPT
A pyFormex script to be executed at startup. It is
executed before any specified script files. This is
mostly used in --nogui mode, when the script to
execute is very short.

More info on http://pyformex.org

4.3 Running without the GUI

If you start with the ——nogui option, no Graphical User Interface is created. This is extremely useful to run automated
scripts in batch mode. In this operating mode, will interprete all arguments remaining after interpreting the options, as
filenames of scripts to be run (and possibly arguments to be interpreted by these scripts). Thus, if you want to run a
script myscript.py in batch mode, just give the command pyformex myscript.py.

The running script has access to the remaining arguments in the global list variable argv. The script can use any
arguments of it and pop them of the list. Any arguments remaining in the argv list when the script finishes, will be
used for another execution cycle. This means that the first remaining argument should again be a script.

38 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

4.4 Importing pyFormex

Warning: This document contains very preliminary information of a new feature under development. Use at your
own risk!

Abstract

This document gives some guidelines about how to import pyFormex into a Python application (instead of running
the Python application from pyFormex).

4.4.1 Background

Traditionally, pyFormex is launched with the ‘pyformex’ command, and pyFormex (or Python) scripts are executed
from the pyFormex environment (whether GUI or non-GUI).

Sometimes however it may be more suitable to import pyFormex into another Python script or environment. Therefore
some modifications are underway to allow this.

4.4.2 How to proceed

In commit bd27925 of the git repositories the basic necessary changes were made to allow a basic pyFormex to be
imported into normal Python workflow. These changes are currently only available when using pyFormex from the git
sources. You may have to do a pull first.

4.4.3 Running non-GUI scripts
If you do not need the pyFormex GUI, the following is required to import pyFormex and make its scripting language
usable just like in a pyFormex script/application:

* make sure Python finds the path from which to import pyFormex,

* import pyFormex (this is done implicitely when importing one of the modules or subpackages from pyFormex),

 import the pyFormex scripting language, if you want to use it. You probably want to, since you have imported
pyFormex, but you would not need it if you just want to use some pyFormex classes or modules.

While there are many ways to do this, we present hereafter a few typical examples of how it can be done. Suppose we
have a (partial) directory layout as follows:

/

| —— home

| | —— user

| |-— pyformex

\ | -—— pyformex

\ | |-— main.py
\ \ |-— gui

| | | —— opengl
\

\

|

\ \
\ \
| \
\ \
\ | \ |-— plugins
\ \

(continues on next page)

4.4. Importing pyFormex 39

pyFormex Documentation, Release 2.2

(continued from previous page)

\ \ \ \ | -— examplel.py
\ \ \ \ | —— example?2.py

Thus, the path of the pyFormex package (i.e. the ‘pyformex’ directory containing the pyFormex ‘main.py’ source file
and having at least subdirectories ‘gui’, ‘opengl’, ‘plugins’) is ‘/home/user/pyformex/pyformex’. We have to add its
parent path (‘/home/user/pyformex’) to the front of the Python paths to search for packages and modules. Furthermore,
suppose we have our Python scripts in a directory ‘/home/user/apps/examplel.py’.

Example1

The contents of ‘examplel.py’ looks like this:

Set path to import pyFormex
import sys
sys.path.insert (0, ' /home/user/pyformex")

Import the pyFormex with its full scripting language
from pyformex.script import x

Show that we can do some pyFormex operations
a = array([[1,2,31,1[4,5,6]1])

print (a)

b = growAxis(a,?2)

print (b)

It can be run with the command:

python examplel.py

and produces the result:

l]

[
[
[l
[

I N
GENG N
o W oy W
o O -
o O
P

Example2

Instead of hardcoding the pyFormex package path inside the script, you can set it in the PYTHONPATH environment
variable. Also, in this example we do not import everything from the pyFormex scripting language, only the few things
we need:

Import some required modules
import numpy
from pyformex import arraytools

Show that we can do some pyFormex operations
a = numpy.array([[1,2,3]1,[4,5,611)

print (a)

b = arraytools.growAxis (a,2,axis=0)

print (b)

This script can now be run with a command:

40 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

PYTHONPATH=/home/user/pyformex python example2.py

and produces the results:

[l 2 3]
[4 5 6]]
L 2 3]
[4 5 6]
[0 0 0]
(0 0 011

4.4.4 Caveats

* It is possible to use relative paths for the pyFormex package path. Be aware though that these may not work if
you execute the python command from a directory that is actually a symlink.

4.4.5 Limitations

Currently you can not set the pyFormex command line options when not using the pyformex command.
Loading user preferences has not been tested yet. There is a function ‘loadUserConfig’ in pyformex.main (untested).

Using (parts of) pyFormex other than through the pyformex command has not been thoroughly tested yet. While the
basic functionality should likely work, the use of some complex classes and modules may raise some problems.

Warnings can not be silenced (unless you load the user preferences and disable the warnings from the GUI first).

4.5 The Graphical User Interface

While the GUI has become much more elaborate in recent versions, its intention will never be to provide a fully
interactive environment to operate on geometrical data. The main purpose of pyFormex will always remain to provide
a framework for easily creating scripts to operate on geometries. Automization of otherwise tedious tasks is our
primary focus.

The GUI mainly serves the following purposes:

* Display a structure in 3D. This includes changing the viewpoint, orientation and viewing distance. Thus you
can interactively rotate, translate, zoom.

» Save a view in one of the supported image formats. Most of the images in this manual and on the website were
created that way.

» Changing settings (though not everything can be changed through the GUI yet).
* Running scripts, possibly starting other programs and display their results.
* Interactively construct, select, change, import or export geometrical structures.

Unlike with most other geometrical modelers, in you usually design a geometrical model by writing a small script
with the mathematical expressions needed to generate it. Any text editor will be suitable for this purpose. The main
author of uses GNU Emacs, but this is just a personal preference. Any modern text editor will be fine, and the one you
are accustomed with, will probably be the best choice. Since Python is the language used in scripts, a Python aware
editor is highly preferable. It will highlight the syntax and help you with proper alignment (which is very important
in Python). The default editors of KDE and Gnome and most other modern editors will certainly do well. A special

4.5. The Graphical User Interface 41

pyFormex Documentation, Release 2.2

purpose editor integrated into the GUI is on our TODO list, but it certainly is not our top priority, because general
purpose editors are already adequate for our purposes.

Learning how to use is best done by studying and changing some of the examples. We suggest that you first take a look
at the examples included in the GUI and select those that display geometrical structures and/or use features that look
interesting to you. Then you can study the source code of those examples and see how the structures got built and how
the features were obtained. Depending on your installation and configuration, the examples can be found under the
Examples or Scripts main menu item. The examples may appear classified according to themes or keywords, which
can help you in selecting appropriate examples.

Selecting an example from the menu will normally execute the script, possibly ask for some interactive input and
display the resulting geometrical structure. To see the source of the script, choose the File — Edit Script menu item.

Before starting to write your own scripts, you should probably get acquainted with the basic data structures and
instructions of Python, NumPy and pyFormex. You can do this by reading the pyFormex tutorial.

4.5.1 Starting the GUI

You start the pyFormex GUI by entering the command py formex in a terminal window. Depending on your installa-
tion, you may also have a panel or menu button on your desktop from which you can start the graphical interface by a
simple mouse click. When the main window appears, it will look like the one shown in the figure The pyFormex main
window. Your window manager will most likely have put some decorations around it, but these are very much OS and
window manager dependent and are therefore not shown in the figure.

Finally, you can also start the GUI with the instruction startGUI () from a pyFormex script executed in non-GUI
mode.

4.5.2 Basic use of the GUI

As is still in its infancy, the GUI is subject to frequent changes and it would make no sense to cover here every single
aspect of it. Rather we will describe the most important functions, so that users can quickly get used to working with.
Also we will present some of the more obscure features that users may not expect but yet might be very useful.

The window (figure The pyFormex main window) comprises 5 parts. From top to bottom these are:
1. the menu bar,
2. the tool bar,
3. the canvas (empty in the figure),
4. the message board, and
5. the status bar.

Many of these parts look and work in a rather familiar way. The menu bar gives access to most of the GUI features
through a series of pull-down menus. The most import functions are described in following sections.

The toolbar contains a series of buttons that trigger actions when clicked upon. This provides an easier access to some
frequently used functions, mainly for changing the viewing parameters.

The canvas is a drawing board where your scripts can show the created geometrical structures and provide them with
full 3D view and manipulation functions. This is obviously the most important part of the GUI, and even the main
reason for having a GUI at all. However, the contents of the canvas is often mainly created by calling drawing functions
from a script. This part of the GUI is therefore treated in full detail in a separate chapter.

In the message board displays informative messages, requested results, possibly also errors and any text that your
script writes out.

42 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

File Settings Viewport Camera Actions Views Scripts Formex Mesh Tools Help

PP EO Vs e o aco L 1 XXSDATYVOOPO

Running command: import -window root -crop "1268x912+119+48"
png:/home/bene/prj/pyformex/sphinx/_static/images/gui.png

Image file fhome/bene/prj/pyformex/sphinx/_static/images/gui.png written
Running command: import -window root -crop "1024x768+119+48"
png:/home/bene/prj/pyformex/sphinx/_static/images/gui.png

Project:| None HScript: newtut.py

Fig. 1: The pyFormex main window

»

D

Gl

4.5. The Graphical User Interface

43

pyFormex Documentation, Release 2.2

The status bar shows the current status of the GUI. For now this only contains the filename of the current script and an
indicator if this file has been recognized as a script (happy face) or not (unhappy face).

Between the canvas and the message board is a splitter allowing resizing the parts of the window occupied by the
canvas and message board. The mouse cursor changes to a vertical resizing symbol when you move over it. Just click
on the splitter and move the mouse up or down to adjust the canvas/message board to your likings.

The main window can be resized in the usual ways.

4.5.3 The File menu

4.5.4 The Settings menu

Many aspects of the pyFormex GUI are configurable to suit better to the user’s likings. This customization can be
made persistent by storing it in a configuration file. This is explained in Configuring pyFormex.

Many of the configuration variables however can be changed interactively from the GUI itself.

* Settings — Commands: Lets you change the external command name used for the editor, the HTML/text file
viewer and the HTML browser. Each of these values should be an executable command accepting a file name
as parameter.

4.5.5 The viewport menu

4.5.6 Mouse interactions on the canvas

A number of actions can be performed by interacting with the mouse on the canvas. The default initial bindings of the
mouse buttons are shown in the following table.

Rotate, pan and zoom

You can use the mouse to dynamically rotate, pan and zoom the scene displayed on the canvas. These actions are
bound to the left, middle and right mouse buttons by default. Pressing the corresponding mouse button starts the
action; moving the mouse with depressed button continuously performs the actions, until the button is released. During
picking operations, the mouse bindings are changed. You can however still start the interactive rotate, pan and zoom,
by holding down the ALT key modifier when pressing the mouse button.

rotate Press the left mouse button, and while holding it down, move the mouse ove the canvas: the scene will rotate.
Rotating in 3D by a 2D translation of the mouse is a fairly complex operation:

¢ Moving the mouse radially with respect to the center of the screen rotates around an axis lying in the screen and
perpendicular to the direction of the movement.

* Moving tangentially rotates around an axis perpendicular to the screen (the screen z-axis), but only if the mouse
was not too close to the center of the screen when the button was pressed.

Try it out on some examples to get a feeling of the workinhg of mouse rotation.

pan Pressing the middle (or simultanuous left+right) mouse button and holding it down, will move the scene in the
direction of the mouse movement. Because this is implemented as a movement of the camera in the opposite
direction, the perspective of the scene may change during this operation.

zoom Interactive zooming is performed by pressing the right mouse button and move the mouse while keeping the
button depressed. The type of zoom action depends on the direction of the movement:

* horizontal movement zooms by camera lens angle,

44 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

* vertical movement zooms by changing camera distance.

The first mode keeps the perspective, the second changes it. Moving right and upzooms in, left and down zooms
out. Moving diagonally from upper left to lower right more or less keeps the image size, while changing the
perspective.

Interactive selection

During picking operations, the mouse button functionality is changed. Click and drag the left mouse button to create
a rectangular selection region on the canvas. Depending on the modifier key that was used when pressing the button,
the selected items will be:

NONE set as the current selection;

SHIFT added to the currentselection;

CTRL removed from the current selection.

Clicking the right mouse button finishes the interactive selection mode.

During selection mode, using the mouse buttons in combination with the ALT modifier key will still activate the default
mouse functions (rotate/pan/zoom).

4.5.7 Customizing the GUI

Some parts of the GUI can easily be customized by the user. The appearance (widget style and fonts) can be changed
from the preferences menu. Custom menus can be added by executing a script. Both are very simple tasks even for
beginning users. They are explained shortly hereafter.

Experienced users with a sufficient knowledge of Python and GUI building with Qt can of course use all their skills
to tune every single aspect of the GUI according to their wishes. If you send us your modifications, we might even
include them in the official distribution.

Changing the appearance of the GUI
Adding your scripts in a menu

By default, pyFormex adds all the example scripts that come with the distribution in a single menu accessible from the
menubar. The scripts in this menu are executed by selecting them from the menu. This is easier than opening the file
and then executing it.

You can customize this scripts menu and add your own scripts directories to it. Just add a line like the follow-
ing to the main section of your .pyformexrc configuration file: — scriptdirs = [(‘Examples’, None), (‘My Scripts’,
‘/home/me/myscripts’), (‘More’, ‘/home/me/morescripts’)]

Each tuple in this list consists of a string to be used as menu title and the absolute path of a directory with your scripts.
From each such directory all the files that are recognized as scripts and do no start with a *.” or ‘_’, will be included in
the menu. If your scriptdirs setting has only one item, the menu item will be created directly in the menubar. If there

are multiple items, a top menu named ‘Scripts’ will be created with submenus for each entry.

Notice the special entry for the examples supplied with the distribution. You do not specify the directory where the
examples are: you would probably not even know the correct path, and it could change when a new version of is
installed. As long as you keep its name to ‘Examples’ (in any case: ‘examples’ would work as well) and the path set
to None (unquoted!), will itself try to detect the path to the installed examples.

4.5. The Graphical User Interface 45

pyFormex Documentation, Release 2.2

Adding custom menus

When you start using for serious work, you will probably run into complex scripts built from simpler subtasks that
are not necessarily always executed in the same order. While the scripting language offers enough functions to ask
the user which parts of the script should be executed, in some cases it might be better to extend the GUI with custom
menus to execute some parts of your script.

For this purpose, the gui.widgets module of provides a Menu widget class. Its use is illustrated in the example Stl.py.

4.6 pyFormex scripting

While the pyFormex GUI provides some means for creating and transforming geometry, its main purpose and major
strength is the powerful scripting language. It offers you unlimited possibilities to do whatever you want and to
automize the creation of geometry up to an unmatched level.

Currently pyFormex provides two mechanisms to execute user applications: as a script, or as an app. The main menu
bar of the GUI offers two menus reflecting this. While there are good reasons (of both historical and technical nature)
for having these two mechanisms, the fist time user will probably not be interested in studying the precise details
of the differences between the two models. It suffices to know that the script model is well suited for small, quick
applications, e.g. often used to test out some ideas. As your application grows larger and larger, you will gain more
from the app model. Both require that the source file(s) be correctly formatted Python scripts. By obeing some simple
code structuring rules, it is even possible to write source files that can be executed under either of the two models. The
pyFormex template script as well as the many examples coming with pyFormex show how to do it.

4.6.1 Scripts

A pyFormex script is a simple Python source script in a file (with *.py’ extension), which can be located anywhere
on the filesystem. The script is executed inside pyFormex with an exec statement. pyFormex provides a collection
of global variables to these scripts: the globals of module gui . draw if the script is executed with the GUI, or those
from the module script if pyformex was started with ——nogui. Also, the global variable __name___ is set to
either ‘draw’ or ‘script’, accordingly. The automatic inclusion of globals has the advantage that the first time user has
a lot of functionality without having to know what he needs to import.

Every time the script is executed (e.g. using the start or rerun button), the full source code is read, interpreted, and
executed. This means that changes made to the source file will become directly available. But it also means that the
source file has to be present. You can not run a script from a compiled (. pyc) file.

4.6.2 Apps

A pyFormex app is a Python module. It is usually also provided a Python source file (.py), but it can also be a
compiled (. pyc) file. The app module is loaded with the import statement. To allow this, the file should be placed
in a directory containing an ‘__init__.py’ file (marking it as a Python package directory) and the directory should be
on the pyFormex search path for modules (which can be configured from the GUI App menu).

Usually an app module contains a function named ‘run’. When the application is started for the first time (in a session),
the module is loaded and the ‘run’ function is executed. Each following execution will just apply the ‘run’ function
again.

When loading module from source code, it gets compiled to byte code which is saved as a . pyc file for faster loading
next time. The module is kept in memory until explicitely removed or reloaded (another import does not have any
effect). During the loading of a module, executable code placed in the outer scope of the module is executed. Since this
will only happen on first execution of the app, the outer level should be seen as initialization code for your application.

46 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

The ‘run’ function defines what the application needs to perform. It can be executed over and over by pushing the
‘PLAY’ button. Making changes to the app source code will not have any effect, because the module loaded in memory
is not changed. If you need the module to be reloaded and the initialization code to be rerun use the ‘RERUN’ button:
this will reload the module and execute ‘run’.

While a script is executed in the environment of the ‘gui.draw’ (or ‘script’) module, an app has its own environment.
Any definitions needed should therefore be imported by the module.

4.6.3 Common script/app template

The template below is a common structure that allows this source to be used both as a script or as an app, and with
almost identical behavior.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

43

44

#

##

Copyright (C) 2011 John Doe (j.doel@somewhere.orgqg)

Distributed under the GNU General Public License version 3 or later.
##

This program is free software: you can redistribute it and/or modify
1t under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

##

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

##

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.
##

"""pyFormex Script/App Template

This is a template file to show the general layout of a pyFormex
script or app.

A pyFormex script 1is just any simple Python source code file with
extension '.py' and is fully read and execution at once.

A pyFormex app can be a '.py' of '.pyc' file, and should define a function
'run()' to be executed by pyFormex. Also, the app should import anything that
it needs.

This template is a common structure that allows the file to be used both as
a script or as an app, with almost identical behavior.

For more details, see the user guide under the "Scripting’ section.

The script starts by preference with a docstring (like this),
composed of a short first line, then a blank line and
one or more lines explaining the intention of the script.

If you distribute your script/app, you should set the copyright holder

at the start of the file and make sure that you (the copyright holder) has
the intention/right to distribute the software under the specified
copyright license (GPL3 or later).

(continues on next page)

4.6. pyFormex scripting

47

pyFormex Documentation, Release 2.2

(continued from previous page)

mmn
45

4 |# This helps in getting same code working with both Python2 and Python3
41 | from __ future_ import absolute_import, division, print_function

48
9 | # The pyFormex modeling language is defined by everything in

50 # the gui.draw module (if you use the GUI). For execution without
si | # the GUI, you should import from pyformex.script instead.

52 | from pyformex.gui.draw import =«

53
sa |# Definitions
5 |def run() :

56 """Main function.

57

58 This is automatically executed on each run of an app.
59 mmn

60 print ("This is the pyFormex template script/app")

61
62
&3 |# Code in the outer scope:

¢ |# — for an app, this is only executed on loading (module initialization).
s |# — for a script, this is executed on each run.

66
@ |print ("This is the initialization code of the pyFormex template script/app")
68
0 |# The following is to make script and app behavior alike

0 | # When executing a script in GUI mode, the global variable __name _ is set
71 # to 'draw', thus the run method defined above will be executed.

72

73 |if _ name_ == '_ draw__':

74 print ("Running as a script")
75 run ()

76

77

8 | # End

The script/app source starts by preference with a docstring, consisting of a short first line, then a blank line and one or
more lines explaining the intention and working of the script/app.

4.7 Input Dialogs

From the beginning pyFormex was intended as a framework for creating parametric models. This means that some
parameter values need to be fed to the models to instantiate them. Often it is more appropriate to ask these values
interactively from the user, rather than hardcoding them into a script.

The pyFormex user has full access to the Qt framework on which the GUI was built. Therefore he can
built input dialogs as complex and powerful as he can imagine. However, directly dealing with the Qt
libraries requires some skills and, for simple input widgets, more effort than needed.

Therefore pyFormex has a very powerful but still easy to use system for the creation of such dialogs.

4.7.1 Modal Dialogs

48 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

A simple dialog

In many cases we can just make use of the gui.draw.askItems () function. Here’s a simple example (dialogl).
It creates an (nrows, ncols) array filled with numbers from arange(nrows*ncols). The values nrows and ncols are asked
from the user.

res = askItems ([
dict (name='nrows', value=3),
dict (name='ncols', value=6),

1

if res:
nrows = res['nrows']
ncols = res['ncols']
A = np.arange (nrows*ncols) .reshape (nrows,ncols)
print (A)

The askltems function takes a list of input items as its first (and only required) argument. Each input item is a dict
where the keys have predefined meanings. There are many optional keys, but at least the name and value keys should
be present. The whole dict should be acceptable as keyword arguments for the gui.widgets. Input Item class.
See Input Items for more details.

The name specifies the key in the result dict that will contain the value entered by the user. The value is the initial
value that will be displayed in the dialog. The value also serves in simple cases to identify the type of the result: thus
a str, int, float given as value will automatically require that the same type is returned. If you want to get an integer
back as a string, you should specify: value="'3".

The askltems function constructs a dialog, displays it to the user:

Cancel‘ 0K |

nrows 3

ncols 6

It then lets the user interact with the dialog until he either accepts or rejects the input data. Accepting the data is done
by clicking the OK button or pressing the ENTER key. The data can be rejected by pushing the CANCEL button
or hitting the ESC key. The dialog created by askltems is a modal one, meaning that all interaction with the rest of
the pyFormex interface is blocked until the user either accepts or rejects the data. When the results are accepted or
rejected, the dialog is closed and the user can again interact with other pyFormex windows. In Modeless Dialogs we
describe how to create Dialogs that can stay open and allow the user to interact with other windows.

The return value of askItems is always a dict. If the user accepts the data, the dict contains a value for each of the items
specified, with the name of the item as key. The value will be of the type implied by or specified in the input item. If
the user rejects the data, it will be an empty dict. It is good practice to always test the result to see if it contains values,
as is done in the example above.

If you run this example and accept the default values, you will see this printed:

4.7. Input Dialogs 49

pyFormex Documentation, Release 2.2

[[0 1 2 3 4 5]
[6 7 8 9 10 11]
[12 13 14 15 16 17]]

Convenience functions

To avoid excessive typing pyFormex offers some convenience functions to create input items with the required name
and value fields. The most important one is _I, which creates a single input item, taking the name and value as
required positional arguments. We will study this function in detail in /nput Items. Using the _I function, we can
simplify the dialogl script to (dialog2):

res = askItems ([
_I('nrows', 3),
_I('ncols', 6),

1

if res:
globals () .update (res)
A = np.arange (nrows*ncols) .reshape (nrows,ncols)
print (A)

The globals () .update (res) isaconvenient shortcut to convert all the values returned from the dialog to global
variables. Of course this only works if all then field names are valid Python variable names. It is only recommended
in small and simple scripts, where you can avoid name clashes in the global name space.

Input validation

When an input item uses a string editing field as interactor, it is usually not possible to type anything that would
obviously lead to an invalid value. For example, the integer input fields in the above example will not allow you to
enter a non-digit (except for the minus sign).

It is however still possible to temporarily have an invalid value in the edit field. You can for example delete the input
field contents: this has to be possible in order to replace a value with another one. But the empty string is not a valid
integer. If this value would be accepted, the remainder of the script would fail.

There are often more restrictions needed on the input values to guarantee a further proper operation. For example,
in the dialogl above, it is possible to enter negative integers. If you only enter one negative value, the script will
still continue normally, producing an empty array. If you enter both values negative though, the script exits with an
exception traceback. We could test the values nrow and ncol in the script, and only proceed if the values are not
negative. But pyFormex dialogs offer a better way: specify the value bounds on the input item, and let the pyFormex
GUI handle the validation (dialog3):

res = askItems ([
_I('nrows', 3, min=0, text='Number of rows'),
_I('ncols', 6, min=2, max=10, text='Number of columns'),

1)

if res:
globals () .update (res)
A = np.arange (nrows*ncols) .reshape (nrows, ncols)
print (A)

The min and max values specify the lowest and highest acceptable int value for the field. For nrows, we accept any
non-negative value. For ncols, we restrict the values to the range 2..10. Notice also the added text option: it specifies
the text displayed before the field in place of the name. The dialog now looks like this:

50 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

Cancel‘ OK ‘

Number of rows 3

Number of columns 6

While it is now not possible to enter negative values, specifying bounds may raise other possibilities for intermediate
invalid values. Consider the case of ncols, which specifies the range 2..10 as valid. It is however possible to enter 1 in
the field, since that could be the first digit of the valid number 10. Again, if this value would be accepted, an invalid
value would be produced.

The problem of intermediate invalid values is handled by pyFormex Dialogs as follows: when the user performs an
action to accept the dialog (pressing OK or hitting ENTER), a validation of all data is performed, and if any fields hold
invalid data, these fields are flagged and the data is not accepted:

Cancel‘ OK ‘

Number of rows 3

& | Number of columns 1

Hovering the mouse over the red invalid button will pop up a tip with the reason:

Then the user interaction continues until all data are valid and accepted, or the data are rejected.

4.7.2 Modeless Dialogs

Modal Dialogs are a good solution when some information from the user is required to continue. But there are cases
where we want to construct a dialog that stays open while allowing to continue working with the other windows. Such
modeless dialogs need to be handled somewhat different. The system can not wait for results. Instead you will need
to define actions that need to be executed when activated.

Here is a simple modeless dialog, containing the same input items as dialog3 above (dialog4):

def create_array(nrows, ncols):
A = np.arange (nrows*ncols) .reshape (nrows,ncols)

(continues on next page)

4.7. Input Dialogs 51

pyFormex Documentation, Release 2.2

Cancel‘ OK ‘

Number of rows 3

Number of columns 1
Value out of range (2 to 10)

(continued from previous page)

print (A)

def show () :
if dialog.validate():
create_array(xxdialog.results)

def close():
dialog.close()

dialog = Dialog([
_I('nrows', 3, min=0, text='Number of rows'),
_I('ncols', 6, min=2, max=10, text='Number of columns'),
1, actions=[(
dialog.show ()

'Close', close), ('Show', show)])

The first function, create_array, is the function we actually want to accomplish: print an (nrows, ncols) array.
The next two functions are the actions that we want to be provided by the dialog. The show function validates the
current input data, and if they’re valid, calls create_array to do the work.

Let’s disect this, starting with the creation of the dialog near the bottom. The Dialog class class initializer requires a
list of input items as first argument, just like the askItems function for creating Modal Dialogs. But it has many
optional arguments. The act ions options defines the buttons that will be provided on the dialog to initiate actions.
Each button is defined by a tuple of a string and a function. The string is the text shown on the button. The function
should take no arguments and will be executed when the button is pressed. In our case we defined two buttons: Show,
to create and print the array according to the user input; and Close, to close the dialog when we’re done.

4.7.3 Dialog class

4.7.4 Input Items

4.8 Modeling Geometry with pyFormex

Warning: This document is under construction!

52 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

Abstract

This chapter explains the different geometrical models in pyFormex, how and when to use them, how to convert
between them, how to import and export them in various formats.

4.8.1 Introduction

Everything is geometry

In everyday life, geometry is ubiquitous. Just look around you: all the things you see, whether objects or living
organisms or natural phenomena like clouds, they all have a shape or geometry. This holds for all concrete things,
even if they are ungraspable, like a rainbow, or have no defined or fixed shape, like water. The latter evidently takes
the shape of its container. Only abstract concepts do not have a geometry. Any material thing has though', hence our
claim: everything is geometry.

Since geometry is such an important aspect of everybody’s life, one would expect that it would take an important place
in education (base as well as higher). Yet we see that in the educational system of many developed countries, attention
for geometry has vaned during the last decades. Important for craftsmen, technician, engineer, designer, artist

We will give some general ideas about geometry, but do not pretend to be a full geometry course. Only concepts
needed for or related to modleing with pyFormex.

We could define the geometry of an object as the space it occupies. In our three-dimensional world, any object is also
3D. Some objects however have very small dimensions in one or more directions (e.g. a thin wire or a sheet of paper).
It may be convenient then to model these only in one or two dimensions.”

Concrete things also have a material. THIngs going wrong is mostly mechanical: geometry/materail

4.8.2 The Formex model
4.8.3 The Mesh model
4.8.4 The TriSurface model
4.8.5 The Curve model

4.8.6 Subclassing Geometry

The __init__ method of the derived class should at least call Geometry.__init__(self) and then assign a Coords to
self.coords. Furthermore, the class should override the nelems () method. Then a newly created instance of the
subclass will at least have these attributes:

Derived classes can (and in most cases should) declare a method _set_coords(coords) returning an object that is
identical to the original, except for its coords being replaced by new ones with the same array shape.

The Geometry class provides two possible default implementations:

» _set_coords_inplace sets the coords attribute to the provided new coords, thus changing the object itself, and
returns itself,

» _set_coords_copy creates a deep copy of the object before setting the coords attribute. The original object is
unchanged, the returned one is the changed copy.

! We obviously look here at matter in the way we observe it with our senses (visual, tactile) and not in a quantum-mechanics way.
2 Mathematically we can also define geometry with higher dimensionality than 3, but this is of little practical use.

4.8. Modeling Geometry with pyFormex 53

pyFormex Documentation, Release 2.2

When using the first method, a statement like B = A.scale (0.5) will result in both A and B pointing to the same
scaled object, while with the second method, A would still be the untransformed object. Since the latter is in line with
the design philosophy of pyFormex, it is set as the default _set_coords method. Many derived classes that are part of
pyFormex override this default and implement a more efficient copy method.

Derviced classes should immplement the _select method
def _select(self,selected,**kargs): “’“Return a Formex only holding the selected elements.
The kargs can hold optional arguments: compact = True/False

if the Coords modell can hold unused points that can be removed by compacyion (the case with Mesh)

4.8.7 Analytical models

4.9 The Canvas

4.9.1 Introduction

When you have created a nice and powerful script to generate a 3D structure, you will most likely want to visually
inspect that you have indeed created that what you intended. Usually you even will want or need to see intermediate
results before you can continue your development. For this purpose the GUI offers a canvas where structures can be
drawn by functions called from a script and interactively be manipulated by menus options and toolbar buttons.

The 3D drawing and rendering functionality is based on OpenGL. Therefore you will need to have OpenGL available
on your machine, either in hardware or software. Hardware accelerated OpenGL will of course speed up and ease
operations.

The drawing canvas of actually is not a single canvas, but can be split up into multiple viewports. They can be used
individually for drawing different items, but can also be linked together to show different views of the same scene.
The details about using multiple viewports are described in section Multiple viewports. The remainder of this chapter
will treat the canvas as if it was a single viewport.

distinguishes three types of items that can be drawn on the canvas: actors, marks and decorations. The most important
class are the actors: these are 3D geometrical structures defined in the global world coordinates. The 3D scene formed
by the actors is viewed by a camera from a certain position, with a certain orientation and lens. The result as viewed
by the camera is shown on the canvas. The scripting language and the GUI provide ample means to move the camera
and change the lens settings, allowing translation, rotation, zooming, changing perspective. All the user needs to do
to get an actor displayed with the current camera settings, is to add that actor to the scene. There are different types of
actors available, but the most important is the FormexActor: a graphical representation of a Formex. It is so important
that there is a special function with lots of options to create a FormexActor and add it to the OpenGL scene. This
function, draw(), will be explained in detail in the next section.

The second type of canvas items, marks, differ from the actors in that only their position in world coordinates is fixed,
but not their orientation. Marks are always drawn in the same way, irrespective of the camera settings. The observer
will always have the same view of the item, though it can (and will) move over the canvas when the camera is changed.
Marks are primarily used to attach fixed attributes to certain points of the actors, e.g. a big dot, or a text dispaying
some identification of the point.

Finally, offers decorations, which are items drawn in 2D viewport coordinates and unchangeably attached to the
viewport. This can e.g. be used to display text or color legends on the view.

4.9.2 Drawing a Formex

The most important action performed on the canvas is the drawing of a Formex. This is accomplished with the draw()
function. If you look at the reference page of the draw () function, the number of arguments looks frightening.

54 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

However, most of these arguments have sensible default values, making the access to drawing functionality easy even
for beginners. To display your created Formex F on the screen, a simple draw(F) will suffice in many cases.

If you draw several Formices with subsequent draw() commands, they will clutter the view. You can use the clear()
instruction to wipe out the screen before drawing the next one. If you want to see them together in the same view, you
can use different colors to differentiate. Color drawing is as easy as draw(F,color="red’). The color specification can
take various forms. It can be a single color or an array of colors or even an array of indices in a color table. In the
latter case you use draw(F,color=indices,colormap=table) to draw the Formex. If multiple colors are specified, each
elementof the Formex will be drawn with the corresponding color, and if the color array (or the color indices array)
has less entries than the number of elements, it is wrapped around.

A single color entry can be specified by a string (‘red’) or by a triple of RGB values in the range 0.0..1.0 (e.g. red is
(1.0,0.0,0.0)) or a triplet of integer values in the range 0..255 or a hexadecimal string (‘#FF0000’) or generally any of
the values that can be converted by the colors.glColor() function to a triplet of RGB values.

If no color is specified and your Formex has no properties, will draw it with the current drawing color. If the Formex
has properties, will use the properies as a color index into the specified color map or a (configurable) default color
map.

There should be some examples here. Draw object(s) with specified settings and direct camera to it.

4.9.3 Viewing the scene

Once the Formex is drawn, you can manipulate it interactively using the mouse: you can rotate, translate and zoom
with any of the methods decribed in Mouse interactions on the canvas. You should understand though that these
methods do not change your Formex, but only how it is viewed by the observer.

Our drawing board is based on OpenGL. The whole OpenGL drawing/viewing process can best be understood by
making the comparison with the set of a movie, in which actors appear in a 3D scene, and a camera that creates a 2D
image by looking at the scene with a certain lens from some angle and distance. Drawing a Formex then is nothing
more than making an actor appear on the scene. The OpenGL machine will render it according to the current camera
settings.

Viewing transformations using the mouse will only affect the camera, but not the scene. Thus, if you move the Formex
by sliding your mouse with button 3 depressed to the right, the Formex will look like it is moving to the right, though it
is actually not: we simply move the camera in the opposite direction. Therefore in perspective mode, you will notice
that moving the scene will not just translate the picture: its shape will change too, because of the changing perspective.

Using a camera, there are two ways of zooming: either by changing the focal length of the lens (lens zooming) or by
moving the camera towards or away from the scene (dolly zooming). The first one will change the perspective view
of the scene, while the second one will not.

The easiest way to set all camera parameters for properly viewing a scene is by justing telling the direction from which
you want to look, and let the program determine the rest of the settings itself. even goes a step further and has a
number of built in directions readily available: ‘top’, ‘bottom’, ‘left’, ‘right’, ‘front’, ‘back’ will set up the camera
looking from that direction.

4.9.4 Other canvas items

Actors

Marks

4.9. The Canvas 55

pyFormex Documentation, Release 2.2

Decorations

4.9.5 Multiple viewports
Drawing in is not limited to a single canvas. You can create any number of canvas widgets laid out in an array with
given number of rows or columns. The following functions are available for manipulating the viewports.

layout (nvps=None, ncols=None, nrows=None)
Set the viewports layout. You can specify the number of viewports and the number of columns or rows.

If a number of viewports is given, viewports will be added or removed to match the number requested. By
default they are layed out rowwise over two columns.

If ncols is an int, viewports are laid out rowwise over ncols columns and nrows is ignored. If ncols is None and
nrows is an int, viewports are laid out columnwise over nrows rows.

addViewport ()
Add a new viewport.

removeViewport ()
Remove the last viewport.

linkViewport (vp, fovp)
Link viewport vp to viewport tovp.

Both vp and tovp should be numbers of viewports. The viewport vp will now show the same contents as the
viewport tovp.

viewport (n)
Select the current viewport. All drawing related functions will henceforth operate on that viewport.

This action is also implicitly called by clicking with the mouse inside a viewport.

4.10 Creating Images

Warning: This document still needs to be written!

Abstract

This chapter explains how to create image files of the renderings you created in pyFormex.

4.10.1 Save a rendering as image

A picture tells a thousand words

56 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

4.11 Using Projects

Warning: This document still needs to be written!

Abstract

This chapter explains how to use projects to make your work persistent. We will explain how to create new projects,
how to add or remove data from the project and how to save and reopen project files.

4.11.1 What is a project

A pyFormex project is a persistent copy of some data created by pyFormex. These data are saved in a project file,
which you can later re-open to import the data in another pyFormex session.

4.12 Assigning properties to geometry

As of version 0.7.1, the way to define properties for elements of the geometry has changed thoroughly. As a result, the
property system has become much more flexibel and powerful, and can be used for Formex data structures as well as
for TriSurfaces and Finite Element models.

With properties we mean any data connected with some part of the geometry other than the coordinates of its points
or the structure of points into elements. Also, values that can be calculated purely from the coordinates of the points
and the structure of the elements are usually not considerer properties.

Properties can e.g. define material characteristics, external loading and boundary conditions to be used in numerical
simulations of the mechanics of a structure. The properties module includes some specific functions to facilitate
assigning such properties. But the system is general enough to used it for any properties that you can think of.

Properties are collected in a PropertyDB object. Before you can store anything in this database, you need to create
it. Usually, you will start with an empty database.

P = PropertyDB()

4.12.1 General properties

Now you can start entering property records into the database. A property record is a lot like a Python dict object, and
thus it can contain nearly anything. It is implemented however as a CascadingDict object, which means that the
key values are strings and can also be used as attributes to address the value. Thus, if P is a property record, then a
field named key can either be addressed as P[‘key’] or as P.key. This implementation was choosen for the convenience
of the user, but has no further advantages over a normal dict object. You should not use any of the methods of Python’s
dict class as key in a property record: it would override this method for the object.

The property record has four more reserved (forbidden) keys: kind, tag, set, setname and nr. The kind and nr should
never be set nor changed by the user. kind is used internally to distinguish among different kind of property records
(see Node properties). It should only be used to extend the PropertyDB class with new kinds of properties, e.g. in
subclasses. nr will be set automatically to a unique record number. Some application modules use this number for
identification and to create automatic names for property sets.

4.11. Using Projects 57

pyFormex Documentation, Release 2.2

The tag, set and setname keys are optional fields and can be set by the user. They should however only be used for the
intended purposes explained hereafter, because they have a special meaning for the database methods and application
modules.

The tag field can be used to attach an identification string to the property record. This string can be as complex as the
user wants and its interpretation is completely left to the user. The PropertyDB class just provides an easy way to
select the records by their tag name or by a set of tag names. The set and setname fields are treated further in Using
the set and setname fields.

So let’s create a property record in our database. The Prop() method does just that. It also returns the property record,
so you can directly use it further in your code.

>>> Stick = P.Prop(color='green',name="'Stick',weight=25,\
comment="'This could be anything: a gum, a frog, a usb-stick,...'})
>>> print Stick

color = green

comment = This could be anything: a gum, a frog, a usb-stick, ...
nr = 0

name = Stick

weight = 25

Notice the auto-generated nr field. Here’s another example, with a tag:

>>> author = P.Prop(tag='author',name="'Alfred E Neuman',\
address=CascadingDict ({'street':'Krijgslaan', \
'city':'Gent', 'country':'Belgium'}))

>>> print author

nr = 1
tag = author
name = Alfred E Neuman

address =
city = Gent
street = Krijgslaan
country = Belgium

This example shows that record values can be complex structured objects. Notice how the CascadingDict object
is by default printed in a very readible layout, offsetting each lower level dictionary two more postions to the right.

The CascadingDict has yet another fine characteristic: if an attribute is not found in the toplevel, all values that
are instances of CascadingDict or Dict (but not the normal Python dict) will be searched for the attribute. If
needed, this searching is even repeated in the values of the next levels, and further on, thus cascading though all levels
of CascadingDict structures until the attribute can eventually be found. The cascading does not proceed through
values in a Dict. An attribute that is not found in any of the lower level dictionaries, will return a None value.

If you set an attribute of a CascadingDict, it is always set in the toplevel. If you want to change lower level
attributes, you need to use the full path to it.

>>> print author.st
Krijgslaan

>>> author.street = 'Voskenslaan'
>>> print author.street
Voskenslaan

>>> print author.address.street
Krijgslaan

>>> author.address.street = 'Wiemersdreef'

>>> print author.address.street

(continues on next page)

58 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

(continued from previous page)

Wiemersdreef
>>> author = P.Prop(tag='author',alias="John Doe',\
address={'city': 'London', 'street': 'Downing Street 10',\
'country': 'United Kingdom'})
>>> print author
nr = 2
tag = author
alias = John Doe
address = {'city': 'London', 'street': 'Downing Street 10',\
'country': 'United Kingdom'}

In the examples above, we have given a name to the created property records, so that we could address them in the
subsequent print and field assigment statements. In most cases however, it will be impractical and unnecessary to
give your records a name. They all are recorded in the Propert yDB database, and will exist as long as the database
variable lives. There should be a way though to request selected data from that database. The getProp () method
returns a list of records satisfying some conditions. The examples below show how it can be used.

>>> for p in P.getProp(rec=[0,2]):
print p.name

Stick

John Doe

>>> for p in P.getProp(tag=['author']):
print p.name

None

John Doe

>>> for p in P.getProp(attr=['name']):
print p.nr

>>> for p in P.getProp(tag=['author'],attr=["'name']):
print p.name
John Doe

The first call selects records by number: either a single record number or a list of numbers can be specified. The
second method selects records based on the value of their tag field. Again a single tag value or a list of values can
be specified. Only those records having a ‘tag’ filed matching any of the values in the list will be returned. The third
selection method is based on the existence of some attribute names in the record. Here, always a list of attribute names
is required. Records are returned that posess all the attributes in the list, independent from the value of those attributes.
If needed, the user can add a further filtering based on the attribute values. Finally, as is shown in the last example, all
methods of record selection can be combined. Each extra condition will narrow the selection further down.

4.12.2 Using the set and setname fields

In the examples above, the property records contained general data, not related to any geometrical object. When
working with large geometrical objects (whether Formex or other type), one often needs to specify properties that
only hold for some of the elements of the object.

The set can be used to specify a list of integer numbers identifying a collection of elements of the geometrical object
for which the current property is valid. Absence of the set usually means that the property is assigned to all elements;
however, the property module itself does not enforce this behavior: it is up to the application to implement it.

Any record that has a set field, will also have a setname field, whose value is a string. If the user did not specify one, a
set name will be auto-generated by the system. The setname field can be used in other records to refer to the same set
of elements without having to specify them again. The following examples will make this clear.

4.12. Assigning properties to geometry 59

pyFormex Documentation, Release 2.2

>>> P.Prop(set=[0,1,3],setname="green_elements',color="green')
P.Prop (setname='"'green_elements',transparent=True)
>>> = P.Prop(set=[0,2,4,6],thickness=3.2)

a
P.Prop (setname=a.setname, material="steel')

>>> for p in P.getProp(attr=['setname']):
print p

color = green

nr = 3

set = [0 1 3]

setname = green_elements

nr = 4

transparent = True

setname = green_elements

nr = 5

set = [0 2 4 6]

setname = Set_5

thickness = 3.2

nr = 6
material = steel
setname = Set_5

In the first case, the user specifies a setname himself. In the second case, the auto-generated name is used. As a
convenience, the user is allowed to write set=name instead of setname=name when referring to an already defined set.

>>> P.Prop(set="'green_ elements',transparent=False)
for p in P.getProp (attr=["'setname']):
if p.setname == 'green_elements':
print p.nr,p.transparent

3 None
4 True
7 False

Record 3 does not have the transparent attribute, so a value None is printed.

4.12.3 Specialized property records

The property system presented above allows for recording any kind of values. In many situations however we will
want to work with a specialised and limited set of attributes. The main developers of e.g. often use the program
to create geometrical models of structures of which they want to analyse the mechanical behavior. These numerical
simulations (FEA, CFD) require specific data that support the introduction of specialised property records. Currently
there are two such property record types: node properties (see Node properties), which are attributed to a single point
in space, and element properties (Element properties), which are attributed to a structured collection of points.

Special purpose properties are distincted by their kind field. General property records have kind=", node properties
haven kind="n’ and kind="e’ is set for element properties. Users can create their own specialised property records by
using other value for the kind parameter.

60 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

4.12.4 Node properties

Node properties are created with the nodeProp () method, rather than the general Prop () . The kind field does not
need to be set: it will be done automatically. When selecting records using the getProp () method, add a kind="n’
argument to select only node properties.

Node properties will recognize some special field names and check the values for consistency. Application plugins
such as the Abaqus input file generator depend on these property structure, so the user should not mess with them.
Currently, the following attributes are in use:

cload A concentrated load at the node. This is a list of 6 items: three force components in axis directions and three
force moments around the axes: [F_0,F_1,F_2, M_0, M_1, M_2].

bound A boundary condition for the nodal displacement components. This can be defined in 2 ways:
e asalistof 6items [u_0,u_1,u_2,r_0,r_1,r_2]. These items have 2 possible values:
0 The degree of freedom is not restrained.
1 The degree of freedom is restrained.
* as a string. This string is a standard boundary type. Abaqus will recognize the following strings:
* PINNED
* ENCASTRE
* XSYMM
* YSYMM
* ZSYMM
* XASYMM
* YASYMM
« ZASYMM

displacement Prescribed displacements. This is a list of tuples (i,v), where i is a DOF number (1..6) and v is the
prescribed value for that DOF.

coords The coordinate system which is used for the definition of cload, bound and displ fields. It should be a
CoordSys object.

Some simple examples:

P.nodeProp(cload=[5,0,-75,0,0,07])
P.nodeProp (set=[2,3],bound="pinned")
P.nodeProp (5,displ=[(1,0.7)1)

The first line sets a concentrated load all the nodes, the second line sets a boundary condition ‘pinned’ on nodes 2 and
3. The third line sets a prescribed displacement on node 5 with value 0.7 along the first direction. The first positional
argument indeed corresponds to the ‘set’ attribute.

Often the properties are computed and stored in variables rather than entered directly.

p1=79011.0,1.0,1.0, 0.0,0.0,0.0]
P2 = [0.0]1 » 3+ [1.01 = 3
Bl =111+ [071 =5

CYL = CoordSystem('cylindrical', [0,0,0,0,0,17)
P.nodeProp (bound=B1l, csys=CYL)

4.12. Assigning properties to geometry 61

pyFormex Documentation, Release 2.2

The first two lines define two concentrated loads: P1 consists of three point loads in each of the coordinate directions;
P2 contains three force moments around the axes. The third line specifies a boundary condition where the first DOF
(usually displacement in z-direction) is constrained, while the remaining 5 DOF’s are free. The next line defines a
local coordinate system, in this case a cylindrical coordinate system with axis pointing from point [0.,0.,0.] to
point [0.,0.,1.]. The lastline

To facilitate property selection, a tag can be added.

nsetl = P.nodeProp(tag='loadcase 1',set=[2,3,4],cload=P1l) .nr
P.nodeProp (tag="loadcase 2',set=Nset (nsetl),cload=P2)

The last two lines show how you can avoid duplication of sets in mulitple records. The same set of nodes should
receive different concentrated load values for different load cases. The load case is stored in a tag, but duplicating the
set definition could become wasteful if the sets are large. Instead of specifying the node numbers of the set directly,
we can pass a string setting a set name. Of course, the application will need to know how to interprete the set names.
Therefore the property module provides a unified way to attach a unique set name to each set defined in a property
record. The name of a node property record set can be obtained with the function Nset(nr), where nr is the record
number. In the example above, that value is first recorded in nsetl and then used in the last line to guarantee the use of
the same set as in the property above.

4.12.5 Element properties

The elemProp () method creates element properties, which will have their kind attribute set to ‘e’. When selecting
records using the getProp () method, add the kind="e’ argument to get element properties.

Like node properties, element property records have a number of specialize fields. Currently, the following ones are
recognized by the Abaqus input file generator.

eltype This is the single most important element property. It sets the element type that will be used during the analysis.
Notice that a Formex object also may have an eltype attribute; that one however is only used to describe the
type of the geometric elements involved. The element type discussed here however may also define some other
characteristics of the element, like the number and type of degrees of freedom to be used in the analysis or the
integration rules to be used. What element types are available is dependent on the analysis package to be used.
Currently, does not do any checks on the element type, so the simulation program’s own element designation
may be used.

section The section properties of the element. This should be an ElemSect ion instance, grouping material proper-
ties (like Young’s modulus) and geometrical properties (like plate thickness or beam section).

dload A distributed load acting on the element. The value is an ElemLoad instance. Currently, this can include
a label specifying the type of distributed loading, a value for the loading, and an optional amplitude curve for
specifying the variation of a time dependent loading.

4.12.6 Property data classes

The data collected in property records can be very diverse. At times it can become quite difficult to keep these data
consistent and compatible with other modules for further processing. The property module contains some data classes
to help you in constructing appropriate data records for Finite Element models. The FeAbq module can currently
interprete the following data types.

CoordSystem defines a local coordinate system for a node. Its constructor takes two arguments:

¢ a string defining the type of coordinate system, either ‘Rectangular’, ‘Cylindrical’ or ‘Spherical’ (the first char-
acter suffices), and

* alist of 6 coordinates, specifying two points A and B. With ‘R’, A is on the new z-axis and B is on the new ‘y
axis. With ‘C’ and ‘S’, AB is the axis of the cylindrical/spherical coordinates.

62 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

Thus, CoordSystem('C', [0.,0.,0.,0.,0.,1.1) defines a cylindrical coordinate system with the global z
as axis.

ElemLoad is a distributed load on an element. Its constructor takes two arguments:
* alabel defining the type of loading,
* avalue for the loading,
* optionally, the name of an amplitude curve.
E.g., ElemLoad(‘PZ’,2.5) defines a distributed load of value 2.5 in the direction of the z-axis.
ElemSection can be used to set the material and section properties on the elements. It can hold:
e asection,
e a material,
* an optional orientation,
* an optional connector behavior,

* asectiontype (deprecated). The sectiontype should preferably be set togehter with the other section parameters.

An example:

>>> steel = {
'name': 'steel',
'young_modulus': 207000,
'poisson_ratio': 0.3,

'density': 0.1,
}

>>> thin_plate = {
'name': 'thin_plate',
'sectiontype': 'solid',
'thickness': 0.01,
'material': 'steel',
}

>>> P.elemProp (eltype='CPS3', section=ElemSection (section=thin_plate,material=steel))

First, a material is defined. Then a thin plate section is created, referring to that material. The last line creates a
property record that will attribute this element section and an element type ‘CPS3’ to all elements.

Exporting to finite element programs

4.13 Using Widgets

Warning: This document still needs to be written!

Abstract

This chapter gives an overview of the specialized widgets in pyFormex and how to use them to quickly create a
specialized graphical interface for you application.

4.13. Using Widgets 63

pyFormex Documentation, Release 2.2

The pyFormex Graphical User Interface (GUI) is built on the QT4 toolkit, accessed from Python by PyQt4. Since the
user has full access to all underlying libraries, he can use any part from QT4 to construct the most sophisticated user
interface and change the pyFormex GUI like he wants and sees fit. However, properly programming a user interface is
a difficult and tedious task, and many normal users do not have the knowledge or time to do this. pyFormex provides
a simplified framework to access the QT4 tools in a way that complex and sophisticated user dialogs can be built with
a minimum effort. User dialogs are create automatically from a very limited input. Specialized input widgets are
included dependent on the type of input asked from the user. And when this simplified framework falls short for your
needs, you can always access the QT4 functions directly to add what you want.

4.13.1 The askltems functions

The askItems () function reduces the effort needed to create an interactive dialog asking input data from the user.

4.13.2 The input dialog
4.13.3 The user menu

4.13.4 Other widgets

4.14 pyFormex plugins

Abstract

This chapter describes how to create plugins for and documents some of the standard plugins that come with the
pyFormex distribution.

4.14.1 What are plugins?

From its inception was intended to be easily expandable. Its open architecture allows educated users to change the
behavior of and to extend its functionality in any way they want. There are no fixed rules to obey and there is no
registrar to accept and/or validate the provided plugins. In, any set of functions that are not an essential part of can be
called a ‘plugin’, if its functionality can usefully be called from elsewhere and if the source can be placed inside the
distribution.

Thus, we distinct plugins from the vital parts of which comprehense the basic data types (Formex), the scripting
facilities, the (OpenGL) drawing functionality and the graphical user interface. We also distinct plugins from normal
(example and user) scripts because the latter will usually be intended to execute some specific task, while the former
will often only provide some functionality without themselves performing some actions.

To clarify this distinction, plugins are located in a separate subdirectory plugins of the tree. This directory should
not be used for anything else.

The extensions provided by the plugins usually fall within one of the following categories:
Functional Extending the functionality by providing new data types and functions.

External Providing access to external programs, either by dedicated interfaces or through the command shell and file
system.

GUI Extending the graphical user interface of .

64 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

The next section of this chapter gives some recommendations on how to structure the plugins so that they work well
with . The remainder of the chapter discusses some of the most important plugins included with .

4.14.2 How to create a plugin.

4.15 Configuring pyFormex

Many aspects of pyFormex can be configured to better suit the user’s needs and likings. These can range from merely
cosmetic changes to important extensions of the functionality. As is written in a scripting language and distributed as
source, the user can change every single aspect of the program. And the GNU-GPL license under which the program
is distributed guarantees that you have access to the source and are allowed to change it.

Most users however will only want to change minor aspects of the program, and would rather not have to delve into
the source to do just that. Therefore we have gathered some items of that users might like to change, into separate files
where thay can easily be found. Some of these items can even be set interactivley through the GUI menus.

Often users want to keep their settings between subsequent invocation of the program. To this end, the user preferences
have to be stored on file when leaving the program and read back when starting the next time. While it might make
sense to distinct between the user’s current settings in the program and his default preferences, the current configuration
system of (still under development) does not allow such distinction yet. Still, since the topic is so important to the
user and the configuration system in is already quite complex, we tought it was necessary to provide already some
information on how to configure. Be aware though that important changes to this system will likely occur.

4.15.1 Configuration files

On startup, reads its configurable data from a number of files. Often there are not less than four configuration files,
read in sequence. The settings in each file being read override the value read before. The different configuration files
used serve different purposes. On a typical GNU/Linux installation, the following files will be read in sequence:

* PYFORMEX-INSTALL-PATH/pyformexrc: this file should never be changed , neither by the user nor the
administrator. It is there to guarantee that all settings get an adequate default value to allow to correctly start up.

o /etc/pyformex: this file can be used by the system administrator to make system-wide changes to the installation.
This could e.g. be used to give all users at a site access to a common set of scripts or extensions.

* /.pyformexrc: this is where the user normally stores his own default settings.

e CURRENT-DIR/.pyformex: if the current working directory from which is started contains a file named .py-
formex, it will be read too. This makes it possible to keep different configurations in different directories,
depending on the purpose. Thus, one directory might aim at the use of for operating on triangulated surfaces,
while another might be intended for pre- and post- processing of Finite Element models.

* Finally, the ——config= command line option provides a way to specify another file with any name to be used
as the last configuration file.

On exit,will store the changed settings on the last user configuration file that was read. The first two files mentioned
above are system configuration files and will never be changed by the program. A user configuration file will be
generated if none existed.

Warning: Currently, when pyFormex exits, it will just dump all the changed configuration (key,value) pairs on
the last configuration file, together with the values it read from that file. pyFormex will not detect if any changes
were made to that file between reading it and writing back. Therefore, the user should never edit the configuration
files directly while pyFormex is still running. Always close the program first!

4.15. Configuring pyFormex 65

pyFormex Documentation, Release 2.2

4.15.2 Syntax of the configuration files

All configuration files are plain text files where each non blank line is one of the following:
e a comment line, starting with a ‘#,
¢ a section header, of the form ‘[section-name]’,
* avalid Python instruction.

The configuration file is organized in sections. All lines preceding the first section name refer to the general (unnamed)
section.

Any valid Python source line can be used. This allows for quite complex configuration instructions, even importing
Python modules. Any line that binds a value to a variable will cause a corresponding configuration variable to be set.
The user can edit the configuration files with any text editor, but should make sure the lines are legal Python. Any line
can use the previously defined variables, even those defined in previously read files.

In the configuration files, the variable pyformexdir refers to the directory where was installed (and which is also
reported by the pyformex —--whereami command).

4.15.3 Configuration variables

Many configuration variables can be set interactively from the GUI, and the user may prefer to do it that way. Some
variables however can not (yet) be set from th GUIL. And real programmers may prefer to do it with an editor anyway.
So here are some guidelines for setting some interesting variables. The user may take a look at the installed default
configuration file for more examples.

General section

e syspath = []: Value is a list of path names that will be appended to the Python’s sys.path variable on
startup. This enables your scripts to import modules from other than default Python paths.

e scriptdirs = [('Examples', examplesdir), ('MyScripts',myscriptsdir)]: alistof
tuples (name,path). On startup, all these paths will be scanned for scripts and these will be added in the menu
under an item named name.

* autorun = '.pyformex.startup': name of a script that will be executed on startup, before any other
script (specified on the command line or started from the GUI).

e editor = 'kedit': sets the name of the editor that will be used for editing pyformex scripts.
* viewer = 'firefox': sets the name of the html viewer to be used to display the html help screens.
* browser = 'firefox': sets the name of the browser to be used to access the website.

e uselib = False: do not use the acceleration library. The default (True) is to use it when it is available.

Section [guil

e splash = 'path-to-splash-image.png': full path name of the image to be used as splash image on
startup.

* modebar = True: adds a toolbar with the render mode buttons. Besides True or False, the value can also
be one of ‘top’, ‘bottom’, ‘left’ or ‘right’, specifying the placement of the render mode toolbar at the specified
window border. Any other value that evaluates True will make the buttons get included in the top toolbar.

e viewbar = True: adds a toolbar with different view buttons. Possioble values as explained above for mode-
bar.

66 Chapter 4. pyFormex user guide

pyFormex Documentation, Release 2.2

* timeoutbutton = True: include the timeout button in the toolbar. The timeout button, when depressed,
will cause input widgets to time out after a prespecified delay time. This feature is still experimental.

* plugins = ['surface_menu', 'formex menu', 'tools_menu']: alistof plugins to load on
startup. This is mainly used to load extra (non-default) menus in the GUI to provide extended functionality. The
named plugins should be available in the ‘plugins’ subdirectory of the installation. To autoload user extensions
from a different place, the autorun script can be used.

4.15. Configuring pyFormex 67

pyFormex Documentation, Release 2.2

68 Chapter 4. pyFormex user guide

20

21

22

23

24

25

26

27

28

CHAPTER
FIVE

PYFORMEX EXAMPLE SCRIPTS

Warning: This document still needs some cleanup!

Sometimes you learn quicker from studying an example than from reading a tutorial or user guide. To help you we
have created this collection of annotated examples. Beware that the script texts presented in this document may differ
slightly from the corresponding example coming with the pyFormex distribution.

5.1 WireStent

To get acquainted with the modus operandi of pyFormex, the WireStent .py script is studied step by step. The
lines are numbered for easy referencing, but are not part of the script itself.

**4 pyformex #x*

##

This file is part of pyFormex 2.2 (Wed Feb 10 14:59:35 CET 2021)

pyFormex is a tool for generating, manipulating and transforming 3D
geometrical models by sequences of mathematical operations.

Home page: http://pyformex.org

Project page: http://savannah.nongnu.org/projects/pyformex/

Copyright 2004-2020 (C) Benedict Verhegghe (benedict.verhegghelfugent.be)
Distributed under the GNU General Public License version 3 or later.
##

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

##

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

##

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.
##

"""wirestent.py

A pyFormex script to generate a geometrical model of a wire stent.

This version is for inclusion in the pyFormex documentation.

(continues on next page)

69

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

80

81

82

83

84

85

pyFormex Documentation, Release 2.2

(continued from previous page)

mwn

from formex import =«

class DoubleHelixStent:
"""Constructs a double helix wire stent.

A stent is a tubular shape such as used for opening obstructed
blood vessels. This stent is made frome sets of wires spiraling
in two directions.

The geometry is defined by the following parameters:

L : approximate length of the stent

De : external diameter of the stent

D : average stent diameter

d : wire diameter

be : pitch angle (degrees)

p < pitch

nx : number of wires 1in one spiral set

ny : number of modules in axial direction

ds : extra distance between the wires (default is 0.0 for
touching wires)

dz : maximal distance of wire center to average cilinder

nb : number of elements in a strut (a part of a wire between two
crossings), default 4
The stent is created around the z-axis.
By default, there will be connectors between the wires at each
crossing. They can be switched off in the constructor.
The returned formex has one set of wires with property 1, the
other with property 3. The connectors have property 2. The wire
set with property 1 is winding positively around the z-axis.
mmwn
def _ init_ (self,De,L,d,nx,be,ds=0.0,nb=4,connectors=True) :
"""Create the Wire Stent."""
D = De - 2xd - ds
r = 0.5xD
dz = 0.5% (ds+d)
p = math.pixDxtand (be)
nx = int (nx)

ny = int (round(nx+L/p)) # The actual length may differ a bit from L

a single bumped strut, oriented along the x—-axis
bump_z=lambda x: 1.-(x/nb) *x2

base = Formex (pattern('l')) .replic(nb,1.0) .bumpl(2,[0.,0.,dz],bump_z,0)

scale back to size 1.
base = base.scale([l./nb,1./nb,1.])
NE and SE directed struts
NE = base.shear(1,0,1.)
SE = base.reflect (2) .shear(1,0,-1.)
NE.setProp (1)
SE.setProp (3)
a unit cell of crossing struts
celll = (NE+SE) .rosette(2,180)
add a connector between first points of NE and SE
if connectors:
celll += Formex ([[NE[O0][O],SE[0]([0]11]1,2)
and create its mirror
cell2 = celll.reflect (2)
and move both to appropriate place

(continues on next page)

70 Chapter 5. pyFormex example scripts

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

pyFormex Documentation, Release 2.2

(continued from previous page)

self.celll = celll.translate([1.,1.,0.])

self.cell2 = cell2.translate([-1.,-1.,0.])

the base pattern celll+cell2 now has size [-2,-2]..[2,2]
Create the full pattern by replication

dx = 4.

dy = 4.

F = (self.celll+self.cell2) .replic?2 (nx,ny,dx,dy)

fold it into a cylinder
self.F = F.translate([0.,0.,r]).cylindrical(
dir=[2,0,1]1,scale=[1.,360./(nx*dx),p/nx/dy])
self.ny = ny
def all(self):
"""Return the Formex with all bar elements."""
return self.F

show an example

wireframe ()

reset ()
D = 10.
L = 80.
d= 0.2
n= 12
b = 30.
res = askItems([['Diameter',D],

[
['Length', L],
['"WireDiam',d],
["NWires',n],
['"Pitch',b]l])

if not res:
exit ()

= float (res['Diameter'])

float (res['Length'])

= float (res['WireDiam'])

= int (res['NWires'])

if (n $ 2) != 0:

warning ('Number of wires must be even!')
exit ()

float (res['Pitch'])

5 QB O
Il

b =

H = DoubleHelixStent (D,L,d,n,b).all()
clear ()
draw (H, view="1iso")

and save it in a lot of graphics formats
if ack("Do you want to save this image (in lots of formats)
for ext in ['bmp', 'Jjpg', 'pbm', 'png', 'ppm',
'eps', 'ps', 'pdf', 'tex']:
image.save ('WireStent.'+ext)

'xbm',

2" e

'xpm',

(continues on next page)

5.1. WireStent

71

143

pyFormex Documentation, Release 2.2

(continued from previous page)

End

As all pyFormex scripts, it starts with a comments line holding the word py formex (line 1). This is followed more
comments lines specifying the copyright and license notices. If you intend to distribute your scripts, you should give
these certainly special consideration.

Next is a documentation string explaining the purpose of the script (lines 25-30). The script then starts by importing
all definitions from other modules required to run the WireStent . py script (line 32).

Subsequently, the class DoubleHelixStent is defined which allows the simple use of the geometrical model in
other scripts for e.g. parametric, optimization and finite element analyses of braided wire stents. Consequently, the
latter scripts do not have to contain the wire stent geometry building and can be condensed and conveniently arranged.
The definition of the class starts with a documentation string, explaining its aim and functioning (lines 34-60).

The constructor __init__ of the DoubleHelixStent class requires 8 arguments (line 61):
¢ stent external diameter De (mm).
* stent length L (mm).
e wire diameter d (mm).
* Number of wires in one spiral set, i.e. wires with the same orientation, nx (-).
* Pitch angle S (deg).

* Extra radial distance between the crossing wires ds (mm). By default, ds is [0.0Jmm for crossing wires, corre-
sponding with a centre line distance between two crossing wires of exactly d.

¢ Number of elements in a strut, i.e. part of a wire between two crossings, nb (-). As every base element is a
straight line, multiple elements are required to approximate the curvature of the stent wires. The default value
of 4 elements in a strut is a good assumption.

* If connectors=True, extra elements are created at the positions where there is physical contact between the
crossing wires. These elements are required to enable contact between these wires in finite element analyses.

The virtual construction of the wire stent structure is defined by the following sequence of four operations: (i) Creation
of a nearly planar base module of two crossing wires; (ii) Extending the base module with a mirrored and translated
copy; (iii) Replicating the extended base module in both directions of the base plane; and (iv) Rolling the nearly planar
grid into the cylindrical stent structure, which is easily parametric adaptable.

5.1.1 Creating the base module

(lines 63-71)

Depending on the specified arguments in the constructor, the mean stent diameter D, the average stent radius r, the
bump or curvature of the wires dz, the pitch p and the number of base modules in the axial direction ny are calculated
with the following script. As the wire stent structure is obtained by braiding, the wires have an undulating course and
the bump dz corresponds to the amplitude of the wave. If no extra distance ds is specified, there will be exactly
one wire diameter between the centre lines of the crossing wires. The number of modules in the axial direction ny
is an integer, therefore, the actual length of the stent model might differ slightly from the specified, desired length L.
However, this difference has a negligible impact on the numerical results.

Of now, all parameters to describe the stent geometry are specified and available to start the construction of the wire
stent. Initially a simple Formex is created using the pattern () -function: a straigth line segment of length 1 oriented
along the X-axis (East or 1-direction). The replic () -functionality replicates this line segment nb times with step
1 in the X-direction (0-direction). Subsequently, these nb line segments form a new Formex which is given a one-
dimensional bump with the bump1 () -function. The Formex undergoes a deformation in the Z-direction (2-direction),
forced by the point [0, 0, dz]. The bump intensity is specified by the quadratic bump_ z function and varies along

72 Chapter 5. pyFormex example scripts

pyFormex Documentation, Release 2.2

the X-axis (0-axis). The creation of this single bumped strut, oriented along the X-axis is summarized in the next script
and depicted in figures A straight line segment, The line segment with replications and A bumped line segment,.

Fig. 1: A straight line segment

Fig. 2: The line segment with replications

Fig. 3: A bumped line segment

The single bumped strut (base) is rescaled homothetically in the XY-plane to size one with the scale () -function.
Subsequently, the shear () -functionality generates a new NE Formex by skewing the ba se Formex in the Y-direction
(1-direction) with a skew factor of 1 in the YX-plane. As a result, the Y-coordinates of the base Formex are altered
according to the following rule: yo = y1 + skewz;. Similarly a SE Formex is generated by a shear () operation
on a mirrored copy of the base Formex. The base copy, mirrored in the direction of the XY-plane (perpendicular
to the 2-axis), is obtained by the reflect () command. Both Formices are given a different property number by
the setProp () -function, visualised by the different color codes in Figure Unit cell of crossing wires and connectors
This number can be used as an entry in a database, which holds some sort of property. The Formex and the database are
two seperate entities, only linked by the property numbers. The rosette () -function creates a unit cell of crossing
struts by 2 rotational replications with an angular step of [180]:math:deg around the Z-axis (the original Formex is the

5.1. WireStent 73

pyFormex Documentation, Release 2.2

first of the 2 replicas). If specified in the constructor, an additional Formex with property 2 connects the first points of
the NE and SE Formices.

(lines 72-83)

Fig. 4: Rescaled bumped strut

_—

Fig. 5: Mirrored and skewed bumped strut

Fig. 6: Unit cell of crossing wires and connectors

5.1.2 Extending the base module

Subsequently, a mirrored copy of the base cell is generated (Figure Mirrored unit cell). Both Formices are trans-
lated to their appropriate side by side position with the translate () -option and form the complete extended base
module with 4 by 4 dimensions as depicted in Figure Completed base module. Furthermore, both Formices are
defined as an attribute of the DoubleHelixStent class by the self-statement, allowing their use after every
DoubleHelixStent initialisation. Such further use is impossible with local variables, such as for example the NE
and SE Formices.

74 Chapter 5. pyFormex example scripts

pyFormex Documentation, Release 2.2

(lines 84-89)

Fig. 7: Mirrored unit cell

Py

Fig. 8: Completed base module

5.1.3 Full nearly planar pattern

The fully nearly planar pattern is obtained by copying the base module in two directions and shown in Figure Full
planar topology. replic2 () generates this pattern with na and ny replications with steps dx and dy in respectively,
the default X- and Y-direction.

(lines 90-93)

Fig. 9: Full planar topology

5.1. WireStent 75

pyFormex Documentation, Release 2.2

K AR KK KKK XK KX X

XX KK KK KKK AKX

XA AKX K AKX AKX XX X
K KKK K AKX KK XK
X X X AKX K K XX X
X X X KK AKX

KX\%&XXXXXX X
&XX/ X KK K AKX
XX XX AKX KX X
><><><><>< XK K AKX X

>S\>; (Xxixixxx y;;;zx

%XXXXXXXXXXXX %%
XX ‘ X
Fig. 10: Orthogonal view of the full planar topology

5.1.4 Cylindrical stent structure

Finally the full pattern is translated over the stent radius r in Z-direction and transformed to the cylindrical stent
structure by a coordinate transformation with the Z-coordinates as distance r, the X-coordinates as angle 6 and the
Y-coordinates as height z. The scale () -operator rescales the stent structure to the correct circumference and length.
The resulting stent geometry is depicted in Figure Cylindrical stent. (lines 94-96)

In addition to the stent initialization, the DoubleHelixStent class script contains a function all () representing
the complete stent Formex. Consequently, the DoubleHelixStent class has four attributes: the Formices ce111,
cell2 and all; and the number ny. (lines 97-100)

Fig. 12: Orthogonal view of the cylindrical stent

76 Chapter 5. pyFormex example scripts

pyFormex Documentation, Release 2.2

5.1.5 Parametric stent geometry

An inherent feature of script-based modeling is the possibility of easily generating lots of variations on the original
geometry. This is a huge advantage for parametric analyses and illustrated in figures Stent variant with De=16, nx=6,
\beta=25: these wire stents are all created with the same script, but with other values of the parameters De, nz
and . As the script for building the wire stent geometry is defined as a the DoubleHelixStent class in the
(WireStent . py) script, it can easily be imported for e.g. this purpose.

Fig. 13: Stent variant with De = 16, nx = 6,3 = 25

Fig. 15: Stent variant with De = 16, nz = 10, 8 = 25

*h% pyformex ##**

##

This file is part of pyFormex 2.2 (Wed Feb 10 14:59:35 CET 2021)
pyFormex is a tool for generating, manipulating and transforming 3D

(continues on next page)

5.1. WireStent 77

pyFormex Documentation, Release 2.2

Fig. 17: Stent variant with De = 32, nx = 6,8 = 25

/-

/
T

Fig. 18: Stent variant with De = 32, nx = 6, 5 = 50

Fig. 19: Stent variant with De = 32, nz = 10, 8 = 25

78 Chapter 5. pyFormex example scripts

pyFormex Documentation, Release 2.2

7

Fig. 20: Stent variant with De = 32, nx = 10, 8 = 50

(continued from previous page)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

geometrical models by sequences of mathematical operations.

Home page: http://pyformex.org

Project page: http://savannah.nongnu.org/projects/pyformex/

Copyright 2004-2020 (C) Benedict Verhegghe (benedict.verhegghelugent.be)
Distributed under the GNU General Public License version 3 or later.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY,; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

from examples.WireStent import DoubleHelixStent

for De in [16.,32.]:

for nx in [6,10]:
for beta in [25,50]:
stent = DoubleHelixStent (De,40.,0.22,nx,beta) .all()
draw (stent,view="iso")
pause ()
clear ()

Obviously, generating such parametric wire stent geometries with classical CAD methodologies is feasible, though
probably (very) time consuming. However, as provides a multitude of features (such as parametric modeling, finite
element pre- and postprocessing, optimization strategies, etcetera) in one single consistent environment, it appears to
be the obvious way to go when studying the mechanical behavior of braided wire stents.

5.1. WireStent 79

pyFormex Documentation, Release 2.2

5.2 Operating on surface meshes

Besides being used for creating geometries, also offers interesting possibilities for executing specialized operations
on surface meshes, usually STL type triangulated meshes originating from medical scan (CT) images. Some of the
algorithms developed were included in .

5.2.1 Unroll stent

A stent is a medical device used to reopen narrowed arteries. The vast majority of stents are balloon-expandable,
which means that the metal structure is deployed by inflating a balloon, located inside the stent. Figure Triangulated
mesh of a Cypher® stent shows an example of such a stent prior to expansion (balloon not shown). The 3D surface is
obtained by micro CT and consists of triangles.

Fig. 21: Triangulated mesh of a Cypher® stent

The structure of such a device can be quite complex and difficult to analyse. The same functions offers for creating
geometries can also be employed to investigate triangulated meshes. A simple unroll operation of the stent gives a
much better overview of the complete geometrical structure and allows easier analysis (see figure Result of the unroll
operation).

F = F.toCylindrical() .scale([1l.,2*radius*pi/360,1.])

~) \J

N ~ N

Fig. 22: Result of the unroll operation

The unrolled geometry can then be used for further investigations. An important property of such a stent is the
circumference of a single stent cell. The c1ip () method can be used to isolate a single stent cell. In order to obtain
a line describing the stent cell, the function intersectionLinesWithPlane () has been used. The result can
be seen in figures Part of the intersection with a plane.

Finally, one connected circumference of a stent cell is selected (figure Circumference of a stent cell) and the
length () function returns its length, which is 9.19 mm.

80 Chapter 5. pyFormex example scripts

pyFormex Documentation, Release 2.2

Vi
E/E

Fig. 23: Part of the intersection with a plane

Fig. 24: Circumference of a stent cell

5.2. Operating on surface meshes 81

pyFormex Documentation, Release 2.2

82 Chapter 5. pyFormex example scripts

CHAPTER
SIX

PYFORMEX REFERENCE MANUAL

Abstract

This is the reference manual for pyFormex 2.2. It describes most of the classes and functions defined in the py-
Formex modules. It was built automatically from the pyFormex sources and is therefore the ultimate reference
document if you want to look up the precise arguments (and their meaning) of any class constructor or function in
pyFormex. The genindex and modindex may be helpful in navigating through this document.

This reference manual describes the classes in functions defined in most of the pyFormex modules. It was built
automatically from the docstrings in the pyFormex sources. The pyFormex modules are placed in three paths:

* pyformex contains the core functionality, with most of the geometrical transformations, the pyFormex script-
ing language and utilities,

e pyformex/gui contains all the modules that form the interactive graphical user interface,

* pyformex/plugins contains extensions that are not considered to be essential parts of pyFormex. They
usually provide additional functionality for specific applications.

Some of the modules are loaded automatically when pyFormex is started. Currently this is the case with the modules
coords, formex, arraytools, script and, if the GUIl is used, draw and colors. All the public definitions
in these modules are available to pyFormex scripts without explicitly importing them. Also available is the complete
numpy namespace, because it is imported by arraytools.

The definitions in the other modules can only be accessed using the normal Python import statements.

6.1 Autoloaded modules

The definitions in these modules are always available to your scripts, without the need to explicitely import them.

6.1.1 coords — A structured collection of 3D coordinates.

The coords module defines the Coords class, which is the basic data structure in pyFormex to store the coordinates
of points in a 3D space.

This module implements a data class for storing large sets of 3D coordinates and provides an extensive set of methods
for transforming these coordinates. Most of pyFormex’s classes which represent geometry (e.g. Formex, Mesh,
TriSurface, Curve)use a Coords object to store their coordinates, and thus inherit all the transformation meth-
ods of this class.

While the user will mostly use the higher level classes, he might occasionally find good reason to use the Coords
class directly as well.

83

https://numpy.org/doc/stable/reference/index.html#module-numpy

pyFormex Documentation, Release 2.2

Classes defined in module coords

class coords.Coords (data=None, dtyp=at.Float, copy=False)

A structured collection of points in a 3D cartesian space.

The Coords class is the basic data structure used throughout pyFormex to store the coordinates of points in
a 3D space. It is used by other classes, such as Formex, Mesh, TriSurface, Curve, which thus inherit
the same transformation capabilities. Applications will mostly use the higher level classes, which have more
elaborated consistency checking and error handling.

Coords is implemented as a subclass of numpy . ndarray, and thus inherits all its methods and atttributes.
The last axis of the Coords however always has a length equal to 3. Each set of 3 values along the last axis are
the coordinates (in a global 3D cartesian coordinate system) of a single point in space. The full Coords array
thus is a collection of points. It the array is 2-dimensional, the Coords is a flat list of points. But if the array has
more dimensions, the collection of points itself becomes structured.

The float datatype is only checked at creation time. It is the responsibility of the user to keep this consistent
throughout the lifetime of the object.

Note: Methods that transform a Coords object, like scale (), transliate (), rotate(), ... do not
change the original Coords object, but return a new object. Some methods however have an inplace option that
allows the user to force coordinates to be changed in place. This option is seldom used however: rather we
conveniently use statements like:

X = X.some_transform()

and Python can immediately free and recollect the memory used for the old object X.

Parameters

* data (float array_like, or string) — Data to initialize the Coords. The last axis should have
a length of 1, 2 or 3, but will be expanded to 3 if it is less, filling the missing coordinates
with zeros. Thus, if you only specify two coordinates, all points are lying in the z=0 plane.
Specifying only one coordinate creates points along the x-axis.

As a convenience, data may also be entered as a string, which will be passed to the
pattern () function to create the actual coordinates of the points.

If no data are provided, an empty Coords with shape (0,3) is created.

* dtyp(float datatype, optional)-Itnotprovided,the datatype of data isused,
or the default 1 oat (which is equivalent to numpy . float 32).

* copy (bool)—If True, the data are copied. The default setting will try to use the original
data if possible, e.g. if data is a correctly shaped and typed numpy . ndarray.

Returns Coords — An instance of the Coords class, which is basically an ndarray of floats, with the
last axis having a length of 3.

The Coords instance has a number of attributes that provide views on (part of) the data. They are a notational
convenience over using indexing. These attributes can be used to set all or some of the coordinates by direct
assignment. The assigned data should however be broadcast compatible with the assigned shape: the shape of
the Coords can not be changed.

Xyz
The full coordinate array as an ndarray.

Type float array

84

Chapter 6. pyFormex reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyFormex Documentation, Release 2.2

The X coordinates of the points as an ndarray with shape pshape ().

Type float array

The Y coordinates of the points as an ndarray with shape pshape ().

Type float array

The Z coordinates of the points as an ndarray with shape pshape ().

Type float array

Xy
The X and Y coordinates of the points as an ndarray with shape pshape () + (2,).

Type float array

Xz
The X and Z coordinates of the points as an ndarray with shape pshape () + (2,).

Type float array

The Y and Z coordinates of the points as an ndarray with shape pshape () + (2,).

Type float array

Examples

>>> Coords([1.,2.])

Coords ([1., 2., 0.1)

>>> X = Coords (np.arange (6) .reshape(2,3))
>>> print (X)

[[0. 1. 2.]

[3. 4. 5.1]
>>> print (X.y)

[1. 4.]
>>> X.z[1] =
>>> print (X)
[[0. 1. 2.]

[3. 4. 9.1]
>>> print (X.xz)
[[0. 2.]

[3. 9.11]
>>> X.x = 0.
>>> print (X)

[[0. 1. 2.]

[0. 4. 9.1]

9.

>>> = Coords (X) # Y shares its data with X

Coords (X, copy=True) # Z 1is independent

y = 5

.2 = 6

>>> print (X)

[l 0. 5. 2.]
9.
)

>>>
>>>

N < N
I

>>>

[0. 5. 1]
>>> print (Y

(continues on next page)

6.1. Autoloaded modules 85

pyFormex Documentation, Release 2.2

(continued from previous page)

[[0. 5. 2.
[0. 5. 9.
>>> print (Z)
[[0. 1. 6.
[0. 4. 6.
>>> X.coords is X
True
>>> Z.XyzZ =
>>> print (Z)
[r 1. 2. 3.]
[1. 2. 3.11

(1,2,3]

>>> print (Coords ('0123")) # initialize with string
[[0. 0. 0.]
[1. 0. 0.]
[1. 1. 0.]
[0. 1. 0.1]

swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:
numpy . swapaxes () equivalent function

Xyz
Returns the coordinates of the points as an ndarray.

Returns an ndarray with shape self.shape except last axis is reduced to 2, providing a view on all the
coordinates of all the points.

X

Returns the X-coordinates of all points.

Returns an ndarray with shape self.pshape(), providing a view on the X-coordinates of all the points.
y

Returns the Y-coordinates of all points.

Returns an ndarray with shape self.pshape(), providing a view on the Y-coordinates of all the points.
z

Returns the Z-coordinates of all points.

Returns an ndarray with shape self.pshape(), providing a view on the Z-coordinates of all the points.
Xy

Returns the X- and Y-coordinates of all points.

Returns an ndarray with shape self.shape except last axis is reduced to 2, providing a view on the X- and

Y-coordinates of all the points.
Xz

Returns the X- and Y-coordinates of all points.

Returns an ndarray with shape self.shape except last axis is reduced to 2, providing a view on the X- and
Z-coordinates of all the points.

86

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

yz
Returns the X- and Y-coordinates of all points.
Returns an ndarray with shape self.shape except last axis is reduced to 2, providing a view on the Y- and
Z-coordinates of all the points.

coords

Returns the Coords object .
This exists only for consistency with other classes.

fprint (fint="%10.3e %10.3¢ %10.3¢’)
Formatted printing of the points of a Coords object.

Parameters fmt (string) — Format to be used to print a single point. The supplied format
should contain exactly 3 formatting sequences, ome for each of the three coordinates.

Examples

>>> x = Coords ([[[0.,0.],[1.,0.71,[00.,1.1,10.,2.111)
>>> x.fprint ()

0.000e+00 0.000e+00 0.000e+00

1.000e+00 0.000e+00 0.000e+00

0.000e+00 1.000e+00 0.000e+00

0.000e+00 2.000e+00 0.000e+00

>>> x.fprint (" "x3)

0.00 0.00 0.00

1.00 0.00 0.00
0.00 1.00 0.00
0.00 2.00 0.00

pshape ()
Return the points shape of the Coords object.

This is the shape of the numpy . ndarray with the last axis removed.

Note: The full shape of the Coords array can be obtained from the inherited (NumPy) shape attribute.

Examples

>>> X = Coords (np.arange(12) .reshape(2,1,2,3))
>>> X.shape

(2, 1, 2, 3)

>>> X.pshape ()

(2, 1, 2)

points ()
Return the Coords object as a flat set of points.

Returns Coords — The Coords reshaped to a 2-dimensional array, flattening the structure of the
points.

6.1.

Autoloaded modules 87

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyFormex Documentation, Release 2.2

Examples

>>> X = Coords (np.arange(l2) .reshape(2,1,2,3))
>>> X.shape

(2, 1, 2, 3)

>>> X.points () .shape

(4, 3)

npoints ()

Return the total number of points in the Coords.

Notes

npoints and ncoords are equivalent. The latter exists to provide a common interface with other geometry
classes.

Examples

>>> Coords (np.arange (12) .reshape(2,1,2,3)) .npoints ()
4

ncooxrds ()

Return the total number of points in the Coords.

Notes

npoints and ncoords are equivalent. The latter exists to provide a common interface with other geometry
classes.

Examples

>>> Coords (np.arange (12) .reshape(2,1,2,3)) .npoints ()
4

bbox ()

Return the bounding box of a set of points.

The bounding box is the smallest rectangular volume in the global coordinates, such that no points of the
Coords are outside that volume.

Returns Coords (2,3) — Coords array with two points: the first point contains the minimal coor-
dinates, the second has the maximal ones.

See also:

center () return the center of the bounding box
bboxPoint () return a corner or middle point of the bounding box

bboxPoints () return all corners of the bounding box

88

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Examples

>>> X = Coords([[0.,0.,0.],[3.,0.,0.1,[0.,3.,0.11)
>>> print (X.bbox())

[[0. 0. 0.]
[3. 3. 0.1]
center ()

Return the center of the Coords.

The center of a Coords is the center of its bbox(). The return value is a (3,) shaped Coords object.

See also:

bbox () return the bounding box of the Coords

centroid () return the average coordinates of the points

Examples

>>> X = Coords([[0.,0.,0.],[3.,0.,0.1,[0.,3.,0.71)
>>> print (X.center())
[1.5 1.5 0.]

bboxPoint (position)
Return a bounding box point of a Coords.

Bounding box points are points whose coordinates are either the minimal value, the maximal value or
the middle value for the Coords. Combining the three values in three dimensions results in 3**3 = 27
alignment points. The corner points of the bounding box are a subset of these.

Parameters position (st r)— String of three characters, one for each direction 0, 1, 2. Each
character should be one of the following

e ’-‘: use the minimal value for that coordinate,
e ’+’: use the minimal value for that coordinate,
¢ ‘0’: use the middle value for that coordinate.

Any other character will set the corresponding coordinate to zero.

Notes

A string ‘000’ is equivalent with center(). The values ‘—’ and ‘+++’ give the points of the bounding box.

See also:

Coords.align () translate Coords by bboxPoint

Examples

>>> X = Coords([[0.,0.,0.],([1.,1.,1.11)
>>> print (X.bboxPoint ('-0+"))
[0. 0.5 1. 1]

6.1. Autoloaded modules 89

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

bboxPoints ()

Return all the corners of the bounding box point of a Coords.

Returns Coords (8,3) — A Coords with the eight corners of the bounding box, in the order of a
elements.Hex38.

See also:

bbox () return only two points, with the minimum and maximum coordinates

Examples

>>> X = Coords([[0.,0.,0.],[3.,0.,0.]1,00.,3.,0.11)
>>> print (X.bboxPoints ())

[[0. 0. 0.]
[3. 0. 0.]
[3. 3. 0.]
[0. 3. 0.]
[0. 0. 0.]
[3. 0. 0.]
[3. 3. 0.]
[0. 3. 0.]1]

average (wts=None, axis=None)

Returns a (weighted) average of the Coords.

The average of a Coords is a Coords that is obtained by averaging the points along some or all axes.
Weights can be specified to get a weighted average.

Parameters

» wts (float array_like, optional) — Weight to be attributed to the points. If provided, and
axis is an int, wts should be 1-dim with the same length as the specified axis. Else, it has a
shape equal to self.shape or self.shape[:-1].

* axis (int or tuple of ints, optional) — If provided, the average is com-
puted along the specified axis/axes only. Else, the average is taken over all the points, thus
over all the axes of the array except the last.

Notes

Averaging over the -1 axis does not make much sense.

Examples

>>>X:Coords([[[0 ,O 1,11.,0.,0.1,12.,0.,0.11, [[(4.,0.,0.
("]1[5'IO~IO-]I[-7]]])
>>> X = Coords (np. arange(6) reshape (3,2,1))

>>> X
Coords ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
[r 2., 0., 0.1,
[3., 0., 0.11,
<BLANKLINE>

(continues on next page)

90

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

(continued from previous page)

[4., 0., 0.7,
[5., 0., 0.11D1)

>>> print (X.average())

[2.5 0. 0.]
>>> print (X.average (axis=0))

[[2. 0. 0.]

[3. 0. 0.1]
>>> print (X.average (axis=1))

[[0.5 O. 0.]

[2.5 0. 0.]

[4.5 0. 0. 11
>>> print (X.average (wts=[0.5,0.25,0.25],axis=0))
[[1.5 0. 0.]

[2.5 0. 0. 1]
>>> print (X.average (wts=[3,1],axis=1))
[[0.25 0. 0.]

[2.25 0. 0.]

[4.25 0. 0. 1]
>>> print (X.average (wts=at.multiplex([3,1]1,3,0)))
[2.25 0. 0.]

centroid()
Return the centroid of the Coords.

The centroid of Coords is the point whose coordinates are the mean values of all points.
Returns Coords (3,) — A single point that is the centroid of the Coords.

See also:

center () return the center of the bounding box.

Examples

>>> print (Coords([[0.,0.,0.1,[3.,0.,0.1,[0.,3.,0.1]1) .centroid())
[1. 1. 0.]

centroids ()
Return the Coords itself.

Notes

This method exists only to have a common interface with other geometry classes.

sizes ()
Return the bounding box sizes of the Coords.

Returns array (3,) — The length of the bounding box along the three global axes.

See also:

dsize () The diagonal size of the bounding box.

principalSizes () the sizes of the bounding box along the principal axes

6.1.

Autoloaded modules 91

pyFormex Documentation, Release 2.2

Examples

>>> print (Coords([[0.,0.,0.1,3.,0.,0.1,10.,3.,0.1]).sizes())
[3. 3. 0.]

maxsize ()

Return the maximum size of a Coords in any coordinate direction.

Returns float — The maximum length of any edge of the bounding box.

Notes

This is a convenient shorthand for self.sizes().max().

See also:

sizes () return the length of the bounding box along global axes

bbox () return the bounding box

Examples

>>> print (Coords([[0.,0.,0.1,[3.,0.,0.1,[0.,3.,0.]1]) .maxsize())
3.0

dsize ()

Return the diagonal size of the bounding box of the Coords.

Returns float — The length of the diagonal of the bounding box.

Notes

All the points of the Coords are inside a sphere with the centexr () as center and the dsize () as length
of the diameter (though it is not necessarily the smallest bouding sphere). dsize () is in general a good
estimate for the maximum size of the cross section to be expected when the object can be rotated freely
around its center. It is conveniently used to zoom the camera on an object, while guaranteeing that the full
object remains visible during rotations.

See also:

bsphere () return radius of smallest sphere encompassing all points
sizes () return the length of the bounding box along global axes

bbox () return the bounding box

Examples

>>> print (Coords([[0.,0.,0.1,[3.,0.,0.1,[0.,3.,0.1]1) .dsize())
4.24264

92

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

bsphere ()
Return the radius of the bounding sphere of the Coords.

The bounding sphere used here is the smallest sphere with center in the center() of the Coords, and such
that no points of the Coords are lying outside the sphere.

Returns float — The maximum distance of any point to the Coords.center.

Notes

This is not necessarily the absolute smallest bounding sphere, because we use the center from lookin only
in the global axes directions.

Examples

>>> X = Coords([[0.,0.,0.1,[3.,0.,0.1,[0.,3.,0.11)

>>> print (X.dsize (), X.bsphere())

4.24264 2.12132

>>> X = Coords([[0.5,0.],([1.,0.5],[0.5,1.0],[0.0,0.511)
>>> print (X.dsize (), X.bsphere())

1.41421 0.5

bboxes ()
Return the bboxes of all subsets of points in the Coords.

Subsets of points are 2-dim subarrays of the Coords, taken along the two last axes. If the Coords has
ndim==2, there is only one subset: the full Coords.

Returns float array — Array with shape (...,2,3). The elements along the penultimate axis are
the minimal and maximal values of the Coords along that axis.

Examples
>>> X = Coords (np.arange (18) .reshape(2,3,3))
>>> print (X)

[[r o. 1. 2.]

[3. 4. 5.]

[6. 7. 8.1]
<BLANKLINE>

[l 9. 10. 11.]

[12. 13. 14.]

[15. 16. 17.11]
>>> print (X.bboxes ())
[([[O. 1. 2.]

[6. 7. 8.11]
<BLANKLINE>

[l 9. 10. 11.]
[15. 16. 17.11]

inertia (mass=None)
Return inertia related quantities of the Coords.

Parameters mass (float array, optional) — If provided, it is a 1-dim array with
npoints () weight values for the points, in the order of the points (). The default is
to attribute a weight 1.0 to each point.

6.1. Autoloaded modules 93

pyFormex Documentation, Release 2.2

Returns
Inertia - The Inertia object has the following attributes:
* mass: the total mass (float)
e ctr: the center of mass: float (3,)
* tensor: the inertia tensor in the central axes: shape (3,3)

See also:

principalCS () Return the principal axes of the inertia tensor

Examples

>>> from pyformex.elements import Tet4
>>> T = Tet4.vertices.inertia()
>>> print (I.tensor)
[[1.5 0.25 0.25]
[0.25 1.5 0.25]
[0.25 0.25 1.5 1]
>>> print (I.ctr)
[0.25 0.25 0.25]
>>> print (I.mass)
4.0

principalCs (mass=None)
Return a CoordSys formed by the principal axes of inertia.

Parameters mass (1-dim float array (points (),), optional) — The mass to be attributed to
each of the points, in the order of npoints (). If not provided, a mass 1.0 will be attributed
to each point.

Returns CoordSys object. — Coordinate system aligned along the principal axes of the inertia,
for the specified point masses. The origin of the CoordSys is the center of mass of the Coords.

See also:

centralCS () CoordSys at the center of mass, but axes along global directions

Examples

>>> from pyformex.elements import Tet4

>>> print (Tetd4.vertices.principalCS())

CoordSys: trl=[0.25 0.25 0.25]; rot=[[0.58 0.58 0.58]
[0.34 -0.81 0.47]
[0.82 -0.41 -0.41]]

principalSizes ()
Return the sizes in the principal directions of the Coords.

Returns float array (3,) — Array with the size of the bounding box along the 3 principal axes.

Notes

This is a convenient shorthand for: self.toCS (self.principalCS()) .sizes ()

94 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Examples

>>> print (Coords ([[[0.,0.,0.1,[3.,0.,0.11]) .rotate(30,2) .principalSizes/())
[0. 0. 3.]

centralCsS (mass=None)
Returns the central coordinate system of the Coords.

Parameters mass (1-dim float array (points (),), optional) — The mass to be attributed to
each of the points, in the order of npoints (). If not provided, a mass 1.0 will be attributed
to each point.

Returns CoordsSys object. — Coordinate system with origin at the center of mass of the Coords
and axes parallel to the global axes.

See also:

principalCS () CoordSys aligned with principa axes of inertia tensor

Examples

>>> from pyformex.elements import Tet4
>>> print (Tet4.vertices.centralCS())
CoordSys: trl=[0.25 0.25 0.25]; rot=[[1 0
[0. 1. 0.]
[O 1

distanceFromPoint (p)
Returns the distance of all points from the point p.

Parameters p (float array_like with shape (3,) or (1,3)) — Coordinates of a single point in space

Returns float array — Array with shape pshape () holding the distance of each point to point
p. All values are positive or zero.

See also:

closestPoint () return the point of Coords closest to given point

Examples

>>> X = Coords([[0.,0.,0.1,(2.,0.,0.7,([1.,3.,0.1,[-1.,0.,0.11)
>>> print (X.distanceFromPoint ([0.,0.,0.71))
[0. 2. 3.16 1.]

distanceFromLine (p, n)
Returns the distance of all points from the line (p,n).

Parameters
* p (float array_like with shape (3,) or (1,3)) — Coordinates of some point on the line.
* n (float array_like with shape (3,) or (1,3)) — Vector specifying the direction of the line.

Returns float array — Array with shape pshape () holding the distance of each point to the
line through p and having direction n. All values are positive or zero.

6.1.

Autoloaded modules 95

pyFormex Documentation, Release 2.2

Examples

>>> X = Coords ([[0.,0.,0.1,[2.,0.,0.
>>> print (X.distanceFromLine ([0.,0.,
[0. 1.41 1.41 0.71]

distanceFromPlane (p, n)
Return the distance of all points from the plane (p,n).

Parameters
* p (float array_like with shape (3,) or (1,3)) — Coordinates of some point in the plane.
* n (float array_like with shape (3,) or (1,3)) — The normal vector to the plane.

Returns float array — Array with shape pshape () holding the distance of each point to the
plane through p and having normal n. The values are positive if the point is on the side of the
plane indicated by the positive normal.

See also:

directionalSize () find the most distant points at both sides of plane

Examples

>>> X = Coords([[0.,0.,0.],[2.,0.,0.],[1.,3.,0.]
>>> print (X.distanceFromPlane([0.,0.,0.1,[1.,0
[0. 2. 1. -1.]

closestToPoint (p, return_dist=False)
Returns the point closest to a given point p.

Parameters p (array_like (3,)) — Coordinates of a single point in space

Returns int — Index of the point in the Coords that has the minimal Euclidean distance to the
point p. Use this index with self.points() to get the coordinates of that point.

Examples

>>> X = Coords([[[0.,0.,0.1,1[3.,
>>> X.closestToPoint ([2.,0.,0.1)

>>> X.closestToPoint ([2.,0.,0.]1, True)
(1, 1.0)

directionalSize (n, p=None, return_points=False)
Returns the extreme distances from the plane p,n.

Parameters

* n (a single int or a float array_like (3,)) — The direction of the normal to the plane. If an
int, it is the number of a global axis. Else it is a vector with 3 components.

* p (array_like (3,), optional) — Coordinates of a point in the plane. If not provided, the
center () of the Coords is used.

* return_points (bool) - If True, also return a Coords with two points along the line
(p,n) and at the extreme distances from the plane(p,n).

96 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Returns

* dmin (float) — The minimal (signed) distance of a point of the Coords to the plane (p,n).
The value can be negative or positive.

* dmax (floar) — The maximal (signed) distance of a point of the Coords to the plane (p,n).
The value can be negative or positive.

* points (Coords (2,3), optional) — If return_points=True is provided, also returns a Coords
holding two points on the line (p,n) with minimal and maximal distance from the plane
(p,n). These two points together with the normal n define two parallel planes such that all
points of self are between or on the planes.

Notes
The maximal size of self in the direction n is found from the difference dmax - dmin‘. See also
directionalWidth ().

See also:

directionalExtremes () return two points in the extreme planes
directionalWidth () return the distance between the extreme planes

distanceFromPlane () return distance of all points to a plane

Examples
>>> X = Coords([[[0.,0.,0.],[3.,0.,0.],[0.,3.,0.111)
>>> X.directionalSize([1,0,017)
(-1.5, 1.5)
>>> X.directionalSize([1,0,0],[1.,0.,0.1)
(=1.0, 2.0)
>>> X.directionalSize([1,0,0],return_points=True)
(-1.5, 1.5, Coords([[O. , 1.5, 0. 1,
[3., 1.5, 0. 11))

directionalExtremes (n, p=None)
Returns extremal planes in the direction n.

Parameters: see directionalSize ().

Returns Coords (2,3) — A Coords holding the two points on the line (p,n) with minimal and
maximal distance from the plane (p,n). These two points together with the normal » define
two parallel planes such that all points of self are between or on the planes.

See also:

directionalSize () return minimal and maximal distance from plane

Notes

This is like directionalSize with the return_points options, but only returns the extreme points.

6.1. Autoloaded modules 97

pyFormex Documentation, Release 2.2

Examples
>>> X = Coords([[[0.,0.,0.],03.,0.,0.],[0.,3.,0.111)
>>> X.directionalExtremes ([1,0,0])
Coords([[0. , 1.5, 0. 1,
[3., 1.5, 0. 11)

directionalWidth (n)
Returns the width of a Coords in the given direction.

Parameters: see directionalSize ().

Returns float — The size of the Coords in the direction n. This is the distance between the
extreme planes with normal 7 touching the Coords.

See also:

directionalSize () return minimal and maximal distance from plane

Notes

This is like directionalSize but only returns the difference between dmax and dmin.

Examples

>>> X = Coords([[[0.,0.,0.],[3.,0.,0.],[0.,3.,0.111)
>>> print (X.directionalWidth([1,0,01))

3.0

test (dir=0, min=None, max=None, atol=0.0)
Flag points having coordinates between min and max.

Test the position of the points of the Coords with respect to one or two parallel planes. This method is
very convenient in clipping a Coords in a specified direction. In most cases the clipping direction is one of

the global coordinate axes, but a general direction may be used as well.

Testing along global axis directions is highly efficient. It tests whether the corresponding coordinate is
above or equal to the min value and/or below or equal to the max value. Testing in a general direction tests
whether the distance to the min plane is positive or zero and/or the distance to the max plane is negative or

Z€ro.
Parameters

e dir (a single int or a float array_like (3,)) — The direction in which to measure distances.
If an int, it is one of the global axes (0,1,2). Else it is a vector with 3 components. The
default direction is the global x-axis.

e min (float or point-like, optional) — Position of the minimal clipping
plane. If dir is an int, this is a single float giving the coordinate along the specified global
axis. If dir is a vector, this must be a point and the minimal clipping plane is defined by
this point and the normal vector dir. If not provided, there is no clipping at the minimal
side.

* max (float or point-like.)—Position of the maximal clipping plane. If dir is an
int, this is a single float giving the coordinate along the specified global axis. If dir is a
vector, this must be a point and the maximal clipping plane is defined by this point and the
normal vector dir. If not provided, there is no clipping at the maximal side.

98

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

* atol (float)— Tolerance value added to the tests to account for accuracy and rounding
errors. A min test will be ok if the point’s distance from the min clipping plane is > -atol
and/or the distance from the max clipping plane is < atol. Thus a positive atol widens the
clipping planes.

Returns bool array with shape pshape () — Array flagging whether the points for the Coords
pass the test(s) or not. The return value can directly be used as an index to self to obtain a
Coords with the points satisfying the test (or not).

Raises ValueError: At least one of min or max have to be specified — If neither min nor max are
provided.

Examples

>>> x = Coords ([[[0.,0.],[1.,0.1],[[0.,2.1,[0.,2.111)
>>> print (x.test (min=0.5))

[[False True]

[False False]]
>>> t = x.test(dir=1,min=0.5,max=1.5)
>>> print (x[t])
[[0. 1. 0.1]
>>> print (x[~t])
[[0. 0. 0.]

[1. 0. 0.]
[0. 2. 0.]

]

set (f)
Set the coordinates from those in the given array.

Parameters £ (float array_like, broadcastable to self.shape.) — The coordinates to replace the
current ones. This can not be used to chage the shape of the Coords.

Raises ValueError: — If the shape of f does not allow broadcasting to self.shape.

Examples
>>> x = Coords ([[0],[1],1[211])
>>> print (x)
([0. 0. 0.]
[1. 0. 0.]
[2. 0. 0.71]
>>> x.set ([0.,1.,0.1)
>>> print (x)
([0. 1. 0.]
[0. 1. 0.]
[0. 1. 0.]1]

scale (scale, dir=None, center=None, inplace=False)
Return a scaled copy of the Coords object.

Parameters

* scale(float or tuple of 3 floats)- Scaling factor(s). If it is a single value,
and no dir is provided, scaling is uniformly applied to all axes; if dir is provided, only to
the specified directions. If it is a tuple, the three scaling factors are applied to the respective
global axes.

6.1.

Autoloaded modules

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

e dir (int or tuple of ints, optional) - One or more global axis numbers
(0,1,2), indicating the direction(s) that should be scaled with the (single) value scale.

* center (point-like, optional) - If provided, use this point as the center of the
scaling. The default is the global origin.

* inplace (bool, optional)— If True, the coordinates are change in-place.

Returns Coords — The Coords scaled as specified.

Notes

If a center is provided,the operation is equivalent with self.translate(-center).
scale(scale,dir) .translate (center)

Examples

>>> X = Coords([1.,1.,1.1)
>>> print (X.scale(2))

[2. 2. 2.]

>>> print (X.scale([2,3,4]))

[2. 3. 4.]

>>> print (X.scale(2,dir=(1,2)) .scale(4,dir=0))
[4. 2. 2.]

>>> print (X.scale(2,center=[1.,0.5,0.]))

[1. 1.5 2.]

translate (dir, step=1.0, inplace=False)

Return a translated copy of the Coords object.
Translate the Coords in the direction dir over a distance step * at.length(dir).

Parameters

e dir (int (0,1,2) or float array_like (...,3)) — The translation vector. If an int, it specifies a
global axis and the translation is in the direction of that axis. If an array_like, it specifies
one or more translation vectors. If more than one, the array should be broadcastable to the
Coords shape: this allows to translate different parts of the Coords over different vectors,
all in one operation.

* step (float)—1If dir is an int, this is the length of the translation. Else, it is a multi-
plying factor applied to dir prior to applying the translation.

Returns Coords — The Coords translated over the specified vector(s).

Note: trl () is aconvenient shorthand for translate ().

See also:

centered () translate to center around origin

Coords.align () translate to align bounding box

100

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples

>>> x = Coords([1l.,1.,1.1)
>>> print (x.translate (1))
[1. 2. 1.]
>>> print(x.translate(1l,1.))
[1. 2. 1.]
>>> print (x.translate([0,1,0]))
[1. 2. 1.]
>>> print (x.translate([0,2,0],0.5))
[1. 2. 1.]
>>> x = Coords (np.arange (4) .reshape(2,2,1))
>>> x
Coords([[[0., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
(r 2., 0., 0.7,
[3., 0., 0.111)
>>> x.translate([[10.,-5.,0.1,[20.,4.,0.1]1) # translate with broadcasting
Coords ([[[10., -5., 0.]
[21., 4., 0.7]
<BLANKLINE>
([12., -5.,
[23., 4.,

’

’

-]

centered ()
Return a centered copy of the Coords.

Returns Coords — The Coords translated over tus that its center () coincides with the origin
of the global axes.

Notes

This is equivalent with self.translate (-self.center())

Examples
>>> X = Coords ('0123")
>>> print (X)
[[0. 0. 0.]
[1. 0. 0.]
[1. 1. 0.]
[0. 1. 0.]]
>>> print (X.centered())
[[-0.5 -0.5 0.]
[0.5 -0.5 0.]
[0.5 0.5 0.]
[-0.5 0.5 0. 1]

align (alignment="—", point=[0.0, 0.0, 0.0])
Align a Coords object on a given point.

Alignment involves a translation such that the bounding box of the Coords object becomes aligned with a
given point. The bounding box alignment is done by the translation of a to the target point.

Parameters

. Autoloaded modules 101

pyFormex Documentation, Release 2.2

* alignment (str) — The requested alignment is a string of three characters, one for
each of the coordinate axes. The character determines how the structure is aligned in the
corresponding direction:

— ’-‘: aligned on the minimal value of the bounding box,

— ’+’: aligned on the maximal value of the bounding box,

— ‘0’: aligned on the middle value of the bounding box.

Any other value will make the alignment in that direction unchanged.
* point (point—1ike) - The target point of the alignment.

Returns Coords — The Coords translated thus that the alignment bboxPoint () is at point.

Notes

The default parameters translate the Coords thus that all points are in the octant with all positive coordinate
values.

Coords.align(alignment = '000') will center the object around the origin, just like the
centered () (which is slightly faster). This can however be used for centering around any point.

See also:
align () aligning multiple objects with respect to each other.

rotate (angle, axis=2, around=None, angle_spec=0.017453292519943295)
Return a copy rotated over angle around axis.

Parameters

* angle (float or float array_like (3,3)) — If a float, it is the rotation angle, by default in de-
grees, and the parameters (angle, axis, angel_spec) are passed to rotationMatrix ()
to produce a (3,3) rotation matrix. Alternatively, the rotation matrix may be directly pro-
vided in the angle parameter. The axis and angle_spec are then ignored.

e axis (int (0,1,2) or float array_like (3,)) — Only used if angle is a float. If provided, it
specifies the direction of the rotation axis: either one of 0,1,2 for a global axis, or a vector
with 3 components for a general direction. The default (axis 2) is convenient for working
with 2D-structures in the x-y plane.

* around (float array_like (3,)) — If provided, it specifies a point on the rotation axis. If
not, the rotation axis goes through the origin of the global axes.

* angle_spec (float, at.DEG or RAD, optional)— Only used if angle is a
float. The default (at. DEG) interpretes the angle in degrees. Use RAD to specify the angle
in radians.

Returns Coords — The Coords rotated as specified by the parameters.

Note: rot () is a convenient shorthand for rotate ().

See also:

translate () translate a Coords

affine () rotate and translate a Coords

102

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

arraytools.rotationMatrix () create arotation matrix for use in rotate ()

Examples

>>> X = Coords ('0123")
>>> print (X.rotate (30))
[[O. 0. 0. 1
[0.87 0.5 0. 1]
[0.37 1.37 0.]
[-0.5 0.87 O.
>>> print (X.rotate (

1]
30,axis=0))
0.]
]
]

[[O. 0.

[1. 0. 0.

[1. 0.87 0.5

[0. 0.87 0.5 1]
>>> print (X.rotate (30,axis=0,around=[0.,0.5,0.1))
[[O. 0.07 -0.25]

[1. 0.07 -0.25]

[1. 0.93 0.25]

[0. 0.93 0.25]]
>>> m = at.rotationMatrix(30,axis=0)
>>> print (X.rotate (m))
[[O. 0. 0.]

[1. 0. 0.]

[1. 0.87 0.5]

[0. 0.87 0.5 1]

shear (dir, dirl, skew, inplace=False)
Return a copy skewed in the direction of a global axis.

This translates points in the direction of a global axis, over a distance dependent on the coordinates along

another axis.

Parameters

e dir (int (0,1,2))- Global axis in which direction the points are translated.

e dirl (int (0,1,2)) — Global axis whose coordinates determine the length of the

translation.

* skew (float) — Multiplication factor to the coordinates dirl defining the translation

distance.

e inplace (bool, optional)-If True, the coordinates are translated in-place.

Notes

This replaces the coordinate dir with (dir + skew % dirl).Ifdirand dirl are different, rectangu-
lar shapes in the plane (dir,dir1) are thus skewed along the direction dir into parallellogram shapes. If dir
and dir] are the same direction, the effect is that of scaling in the dir direction.

Examples

>>> X = Coords ('0123")
>>> print (X.shear(0,1,0.5))

(continues on next page)

6.1.

Autoloaded modules

103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

o R O
(&3]

= P O O

o O O O

reflect (dir=0, pos=0.0, inplace=False)
Reflect the coordinates in the direction of a global axis.

Parameters
e dir (int (0,1, 2))— Global axis direction of the reflection (default O or x-axis).
* pos (float)— Offset of the mirror plane from origin (default 0.0)
e inplace (bool, optional)-If True, the coordinates are translated in-place.

Returns Coords — A mirror copy with respect to the plane perpendicular to axis dir and placed
at coordinate pos along the dir axis.

Examples
>>> X = Coords ('012")
>>> print (X)
[[0. 0. 0.]
[1. 0. 0.]
[1. 1. 0.1]
>>> print (X.reflect (0))
[[0. O 0.]
[-1 0 0.]
[-1. 1. 0.1]
>>> print (X.reflect (1,0.5))
[[0. 1. 0.]
[1. 1. 0.]
[1. 0. 0.]]
>>> print (X.reflect ([0,1]1,[0.5,0.7))
[[1. 0. 0.]
[0. 0. 0.]
[0. -1. 0.1]

affine (mat, vec=None)
Perform a general affine transformation.

Parameters

* mat (float array_like (3,3)) — Matrix used in post-multiplication on a row vector to pro-
duce a new vector. The matrix can express scaling and/or rotation or a more general
(affine) transformation.

e vec (float array_like (3,)) — Translation vector to add after the transformation with mat.

Returns Coords — A Coords with same shape as self, but with coordinates given by self =x
mat + vec. If mat is a rotation matrix or a uniform scaling plus rotation, the full operation
performs a rigid rotation plus translation of the object.

104 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Examples
>>> X = Coords ('0123")
>>> S = np.array([[2.,0.,0.]1,10.,3.,0.1,10.,0.,4.11) # non-uniform scaling
>>> R = at.rotationMatrix(90.,2) # rotation matrix
>>> T = [20., 0., 2.] # translation
>>> M = np.dot (S,R) # combined scaling and rotation
>>> print (X.affine (M, T))

[[20. 0. 2.]

[20. 2. 2.1

[17. 2. 2.]

[17. 0. 2.11

toCS (cs)

Transform the coordinates to another CoordSys.

Parameters cs (CoordSys object) — Cartesian coordinate system in which to take the coordi-
nates of the current Coords object.

Returns Coords — A Coords object identical to self but having global coordinates equal to the
coordinates of self in the cs CoordSys axes.

Note: This returns the coordinates of the original points in another CoordSys. If you use these coordinates
as points in the global axes, the transformation of the original points to these new ones is the inverse
transformation of the transformation of the global axes to the cs coordinate system.

See also:

fromCS () the inverse transformation

Examples

>>> X = Coords ('01")
>>> print (X)
([0. 0. 0.]
[1. 0. 0.]1]
>>> from pyformex.coordsys import CoordSys
>>> CS = CoordSys(ocab=[[0.5,0.,0.1,(1.,0.5,0.1,[0.,1.,0.11)
>>> print (CS)

CoordSys: trl=[0.5 O. 0. 1; rot=[[0.71 0.71 O.]
[-0.71 0.71 0.]
[0. -0. 1. 1]

>>> print (X.toCS (CS
[[-0.35 0.35 O.
[0.35 -0.35 0.

)

)
]
1]
)

>>> print (X.toCS(CS) .fromCS (CS))
[[0. 0. 0.]
[1. -0. 0.1]

fromCsS (cs)

Transform the coordinates from another CoordSys to global axes.

Parameters cs (CoordSys object) — Cartesian coordinate system in which the current coordi-
nate values are taken.

6.1. Autoloaded modules 105

pyFormex Documentation, Release 2.2

Returns Coords — A Coords object with the global coordinates of the same points as the input
coordinates represented in the cs CoordSys axes.

See also:
toCS () the inverse transformation

Examples: see toCS ()

transformCsS (cs, csO=None)
Perform a coordinate system transformation on the Coords.

This method transforms the Coords object by the transformation that turns one coordinate system into a
another.

Parameters
* ¢s (CoordsSys) — The final coordinate system.

* ¢s0 (CoordSys, optional) — The initial coordinate system. If not provided, the global
coordinate system is used.

Returns Coords — The input Coords transformed by the same affine transformation that turns
the axes of the coordinate system cs0 into those of the system cs.

Notes

For example, with the default cs0 and a cs CoordSys created with the points

O O O
o P O O

the transformCS results in a rotation of 90 degrees around the z-axis.

See also:

toCS () transform coordinates to another CS
fromCS () transfrom coordinates from another CS
position (x,Yy)
Position a Coords so that 3 points x are aligned with y.
Aligning 3 points x with 3 points y is done by a rotation and translation in such way that
* point x0 coincides with point y0,
¢ line x0,x1 coincides with line y0,y1

* plane x0,x1,x2 coincides with plane y0,y1,y2

Parameters

e x (float array_like (3,3)) — Original coordinates of three non-collinear points. These points
can be be part of the Coords or not.

* y (float array_like (3,3)) — Final coordinates of the three points.

Returns Coords — The input Coords rotated and translated thus that the points x are aligned with
y.

106 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Notes

This is a convenient shorthand for self.affine (xtrfmat (x, y)).

See also:

arraytools.trfmat () compute the transformation matrices from points x to y

affine () general transform using rotation and translation

Examples

>>> X = Coords([[0,0,0],(1,0,0],[1,1,011])
>>> Y = Coords([[1,1,1],[1,10,1],([1,1,1001])
>>> print (X.position(X,Y))

(C 1. 1. 1.]
[1. 2. 1.]
[1. 2. 2.1]

cylindrical (dir=(0, 1, 2), scale=(1.0, 1.0, 1.0), angle_spec=0.017453292519943295)
Convert from cylindrical coordinates to cartesian.

A cylindrical coordinate system is defined by a longitudinal axis axis (z) and a radial axis (r). The cylin-
drical coordinates of a point are:

e r: the radial distance from the z-axis,

¢ theta: the circumferential angle measured positively around the z-axis starting from zero at the (r-z)
halfplane,

* z: the axial distance along the z-axis,

This function interpretes the 3 coordinates of the points as (r,theta,z) values and computes the correspond-
ing global cartesian coordinates (X,y,z).

Parameters

e dir (tuple of 3 ints, optional) - If provided, it is a permutation of (0,1,2)
and specifies which of the current coordinates are interpreted as resp. distance(r), an-
gle(theta) and height(z). Default order is (r,theta,z). Beware that if the permutation is not
conserving the order of the axes, a left-handed system results, and the Coords will appear
mirrored in the right-handed systems exclusively used by pyFormex

* scale (tuple of 3 floats, optional) — Scaling factors that are applied on
the values prior to make the conversion from cylindrical to cartesian coordinates. These
factors are always given in the order (r,theta,z), irrespective of the permutation by dir.

* angle_spec (float, at.DEG or RAD, optional)- Multiplication factor for
angle coordinates. The default (at. DEG) interpretes the angle in degrees. Use RAD to
specify the angle in radians.

Returns Coords — The global coordinates of the points that were specified with cylindrical co-
ordinates as input.

Notes

The scaling can also be applied independently prior to transforming. X.cylindrical (scale=s) is
equivalent with X.scale (s) .cylindrical (). The scale option is provided here because in many
cases you need at least to scale the theta direction to have proper angle values.

6.1. Autoloaded modules 107

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

See also:

hyperCylindrical () similar but allowing scaling as function of angle
toCylindrical () inverse transformation (cartesian to cylindrical)
Examples

We want to create six points on a circle with radius 2. We start by creating the points in cylindrical
coordinates with unit distances.

>>> X = Coords ('1'+'2'%5)
>>> print (X)

(11 0. 0.]

[1 1. 0.]

[1. 2. 0.]

[1. 3. 0.]

[1 4. 0.]

[1 5. 0.1]1]

Remember these are (r,theta,z) coordinates of the points. So we will scale the r-direction with 2 (the target
radius) and the angular direction theta with 360/6 = 60. Then we get the cartesian coordinates of the points
from

>>> Y = X.cylindrical (scale=(2.,60.,1.))
>>> print (Y)

[[2. 0.

[1. 1.73
[-1. 1.73
[-2. -0.
[-1 -1.73
[1. -1.73

o O O O o o

Going back to cylindrical coordinates yields

>>> print (Y.toCylindrical())

[l 2. 0. 0.]

60.
120.
. —180.
-120.

-60.

DN DN
O O O O o

[-1
(-1
[.1
[-1
(-1

]

This differs from the original input X because of the scaling factors, and the wrapping around angles are
reported in the range [-180,180].

hyperCylindrical (dir=(0, 1, 2), scale=(1.0, 1.0, 1.0), rfunc=None, zfunc=None, an-
gle_spec=0.017453292519943295)
Convert cylindrical coordinates to cartesian with advanced scaling.

This is similar to cylindrical () but allows the specification of two functions defining extra scaling
factors for the r and z directions that are dependent on the theta value.

Parameters

* scale, angle_spec) ((dir,)-

108

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

e rfunc (callable, optional)— Function r(theta) taking one, float parameter and
returning a float. Like scale[0] it is multiplied with the provided r values before converting
them to cartesian coordinates.

e zfunc (callable, optional) — Function z(theta) taking one float parameter and
returning a float. Like scale[2] it is multiplied with the provided z values before converting
them to cartesian coordinates.

See also:
cylindrical () similar but without the rfunc and zfunc options.
toCylindrical (dir=(0, 1, 2), angle_spec=0.017453292519943295)

Converts from cartesian to cylindrical coordinates.

Returns a Coords where the values are the coordinates of the input points in a cylindrical coordinate system.
The three axes of the Coords then correspond to (r, theta, z).

Parameters

e dir (tuple of ints)- A permutation of (0,1,2) specifying which of the global axes
are the radial, circumferential and axial direction of the cylindrical coordinate system.
Make sure to keep the axes ordering in order to get a right-handed system.

* angle_spec (float, at.DEG or RAD, optional)- Multiplication factor for
angle coordinates. The default (at. DEG) returns angles in degrees. Use RAD to return
angles in radians.

Returns Coords — The cylindrical coordinates of the input points.

See also:

cylindrical () conversion from cylindrical to cartesian coordinates

Examples

see cylindrical ()

spherical (dir=(0, 1, 2), scale=(1.0, 1.0, 1.0), angle_spec=0.017453292519943295, colat=False)
Convert spherical coordinates to cartesian coordinates.

Consider a spherical coordinate system with the global xy-plane as its equatorial plane and the z-axis as
axis. The zero meridional halfplane is taken along th positive x-axis. The spherical coordinates of a point
are:

* the longitude (theta): the circumferential angle, measured around the z-axis from the zero-meridional
halfplane to the meridional plane containing the point: this angle normally ranges from -180 to +180
degrees (or from O to 360);

* the latitude (phi): the elevation angle of the point’s position vector, measured from the equatorial
plane, positive when the point is at the positive side of the plane: this angle is normally restricted to
the range from -90 (south pole) to +90 (north pole);

* the distance (r): the radial distance of the point from the origin: this is normally positive.

This function interpretes the 3 coordinates of the points as (theta,phi,r) values and computes the corre-
sponding global cartesian coordinates (X,y,z).

Parameters

6.1.

Autoloaded modules 109

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

e dir (tuple of 3 ints, optional) - If provided, it is a permutation of (0,1,2)
and specifies which of the current coordinates are interpreted as resp. longitude(theta),
latitude(phi) and distance(r). This allows the axis to be aligned with any of the global
axes. Default order is (0,1,2), with (0,1) the equatorial plane and 2 the axis. Beware that
using a permutation that is not conserving the order of the globale axes (0,1,2), may lead
to a confusing left-handed system.

* scale(tuple of 3 floats, optional)-Scaling factors thatare applied on the
coordinate values prior to making the conversion from spherical to cartesian coordinates.
These factors are always given in the order (theta,phi,rz), irrespective of the permutation
by dir.

* angle_spec (float, at.DEG or RAD, optional)— Multiplication factor for
angle coordinates. The default (at. DEG) interpretes the angles in degrees. Use RAD to
specify the angles in radians.

e colat (bool) - If True, the second coordinate is the colatitude instead. The colatitude
is the angle measured from the north pole towards the south. In degrees, it is equal to 90
— latitude and ranges from O to 180. Applications that deal with regions around the
pole may benefit from using this option.

Returns Coords — The global coordinates of the points that were specified with spherical coor-
dinates as input.

See also:

toSpherical () the inverse transformation (cartesian to spherical)

cylindrical () similar function for spherical coordinates

Examples

>>> X = Coords ('0123") .scale(90) .trl(2,1.)

>>> X

Coords([[O0., 0., 1.7,
[90., 0., 1.7,
[90., 90., 1.1,
[0., 90., 1.11)

>>> X.spherical ()

Coords ([[1., 0., 0.1,
[-0., 1., 0.],
[0., -0., 1.1,
[-0., =-0., 1.11)

Note that the last two points, though having different spherical coordinates, are coinciding at the north
pole.

superSpherical (n=1.0, e=1.0, k=0.0, dir=(0, 1, 2), scale=(1.0, 1.0, 1.0), an-
gle_spec=0.017453292519943295, colat=False)
Performs a superspherical transformation.

superSpherical is much like spherical (), but adds some extra parameters to enable the quick creation
of a wide range of complicated shapes. Again, the input coordinates are interpreted as the longitude,
latitude and distance in a spherical coordinate system.

Parameters

* n(float, >=0)-Exponentdefining the variation of the distance in nort-south (latitude)
direction. The default value 1 turns constant r-values into circular meridians. See notes.

110

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

* e(float, >=0)—Exponentdefining the variation of the distance in nort-south (latitude)
direction. The default value 1 turns constant r-values into a circular latitude lines. See
notes.

e k(float, -1 < k < 1)- Eggness factor. If nonzero, creates asymmetric northern
and southern hemisheres. Values > 0O enlarge the southern hemisphere and shrink the
northern, while negative values yield the opposite.

e dir (tuple of 3 ints, optional) - If provided, it is a permutation of (0,1,2)
and specifies which of the current coordinates are interpreted as resp. longitude(theta),
latitude(phi) and distance(r). This allows the axis to be aligned with any of the global
axes. Default order is (0,1,2), with (0,1) the equatorial plane and 2 the axis. Beware that
using a permutation that is not conserving the order of the globale axes (0,1,2), may lead
to a confusing left-handed system.

* scale(tuple of 3 floats, optional)-Scaling factors thatare applied on the
coordinate values prior to making the conversion from spherical to cartesian coordinates.
These factors are always given in the order (theta,phi,rz), irrespective of the permutation
by dir.

* angle_spec (float, at.DEG or RAD, optional)— Multiplication factor for
angle coordinates. The default (at. DEG) interpretes the angles in degrees. Use RAD to
specify the angles in radians.

e colat (bool) —If True, the second coordinate is the colatitude instead. The colatitude
is the angle measured from the north pole towards the south. In degrees, it is equal to 90
— latitude and ranges from O to 180. Applications that deal with regions around the
pole may benefit from using this option.

Raises ValueError —If one of n, e or k is out of the acceptable range.

Notes

Values of n and e should not be negative. Values equal to 1 create a circular shape. Other values keep the
radius at angles corresponding to mmultiples of 90 degrees, while the radius at the intermediate 45 degree
angles will be maximally changed. Values larger than 1 shrink at 45 degrees directions, while lower values
increase it. A value 2 creates a straight line between the 90 degrees points (the radius at 45 degrees being
reduced to 1/sqrt(2).

See also example SuperShape.

Examples

>>> X = Coords ('02222") .scale(22.5).trl(2,1.)

>>> X
Coords([[0. , 0. , 1. 1,

[0., 22.5, 1.1,

[0. , 45. , 1.1,

[0., 67.5 1. 1,

[0., 90., 1. 11)
>>> X.superSpherical (n=3) .toSpherical ()
Coords ([[90. , 0. , 1. 1,

[85.93, 0. , 0.79],

[45. , 0. , 0.5 1,

[4.07, 0. , 0.79]

[1]

-0. , -0. ,

6.1. Autoloaded modules 111

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

The result is smaller radius at angle 45.

toSpherical (dir=[0, 1, 2], angle_spec=0.017453292519943295)
Converts from cartesian to spherical coordinates.

Returns a Coords where the values are the coordinates of the input points in a spherical coordinate system.
The three axes of the Coords then correspond to (theta, phi, r).

Parameters

e dir (tuple of ints)— A permutation of (0,1,2) specifying how the spherical coor-
dinate system is oriented in the global axes. The last value is the axis of the system; the
first two values are the equatorial plane; the first and last value define the meridional zero
plane. Make sure to preserve the axes ordering in order to get a right-handed system.

* angle_spec (float, at.DEG or RAD, optional)- Multiplication factor for
angle coordinates. The default (at. DEG) returns angles in degrees. Use RAD to return
angles in radians.

Returns Coords — The spherical coordinates of the input points.

See also:

spherical () conversion from spherical to cartesian coordinates

Examples

See superSpherical ()

circulize (n)
Transform sectors of a regular polygon into circular sectors.

Parameters n (int)— Number of edges of the regular polygon.

Returns Coords — A Coords where the points inside each sector of a n-sided regular polygon
around the origin are reposition to fill a circular sector. The polygon is in the x-y-plane and
has a vertex on the x-axis.

Notes

Points on the x-axis and on radii at i ¥ 360 / n degrees are not moved. Points on the bisector lines between
these radii are move maximally outward. Points on a regular polygon will become points on a circle if
circulized with parameter n equal to the number of sides of the polygon.

Examples
>>> Coords ([[1.,0.1,10.5,0.51,[0.,1.1]).circulize(4)
Coords ([[1. , 0. , 0. 1,

[0.71, 0.71, 0. 1,

[-0. , 1. , 0. 11)

bump (dir, a, func=None, dist=None, xb=1.0)
Create a 1-, 2-, or 3-dimensional bump in a Coords.

A bump is a local modification of the coordinates of a collection of points. The bump can be 1-, 2- or
3-dimensional, meaning that the intensity of the coordinate modification varies in 1, 2 or 3 axis directions.
In all cases, the bump only changes one coordinate of the points. This method can produce various effects,
but one of the most common uses is to force a surface to be indented at some point.

112 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Parameters
e dir (int, one of (0,1,2))-The axis of the coordinates to be modified.
* a(point (3,))- The point that sets the bump location and intensity.

e func(callable, optional)- A function that returns the bump intensity in function
of the distance from the bump point a. The distance is the Euclidean distance over all
directions except dir. The function takes a single (positive) float value and returns a float
(the bump intensity). Its value should not be zero at the origin. The function may include
constants, which can be specified as xb. If no function is specified, the default function
will be used: lambda x: np.where (x<xb,1.-(x/3)**2,0) This makes the
bump quadratically die out over a distance xb.

* dist (int or tuple of ints, optional) — Specifies how the distance from
points to the bump point a is measured. It can be a single axis number (0,1,2) or a tuple of
two or three axis numbers. If a single axis, the bump will vary only in one direction and
distance is measured along that direction and is signed. If two or three axes, distance is the
(always positive) euclidean distance over these directions and the bump will vary in these
directions. Default value is the set of 3 axes minus the direction of modification dir.

e xb (float or list of floats)— Constant(s) to be used in func. Often, this in-
cludes the distance over which the bump will extend. The default bump function will reach
zero at this distance.

Returns Coords — A Coords with same shape as input, but having a localized change of coordi-
nates as specified by the parameters.

Notes

This function replaces the bumpl and bump?2 functions in older pyFormex versions. The default value of
dist makes it work like bump?2. Specifyin a single axis for dist makes it work like bump1.

See also examples BaumKuchen, Circle, Clip, Novation

Examples

One-dimensional bump in a linear set of points.

>>> X = Coords (np.arange (6) .reshape(-1,1))
>>> X.pbumpl(1,[3.,5.,0.],dist=0)
Coords ([[O., 0., 0.1,

[1., 0., 0.1,

[2., 0., 0.7,

[3., 5., 0.1,

[4., 0., 0.1,

[5., 0., 0.11)
>>> X.bump(1l,[3.,5.,0.],dist=0,xb=3.)
Coords([[0. , O , 0 1,

r1. , 2.78, O 1,

[2. , 4.44, O 1y

[3. , 5. , 0 1,

[4. , 4.44, O 1,

[5. , 2.78, O 11

Create a grid a points in xz-plane, with a bump in direction y with a maximum 5 at x=1.5, z=0., extending
over a distance 2.5.

6.1. Autoloaded modules 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

>>> X = Coords (np.arange (4) .reshape(-1,1)) .replicate (4,dir=2)
>>> X.pbump(l,[1.5,5.,0.],xb=2.5)
Coords ([[[O. , 3.75, 0. 1,
[1. , 4.86, 0. 1,
[2. , 4.86, 0. 1,
[3. , 3.75, 0. 17,
<BLANKLINE>
[6. , 3.19, 1. 1,
. , 4.31, 1. 171,
r2. , 4.31, 1. 1,
[3. , 3.19, 1. 11,
<BLANKLINE>
[(c 6. , 0. , 2. 171,
[1. , 2.64, 2. 1,
[2. , 2.64, 2. 71,
[3. , 0. , 2. 11,
<BLANKLINE>
([O + 0. , 3 1,
[1 , 0. , 3 1,
[2 , 0. , 3 1,
[3 , 0. , 3 111)

flare (xf, f, dir=(0, 2), end=0, exp=1.0)

Create a flare at the end of a Coords block.

A flare is a local change of geometry (widening, narrowing) at the end of a structure.

Parameters

* xf (float)— Length over which the local change occurs, measured along dir [0].

* £ (float)—Maximum amplitude of the flare, in the direction dir[1].

e dir (tuple of two ints (0,1,2)) - Two axis designations. The first axis de-
fines the direction along which the flare decays. The second is the direction of the coordi-

nate modification.

e end (0 or 1)- With end=0, the flare exists at the end with the smallest coordinates in
dir[0]] direction; with end=1, at the end with the highest coordinates.

* exp (float) — Exponent setting the speed of decay of the flare. The default makes the

flare change linearly over the length f.

Returns Coords — A Coords with same shape as the input, but having a localized change of

coordinates at one end of the point set.

Examples
>>> Coords (np.arange (6) .reshape(-1,1)) .flare(3.,1.6, (0,1),0)
Coords ([[O , 1.6, 0. 1,
1. , 1.07, 0. 1,
[2. , 0.53, 0. 1,
[3 , 0. , 0. 1,
[4 , 0. ’ 0. 1,
[5 , 0., 0. 11
map (func)

Map a Coords by a 3-D function.

114

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

This allows any mathematical transformation being applied to the coordinates of the Coords.

Parameters func (callable) — A function taking three float arguments (x,y,z coordinates
of a point) and returning a tuple of three float values: the new coordinate values to replace
(X,Y,2).

The function must be applicable to NumPy arrays, so it should only include numerical oper-
ations and functions understood by the numpy module.

Often an inline lambda function is used, but a normally defined function will work as well.
Returns Coords object — The input Coords mapped through the specified function

See also:

mapl () apply a I-dimensional mapping to one coordinate direction

mapd () map one coordinate by a function of the distance to a point

Notes

See also examples Cones, Connect, HorseTorse, Manantiales, Mobius, ScallopDome

Examples

>>> print (Coords([[1.,1.,1.]]) .map(lambda x,y,z: [2*%X,3%xy,4%z]))
([2. 3. 4.]]

mapl (dir, func, x=None)
Map one coordinate by a 1-D function of one coordinate.

Parameters
e dir (int (0,1 or 2))-The coordinate axis to be modified.

* func (callable)— Function taking a single float argument (the coordinate x) and re-
turning a float value: the new coordinate to replace the dir coordinate.

The function must be applicable to NumPy arrays, so it should only include numerical
operations and functions understood by the numpy module.

Often an inline lambda function is used, but a normally defined function will work as well.

e x(int(0,1,2), optional) - If provided, specifies the coordinate that is used as
argument in func. Default is to use the same as dir.

Returns Coords object — The input Coords where the dir coordinate has been mapped through
the specified function.

See also:

map () apply a general 3-dimensional mapping function

mapd () map one coordinate by a function of the distance to a point
Notes

See also example SplineSurface

6.1. Autoloaded modules 115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples
>>> Coords (np.arange (4) .reshape(-1,1)) .mapl (l,lambda x:0.1%x,0)
Coords ([[0. , 0. , 0.1,

[1., 0.1, 0.1,

[2., 0.2, 0.1,

[3., 0.3, 0.11)

mapd (dir, func, point=(0.0, 0.0, 0.0), dist=None)
Map one coordinate by a function of the distance to a point.

Parameters

e dir (int (0, 1 or 2)) — The coordinate that will be replaced with func (d),
where d is calculated as the distance to point.

e func (callable)-Function taking one float argument (distance to point) and returning
a float: the new value for the dist coordinate. dir coordinate.

The function must be applicable to NumPy arrays, so it should only include numerical
operations and functions understood by the numpy module.

Often an inline lambda function is used, but a normally defined function will work as well.
» point (float array_like (3,)) — The point to where the distance is computed.

e dist (int or tuple of ints (0, 1, 2))-The coordinate directions that are
used to compute the distance to point. The default is to use 3-D distances.

Examples

Map a regular 4x4 point grid in the xy-plane onto a sphere with radius 1.5 and center at the corner of the

grid.
>>> from .simple import regularGrid
>>> X = Coords (regularGrid([0.,0.],[1.,1.1,1[3,31))
>>> X.mapd(2,lambda d:np.sgrt (l.5%x%2-d*%2),X[0,0],[0,11)
Coords ([[[O. , 0. , 1.5 71,
[0.33, 0. , 1.4e6],
[0.67, 0. , 1.347,
r1. , 0. , 1.1211,
<BLANKLINE>
[r o. , 0.33, 1.467,
[0.33, 0.33, 1.4271,
[0.67, 0.33, 1.3 1,
r1. , 0.33, 1.0711,
<BLANKLINE>
([0 , 0.67, 1.34],
[0.33, 0.67, 1.3 1,
[0.67, 0.67, 1.171,
[1 , 0.67, 0.9 11,
<BLANKLINE>
(o 6. , 1. , 1.127,
[0.33, 1. , 1.071,
[0.67, 1. , 0.9 71,
r . , 1. , 0.5 71101

copyAxes (i, j, other=None)
Copy the coordinates along the axes j to the axes i.

116

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Parameters

e i(int (0,1 2) or tuple of ints (0,1,2))- One or more coordinate axes
that should have replaced their coordinates by those along the axes j.

* j(int (0,1 2) or tuple of ints (0,1,2))- One or more axes whose co-
ordinates should be copied along the axes i. j should have the same type and length as
i.

* other (Coords object, optional) - If provided, this is the source Coords for
the coordinates. It should have the same shape as self. The default is to take the coords
from self.

Returns Coords object — A Coords where the coordinates along axes i have been replaced by
those along axes j.

Examples
>>> X = Coords ([[1],[2]11).trl(2,5)
>>> X
Coords ([[1., 0., 5.7,
[2., 0., 5.11)
>>> X.copyAxes (1,0)
Coords ([[1., 1., 5.7,
[2., 2., 5.11)
>>> X.copyAxes ((0,1), (1,0))
Coords ([[O., 1., 5.7,
[0., 2., 5.11)
>>> X.copyAxes ((0,1,2),(1,2,0))
Coords ([[O., 5., 1.7,
[0., 5., 2.11)

swapAxes (1, j)
Swap two coordinate axes.

Parameters
e i(int (0,1,2))— First coordinate axis
e j(int (0,1,2))-Second coordinate axis

Returns Coords — A Coords with interchanged i and j coordinates.

Warning: Coords.swapAxes merely changes the order of the elements along the last axis of the
ndarray. This is quite different from numpy.ndarray.swapaxes (), which is inherited by the
Coords class. The latter method interchanges the array axes of the ndarray, and will not yield a valid
Coords object if the interchange involves the last axis.

Notes

This is equivalent with self.copyAxes ((i,3), (3, 1))

Swapping two coordinate axes has the same effect as mirroring against the bisector plane between the two
axes.

6.1.

Autoloaded modules 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes

pyFormex Documentation, Release 2.2

Examples

>>> X = Coords (np.arange (6) .reshape(-1,3))
>>> X

Coords([[O., 1., 2.]

[3., 4., 5.11)
>>> X.swapAxes (2,0)

Coords ([[2., 1., 0.1,

[5., 4., 3.11)
>>> X.swapaxes (1,0)
array ([[0., 3.1,

[1., 4.1,

[2., 5.11)

rollAxes (n=1)
Roll the coordinate axes over the given amount.

Parameters n (int)— Number of positions to roll the axes. With the default (1), the old axes
(0,1,2) become the new axes (2,0,1).

Returns Coords — A Coords where the coordinate axes of the points have been rolled over n
positions.

Notes

X.rollAxes (1) can also be obtained by X. copyAxes ((0,1,2), (2,0,1)). Itis also equivalent

with a rotation over -120 degrees around the trisectrice of the first quadrant.

Examples

>>> X = Coords ('0123")

>>> X

Coords ([[O., 0., 0.1,
[1., 0., 0.1,
r1., 1., 0.1,
[0., 1., 0.11)

>>> X.rollAxes (1)

Coords ([[0., 0., 0.1,
[o., 1., 0.7,
[0., 1., 1.1,
[0., 0., 1.11)

>>> X.rotate(120,axis=[1.,1.,1.1)

Coords([[O., 0., 0.1,
[-0., 1., -0.71,
[-0., 1., 1.1,
[-0., 0., 1.11)

projectOnPlane (n=2, P=(0.0, 0.0, 0.0))
Project a Coords on a plane.

Creates a parallel projection of the Coords on a plane.
Parameters

e n (int (0,1,2) or float array_like (3,)) — The normal direction to the plane on which to
project the Coords. If an int, it is a global axis.

118

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* P (float array_like (3,)) — A point in the projection plane, by default the global origin.

Returns Coords — The points of the Coords projected on the specified plane.

Notes
For projection on a plane parallel to a coordinate plane, it is far more efficient to specify the normal by an
axis number rather than by a three component vector.

This method will also work if any or both of P and n have the same shape as self, or can be reshaped to the
same shape. This will project each point on its individual plane.

See also example BorderExtension

Examples

>>> X = Coords (np.arange (6) .reshape(2,3))
>>> X.projectOnPlane (0,P=[2.5,0.,0.])
Coords ([[2.5, 1., 2.1,

[2.5, 4. , 5. 11)
>>> X.projectOnPlane([1.,1.,0.])
Coords ([[-0.5, 0.5, 2.]

]

[-0.5, 0.5, 5. 11])

projectOnSphere (radius=1.0, center=(0.0, 0.0, 0.0))
Project a Coords on a sphere.

Creates a central projection of a Coords on a sphere.
Parameters
e radius (float, optional)- The radius of the sphere, default 1.

e center (float array_like (3,), optional) — The center of the sphere. The default is the
origin of the global axes.

Returns Coords — A Coords with the input points projected from the center of the sphere onto
its surface.

Notes

Points coinciding with the center of the sphere are returned unchanged.

This is a central projection from the center of the sphere. For a parallel projection on a spherical surface,
use map (). See the Examples there.

Examples

>>> X = Coords([[x,x,1.] for x in range(l,4)])
>>> X

Coords ([[1., 1., 1.1,

[2., 2., 1.1,

[3., 3., 1.11)
>>> X.projectOnSphere ()
Coords ([[0.58, 0.58, 0.58],

(continues on next page)

. Autoloaded modules 119

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

(continued from previous page)

projectOnCylinder (radius=1.0, dir=0, center=[0.0, 0.0, 0.0])
Project the Coords on a cylinder with axis parallel to a global axis.

Given a cylinder with axis parallel to a global axis, the points of the Coords are projected from the axis
onto the surface of the cylinder. The default cylinder has its axis along the x-axis and a unit radius. No
points of the Coords should belong to the axis.

Parameters
e radius (float, optional)- The radius of the sphere, default 1.
e dir(int (0,1,2), optional)- The global axis parallel to the cylinder’s axis.

* center (float array_like (3,), optional) — A point on the axis of the cylinder. Default is
the origin of the global axes.

Returns Coords — A Coords with the input points projected on the specified cylinder.
Notes

This is a projection from the axis of the cylinder. If you want a parallel projection on a cylindrical surface,
you can use map ().

Examples
>>> X = Coords([[x,x,1.] for x in range(l,4)])
>>> X
Coords ([[1., 1., 1.7,
[2., 2., 1.1,
[3., 3., 1.11)
>>> X.projectOnCylinder ()
Coords([([1. , 0.71, 0.717],
[2. , 0.89, 0.45],
[3. , 0.95, 0.3211)

projectOnSurface (S, dir=0, missing="e’, return_indices=False)
Project a Coords on a triangulated surface.

The points of the Coords are projected in the specified direction dir onto the surface S. If a point has
multiple projecions in the direction, the one nearest to the original is returned.

Parameters
* S(TriSurface)— A triangulated surface

e dir (int (0,1,2) or float array_like (3,)) — The direction of the projection, either a global
axis direction or specified as a vector with three components.

e missing('o’, 'r' or 'e')-Specifies how to treat cases where the projective line
does not intersect the surface:
— ’0’: return the original point,

— ’r’: remove the point from the result. Use return_indices = True to find out which
original points correspond with the projections.

120 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

— ’e’: raise an exception (default).

e return_indices (bool, optional)-IfTrue, alsoreturns the indices of the points
that have a projection on the surface.

Returns

* X (Coords) — A Coords with the projections of the input points on the surface. With
missing="0’, this will have the same shape as the input, but some points might not actually
lie on the surface. With missing="r’, the shape will be (npoints,3) and the number of points
may be less than the input.

e ind (int array, optional) — Only returned if return_indices is True: an index in the input
Coords of the points that have a projection on the surface. With missing="r’, this gives the
indices of the orginal points corresponding with the projections. With missing="0’, this
can be used to check which points are located on the surface. The index is sequential, no
matter what the shape of the input Coords is.

Examples

>>> from pyformex import simple

>>> S = simple.sphere() .scale(2) .trl([0.,0.,0.2])

>>> x = pattern('0123")

>>> print (x)

[[0. 0. 0.]
[1. 0. 0.]

[1. 1. 0.]

[0. 1. 0.1]

>>> xp = x.projectOnSurface(S,[0.,0.,1.1)

>>> print (xp)
([0. -1.

0. -1.

1. -1.

1. -1.

o N U1 0o

0
[1.
[1.
[0

isopar (eltype, coords, oldcoords)
Perform an isoparametric transformation on a Coords.

This creates an isoparametric transformation Isopar object and uses it to transform the input Coords. It
is equivalent to:

Isopar (eltype, coords,oldcoords) .transform(self)

See Isopar for parameters.

addNoise (rsize=0.05, asize=0.0)
Add random noise to a Coords.

A random amount is added to each individual coordinate of the Coords. The maximum difference of the
coordinates from their original value is controled by two parameters rsize and asize and will not exceed
asize+rsizexself.maxsize ().

Parameters

* rsize (float) — Relative size of the noise compared with the maximum size of the
input Coords.

e asize (float)— Absolute size of the noise

. Autoloaded modules 121

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples

>>> X = Coords (np.arange (6) .reshape(2,3))

>>> print ((abs(X.addNoise(0.1) - X) < 0.1 % X.sizes()).all())
True

replicate (n, dir=0, step=1.0)
Replicate a Coords n times with a fixed translation step.

Parameters
e n (int)— Number of times to replicate the Coords.

e dir (int (0,1,2) or float array_like (3,)) — The translation vector. If an int, it specifies a
global axis and the translation is in the direction of that axis.

* step (float)—1If dir is an int, this is the length of the translation. Else, it is a multi-
plying factor applied to the translation vector.

Returns Coords — A Coords with an extra first axis with length n. The new shape thus becomes
(n,) + self.shape. The first component along the axis O is identical to the original
Coords. Each following component is equal to the previous translated over (dir;step), where
dir and step are interpreted just like in the t ransIate () method.

Notes

rep () is a convenient shorthand for replicate ().

Examples
>>> Coords ([0.,0.,0.]) .replicate(4,1,1.2)
Coords ([[0. , 0. , 0. 1,
[0., 1.2, 0.1,
[0. , 2.4, 0.1,
[0. , 3.6, 0. 11)
>>> Coords ([0.]) .replicate(3,0) .replicate(2,1)
Coords ([[[O., 0., 0.1,
[1., 0., 0.7,
[2., 0., 0.171,
<BLANKLINE>
[t 0., 1., 0.1,
1., 1., 0.1,
[2., 1., 0.110)
split ()

Split the Coords in blocks along first axis.

Returns list of Coords objects — A list of Coords objects being the subarrays takeb along the
axis 0. The number of objects in the list is self.shape[0] and each Coords has the
shape self.shape[l:].

Raises ValueError —If self.ndim < 2.

122 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

Examples

>>> Coords (np.arange (6) .reshape (2, 3)) .split ()
[Coords ([O., 1., 2.]1), Coords([3., 4., 5.1)1]

sort (order=(0, 1, 2))
Sort points in the specified order of their coordinates.

Parameters order (int (0,1,2) or tuple of ints (0,1,2)) — The order in
which the coordinates have to be taken into account during the sorting operation.

Returns int array — An index into the sequential point list self.points () thus that the
points are sorted in order of the specified coordinates.

Examples

>>> X = Coords([[5,3,0]1,1[2,4,31,12,3,31,105,6,211)
>>> X.sort ()

array ([2, , 0
>>> X.sort ((
1)
, 1, 31)

>>> X.sort

1
(
array ([0, 3
(
array ([0, 2

boxes (ppb=1, shift=0.5, minsize=1e-05)
Create a grid of equally sized boxes spanning the Coords.

A regular 3D grid of equally sized boxes is created enclosing all the points of the Coords. The size, position
and number of boxes are determined from the specified parameters.

Parameters

* ppb (int)— Average number of points per box. The box sizes and number of boxes will
be determined to approximate this number.

e shift (float (0.0 .. 1.0))- Relative shift value for the grid. Applying a shift
of 0.5 will make the lowest coordinate values fall at the center of the outer boxes.

e minsize (f1oat)— Absolute minimal size of the boxes, in each coordinate direction.
Returns

* ox (float array (3,)) — The minimal coordinates of the box grid.

* dx (float array (3,)) — The box size in the three global axis directions.

* nx (int array (3,)) — Number of boxes in each of the coordinate directions.

Notes

The primary purpose of this method is its use in the fuse () method. The boxes allow to quickly label
the points inside each box with an integer value (the box number), so that it becomes easy to find close
points by their same label.

Because of the possibility that two very close points fall in different boxes (if they happen to be close to a
box border), procedures based on these boxes are often repeated twice, with a different shift value.

. Autoloaded modules 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples

>>> X = Coords([[5,3,01,12,4,31,12,3,31,15,6,211)
>>> print (#X.boxes ())

[0.5 1.5 -1.5] [3. 3. 3.1 [2 2 2]
>>> print (» X.boxes (shift=0.1))

[1.7 2.7 -0.3] [3. 3. 3.1 [2 2 2]

>>> X = Coords([[1.,1.,0.],([1.001,1.,0.],[1.1,1.,0.11)
>>> print (#X.boxes ())

[0.98 0.98 -0.02] [0.03 0.03 0.03] [4 1 1]

fuse (ppb=1, shift=0.5, rtol=1e-05, atol=1e-08, repeat=True)
Find (almost) coinciding points and return a compressed set.

This method finds the points that are very close to each other and replaces them with a single point. See
Notes below for explanation about the method being used and the parameters being used. In most cases,
atol and rtol are probably the only ones you want to change from the defaults. Two points are considered
the same if all their coordinates differ less than the maximum of atol and rtol * self.maxsize().

Parameters

* ppb (int, optional)-— Average number of points per box. The box sizes and number
of boxes will be determined to approximate this number.

e shift (float (0.0 .. 1.0), optional)-Relative shift value for the box grid.
Applying a shift of 0.5 will make the lowest coordinate values fall at the center of the outer
boxes.

e rtol (float, optional)— Relative tolerance used when considering two points for
fusing.

e atol (float, optional)- Absolute tolerance used when considering two points for
fusing.

e repeat (bool, optional)—If True, repeat the procedure with a second shift value.
Returns

¢ coords (Coords object (npts,3)) — The unique points obtained from merging the very close
points of a Coords.

* index (int array) — An index in the unique coordinates array coords for each of the original
points. The shape of the index array is equal to the point shape of the input Coords (self.
pshape ()). All the values are in the range 0..npts.

Note: From the return values coords [index] will restore the original Coords (with accuracy equal to
the tolerance used in the fuse operation)

Notes

The procedure works by first dividing the 3D space in a number of equally sized boxes, with a average
population of ppb points. The arguments pbb and shift are passed to boxes () for this purpose. The
boxes are identified by 3 integer coordinates, from which a unique integer scalar is computed, which is
then used to sort the points. Finally only the points inside the same box need to be compared. Two points
are considered equal if all their coordinates differ less than the maximum of arol and rtol * self. maxsize().
Points considered very close are replaced by a single one, and an index is kept from the original points to
the new list of points.

124

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Running the procedure once does not guarantee finding all close nodes: two close nodes might be in
adjacent boxes. The performance hit for testing adjacent boxes is rather high, and the probability of
separating two close nodes with the computed box limits is very small. Therefore, the most sensible way
is to run the procedure twice, with a different shift value (they should differ more than the tolerance).
Specifying repeat=True will automatically do this with a second shift value equal to shift+0.25.

Because fusing points is a very important and frequent step in many geometrical modeling and conversion
procedures, the core part of this function is available in a C as well as a Python version, in the module
pyformex.lib.misc. The much faster C version will be used if available.

Examples

>>> X = Coords([[1.,1.,0.],([1.001,1.,0.],[1.1,1.,0.11)

>>> x,e = X.fuse(atol=0.01)

>>> print (x)

([1. 1. 0.]
[1.1 1. 0. 11

>>> print (e)

[0 0 1]

>>> np.allclose(X,x[e],atol=0.01)

True

unique (**kargs)
Returns the unique points after fusing.

This is just like fuse () and takes the same arguments, but only returns the first argument: the unique
points in the Coords.

adjust (**kargs)
Find (almost) identical nodes and adjust them to be identical.

This is like the fuse () operation, but it does not fuse the close neigbours to a single point. Instead it
adjust the coordinates of the points to be identical.

The parameters are the same as for the fuse () method.

Returns Coords — A Coords with the same shape as the input, but where close points now have
identical coordinates.

Examples

>>> X = Coords([[1.,1.,0.],[1.001,1.,0.],[1.1,1.,0.11)
>>> print (X.adjust (atol=0.01))

([1. 1. 0.]
[1. 1. 0.]
[1.1 1. 0. 1]

match (coords, **kargs)
Match points in another Coords object.

Find the points from another Coords object that coincide with (or are very close to) points of self. This
method works by concatenating the serialized point sets of both Coords and then fusing them.

Parameters

* coords (Coords) — The Coords object to compare the points with.

6.1. Autoloaded modules 125

pyFormex Documentation, Release 2.2

* xxkargs (keyword arguments) — Keyword arguments passed to the fuse ()
method.

Returns I-dim int array — The array has a length of coords.npoints(). For each point in coords
it holds the index of a point in self coinciding with it, or a value -1 if there is no matching
point. If there are multiple matching points in self, it is undefined which one will be returned.
To avoid this ambiguity, you can first fuse the points of self.

See also:

hasMatch (), fuse ()

Examples

>>> X = Coords ([[1.1,[2.]1,[3.1,[1.11)
>>> Y = Coords([[1.],[4.],[2.0000111)
>>> print (X.match(Y))

[0 -1 1]

hasMatch (coords, **kargs)

Find out which points are also in another Coords object.

Find the points from self that coincide with (or are very close to) some point of coords. This method is
very similar to match (), but does not give information about which point of self matches which point of
coords.

Parameters
* coords (Coords) — The Coords object to compare the points with.

* xxkargs (keyword arguments) — Keyword arguments passed to the fuse ()
method.

Returns int array — A 1-dim int array with the unique sorted indices of the points in self that
have a (nearly) matching point in coords.

Warning: If multiple points in self coincide with the same point in coords, only one index will be
returned for this case. To avoid this, you can fuse self before using this method.

See also:

match ()

Examples

>>> X = Coords ([[1.],
>>> Y = Coords ([[1.]
>>> print (X.hasMatch
[0 1]

(2.1,03.1,[1.11)
,[4.1,12.0000111)
(Y))

append (coords)

Append more coords to a Coords object.
The appended coords should have matching dimensions in all but the first axis.

Parameters coords (Coords object)— A Coords having a shape with shape [1:] equal
to self.shape[l:].

126

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Returns Coords — The concatenated Coords object (self,coords).

Notes

This is comparable to numpy . append (), but the result is a Coords object, the default axis is the first
one instead of the last, and it is a method rather than a function.

See also:

concatenate () concatenate a list of Coords

Examples

>>> X = Coords ([[1],([2]11)
>>> Y = Coords ([[3],[4]11])
>>> X.append(Y)

Coords ([[1., 0., 0.1,
[2., 0., 0.1,
[3., 0., 0.1,
[4., 0., 0.11)

classmethod concatenate (L, axis=0)
Concatenate a list of Coords objects.

Class method to concatenate a list of Coords along the given axis.

Parameters L (1ist of Coords objects)— The Coords objects to be concatenated. All
should have the same shape except for the length of the specified axis.

Returns Coords — A Coords with at least two dimensions, even when the list contains only a
single Coords with a single point, or is empty.

Raises ValueError — If the shape of the Coords in the list do not match or if concatenation
along the last axis is attempted.

Notes

This is a class method. It is commonly invoked as Coords.concatenate, and if used as a method on
a Coords object, that object will not be included in the list.

It is like numpy . concatenate () (which it uses internally), but makes sure to return Coords object,
and sets the first axis as default instead of the last (which would not make sense).

See also:

append () append a Coords to self

Examples

>>> X = Coords([1.,1.,0.1)
>>> Y = Coords([[2.,2.,0.],1[3.,3.,0.11)
>>> print (Coords.concatenate ([X,Y]))
[[1. 1. 0.]
[2. 2. 0.]

(continues on next page)

6.1. Autoloaded modules 127

https://numpy.org/doc/stable/reference/generated/numpy.append.html#numpy.append
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate

pyFormex Documentation, Release 2.2

(continued from previous page)

[3. 3. 0.1]
>>> print (Coords.concatenate ([X,X]))
([1. 1. 0.]
[1. 1. 0.1]
>>> print (Coords.concatenate ([X]))
([1. 1. 0.1]
>>> print (Coords.concatenate ([Y]))
([2. 2. 0.]
[3. 3. 0.1]
>>> print (X.concatenate ([Y]))
([2. 2. 0.]
[3. 3. 0.1]
>>> Coords.concatenate([])
Coords ([], shape=(0, 3))
>>> Coords.concatenate ([[Y], [Y]],axis=1)
Coords ([[[2., 2., 0.1,
[3., 3., 0.1,
(2., 2., 0.1,
[3., 3., 0.111)
classmethod fromstring (s, sep="", ndim=3, count=-1)

Create a Coords object with data from a string.

This uses numpy . fromstring () to read coordinates from a string and creates a Coords object from

them.

Parameters

* s (str)— A string containing a single sequence of float numbers separated by whitespace

and a possible separator string.

* sep (str)— The separator used between the coordinates. If not a space, all extra whites-

pace is ignored.

e ndim (int,)— Number of coordinates per point. Should be 1, 2 or 3 (default). If 1, resp.

2, the coordinate string only holds x, resp. X,y values.

e count (int, optional) — Total number of coordinates to read. This should be a

multiple of ndim. The default is to read all the coordinates in the string.

Returns Coords — A Coords object with the coordinates read from the string.

Raises ValueError —If count was provided and the string does not contain that exact number

of coordinates.

Notes

For writing the coordinates to a string, numpy . tostring () can be used.

Examples

>>> Coords.fromstring('4 0 0 3 1 2 6 5 7")
Coords ([[4., 0., 0.1,
[3., 1., 2.1,
[6., 5., 7.11)
>>> Coords.fromstring ('l 2 3 4 5 6',ndim=2)

(continues on next page)

128 Chapter 6. pyFormex reference manual

https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

(continued from previous page)

Coords ([[1., 2., 0.1,
[3., 4., 0.]
[5 0

.7 .7

classmethod fromfile (fil, **kargs)

Read a Coords from file.

This uses numpy . fromfile () to read coordinates from a file and create a Coords. Coordinates X, Y
and Z for subsequent points are read from the file. The total number of coordinates on the file should be a
multiple of 3.

Parameters
e fil (str or file)-Ifstr, itis afile name. An open file object can also be passed
* xxkargs — Arguments to be passed to numpy . fromfile ().
Returns Coords — A Coords formed by reading all coordinates from the specified file.
Raises ValueError — If the number of coordinates read is not a multiple of 3.

See also:

numpy . fromfile () read an array to file

numpy .tofile () write an array to file

interpolate (X, div)

Create linear interpolations between two Coords.

A linear interpolation of two equally shaped Coords X and Y at parameter value t is a Coords with the
same shape as X and Y and with coordinates givenby X » (1.0-t) + Y * t.

Parameters
* X (Coords object)— A Coords object with same shape as self.

e div (seed) — This parameter is sent through the arraytools.smartSeed () to gen-
erate a list of parameter values for which to compute the interpolation. Usually, they are
in the range 0.0 (self) to 1.0 (X). Values outside the range can be used however and result
in linear extrapolations.

Returns Coords — A Coords object with an extra (first) axis, containing the concatenation of the
interpolations of self and X at all parameter values in div. Its shape is (n,) + self.shape, where
n is the number of values in div.

Examples

>>> X = Coords ([0]
1

)

>>> Y = Coords([1])
>>> X.interpolate (Y, 4)
Coords ([[O. , 0. , O. 1,

[0.25, 0. , 0. 171,

[0o.5, 0. , 0. 1,

[0.75, 0. , 0. 1,

1. , 0. , 0. 10
>>> X.interpolate(Y, [-0.1, 0.5, 1.25])
Coords ([[-0.12 , 0. , O. 1,

(continues on next page)

6.1.

Autoloaded modules 129

https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

(continued from previous page)

[0.5, O , 0. 1,

[1.25, O , 0. 11)
>>> X.interpolate(Y, (4,0.3,0.2))
Coords ([[O. , 0. , 0. 1,

[0.212, 0. , 0. 1,

[0.47, O , 0. 1,

[0.75, O , 0. 1,

[1. , 0 , 0. 11

convexHull (dir=None, return_mesh=False)
Return the 2D or 3D convex hull of a Coords.

Parameters

e dir(int (0,1,2), optional)-Ifprovided, itis one if the global axes and the 2D
convex hull in the specified viewing direction will be computed. The default is to compute
the 3D convex hull.

e return_mesh (bool, optional)-IfTrue, returns the convex hull as a Me sh object
instead of a Connectivity.

Returns

Connectivity or Mesh — The default is to return a Connectivity table containing the
indices of the points that constitute the convex hull of the Coords. For a 3D hull, the Con-
nectivity has plexitude 3, and eltype ‘tri3’; for a 2D hull these are respectively 2 and ‘line2’.
The values in the Connectivity refer to the flat points list as obtained from points ().

If return_mesh is True, a compacted Mesh is returned instead of the Connectivity. For a 3D
hull, the Mesh will be a TriSurface, otherwise it is a Mesh of ‘line2’ elements.

The returned Connectivity or Mesh will be empty if all the points are in a plane for the 3D
version, or an a line in the viewing direction for the 2D version.

Notes

This uses SciPy to compute the convex hull. You need to have SciPy version 0.12.0 or higher. On
Debian/Ubuntu-likes install package ‘python3-scipy’.

See also example ConvexHull.

rot (angle, axis=2, around=None, angle_spec=0.017453292519943295)
Return a copy rotated over angle around axis.

Parameters

* angle (float or float array_like (3,3)) — If a float, it is the rotation angle, by default in de-
grees, and the parameters (angle, axis, angel_spec) are passed to rotationMatrix ()
to produce a (3,3) rotation matrix. Alternatively, the rotation matrix may be directly pro-
vided in the angle parameter. The axis and angle_spec are then ignored.

* axis (int (0,1,2) or float array_like (3,)) — Only used if angle is a float. If provided, it
specifies the direction of the rotation axis: either one of 0,1,2 for a global axis, or a vector
with 3 components for a general direction. The default (axis 2) is convenient for working
with 2D-structures in the x-y plane.

* around (float array_like (3,)) — If provided, it specifies a point on the rotation axis. If
not, the rotation axis goes through the origin of the global axes.

130 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

* angle_spec (float, at.DEG or RAD, optional) - Only used if angle is a
float. The default (at. DEG) interpretes the angle in degrees. Use RAD to specify the angle
in radians.

Returns Coords — The Coords rotated as specified by the parameters.

Note: rot () is a convenient shorthand for rotate ().

See also:

translate () translate a Coords
affine () rotate and translate a Coords

arraytools.rotationMatrix () create arotation matrix for use in rotate ()

Examples

>>> X = Coords('0123")

>>> print (X.rotate (30))
[[O. 0. 0. 1
[0.87 0.5 0. 1]
[0.37 1.37 0.]
[-0.5 0.87 0.

]
>>> print (X.rotate (3
[[O. 0. 0.]
[1. 0. 0.]
[1. 0.87 0.5]
[0. 0.87 0.5 1]
>>> print (X.rotate (30,axis=0,around=[0.,0.5,0.1))
[[O. 0.07 -0.25]
[1. 0.07 -0.25]
[1. 0.93 0.25]
[0. 0.93 0.25]]

>>> m = at.rotationMatrix (30,axis=0)
>>> print (X.rotate (m))

[[0.]

0.
1.
1
0

O O O O ~
o O O

[
(
[

o o
~ J

]
.5]
5 1]

trl (dir, step=1.0, inplace=False)
Return a translated copy of the Coords object.

Translate the Coords in the direction dir over a distance step * at.length(dir).
Parameters

e dir (int (0,1,2) or float array_like (...,3)) — The translation vector. If an int, it specifies a
global axis and the translation is in the direction of that axis. If an array_like, it specifies
one or more translation vectors. If more than one, the array should be broadcastable to the
Coords shape: this allows to translate different parts of the Coords over different vectors,
all in one operation.

* step (float)—1If dir is an int, this is the length of the translation. Else, it is a multi-
plying factor applied to dir prior to applying the translation.

Returns Coords — The Coords translated over the specified vector(s).

. Autoloaded modules 131

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Note: trl () is aconvenient shorthand for translate ().

See also:

centered () translate to center around origin

Coords.align () translate to align bounding box

Examples

>>> x = Coords([1.,1.,1.1)
>>> print (x.translate (1))

[1. 2. 1.]

>>> print (x.translate(1,1.))

[1. 2. 1.]

>>> print (x.translate([0,1,071))
[1. 2. 1.]

>>> print (x.translate([0,2,0]1,0.5))
[1. 2. 1.]
>>> x = Coords (np.arange (4) .reshape(2,2,1))

>>> x
Coords ([[[O., 0., 0.7,
[1., 0., 0.11,
<BLANKLINE>
[r 2., 0., 0.1,
[3., 0., 0.111)

Coords ([[[10., -5., 0.

>>> x.translate([[10.,-5.,0.1,[020.,4.,0.11)
]
[21., 4., 0.1]

<BLANKLINE>
[r12., -5., 0.1,
[23., 4., 0.111)

translate with broadcasting

rep (n, dir=0, step=1.0)

Replicate a Coords n times with a fixed translation step.

Parameters

* n (int)— Number of times to replicate the Coords.

e dir (int (0,1,2) or float array_like (3,)) — The translation vector. If an int, it specifies a
global axis and the translation is in the direction of that axis.

* step (float)—1If dir is an int, this is the length of the translation. Else, it is a multi-

plying factor applied to the translation vector.

Returns Coords — A Coords with an extra first axis with length n. The new shape thus becomes
(n,) + self.shape. The first component along the axis O is identical to the original
Coords. Each following component is equal to the previous translated over (dir;step), where
dir and step are interpreted just like in the t ranslate () method.

Notes

rep () is a convenient shorthand for replicate ().

132

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples
>>> Coords ([0.,0.,0.]) .replicate(4,1,1.2)
Coords ([[0. , 0. , 0.1,

[o., 1.2, 0.1,

[o. , 2.4, 0.1,

[0., 3.6, 0.11)
>>> Coords ([0.]) .replicate(3,0) .replicate(2,1)
Coords ([[[O., 0., 0.7,

1., 0., 0.7,

[2., 0., 0.11,
<BLANKLINE>

[r 0., 1., 0.7,

[1., 1., 0.1,

[2., 1., 0.111)

Functions defined in module coords
coords.otherAxes (i)
Return all global axes except the specified one
Parameters i (int (0, 1, 2))— One of the global axes.
Returns

* tuple of ints — Two ints (j,k) identifying the other global axes in such order that (i,j,k) is a
right-handed coordinate system.

* >>> otherAxes(1)
* (2,0

coords .bbox (objects)
Compute the bounding box of a list of objects.

The bounding box of an object is the smallest rectangular cuboid in the global Cartesian coordinates, such that
no points of the objects lie outside that cuboid. The resulting bounding box of the list of objects is the smallest
bounding box that encloses all the objects in the list.

Parameters objects (object or list of objects)— One or more (list or tuple) objects
that have a method bbox () returning the object’s bounding box as a Coords with two points.

Returns Coords — A Coords object with two points: the first contains the minimal coordinate values,
the second has the maximal ones of the overall bounding box encompassing all objects.

Notes

Objects that do not have a bbhox () method or whose bbox () method returns invalid values, are silently
ignored.

See also:

Coords.bbox () compute the bounding box of a Coords object.

6.1. Autoloaded modules 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

pyFormex Documentation, Release 2.2

Examples

>>> bbox ((Coords([-1.,1.,0.1),Coords ([2,-31)))
Coords ([[-1., -3., 0.1,
[2., 1., 0.11)

coords .bboxIntersection (A, B)
Compute the intersection of the bounding box of two objects.

Parameters
* A(first object)— An object having a bbox method returning its boundary box.
* B(second object)— Another object having a bbox method returning its boundary box.

Returns Coords (2,3) — A Coords specifying the intersection of the bounding boxes of the two
objects. This again has the format of a bounding box: a coords with two points: one with the
minimal and one with the maximal coordinates. If the two bounding boxes do not intersect, an
empty Coords is returned.

Notes

Since bounding boxes are Coords objects, it is possible to pass computed bounding boxes as arguments. The
bounding boxes are indeed their own bounding box.

Examples

>>> A = Coords([[-1.,1.1,[2,-311)
>>> B = Coords ([[0.,1.],104,211)
>>> C = Coords([[0.,2.],14,211)

>>> bbox ((A,B))
Coords ([[-1., -3., 0 ,
[4., 2., 0.11)

The intersection of the bounding boxes of A and B degenerates into a line segment parallel to the x-axis:

>>> bboxIntersection (A, B)
Coords ([[O., 1., 0.]
[2., 1., 0.]

1)

The bounding boxes of A and C do not intersect:

>>> pbboxIntersection (A,C)
Coords ([], shape=(0, 3))

coords.origin ()
ReturnCreate a Coords holding the origin of the global coordinate system.

Returns
* Coords (3,) — A Coords holding a single point with coordinates (0.,0.,0.).

o Exmaples

* >>> origin()

134 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

e Coords([0., 0., 0.])

coords.pattern (s, aslist=False)
Generate a sequence of points on a regular grid.

This function creates a sequence of points that are on a regular grid with unit step. These points are created
from a simple string input, interpreting each character as a code specifying how to move from the last to the
next point. The start position is always the origin (0.,0.,0.).

Currently the following codes are defined:
e 0 or +: goto origin (0.,0.,0.)
* 1..8: move in the x,y plane
* 9 or.: remain at the same place (i.e. duplicate the last point)
e A.I: same as 1..9 plus step +1. in z-direction
* a..i: same as 1..9 plus step -1. in z-direction
¢ /: do not insert the next point
Any other character raises an error.

When looking at the x,y-plane with the x-axis to the right and the y-axis up, we have the following basic moves:
1 = East, 2 = North, 3 = West, 4 = South, 5 =NE, 6 =NW, 7=SW, 8 = SE.

Adding 16 to the ordinal of the character causes an extra move of +1. in the z-direction. Adding 48 causes an
extra move of -1. This means that ‘ABCDEFGHI’, resp. ‘abcdefghi’, correspond with ‘123456789’ with an
extra z +/-= 1. This gives the following schema:

z+=1 z unchanged z —= 1
F B E 6 2 5 £ b e
\ \ \

\ | \
C—-I-—-A 3-———=9-—--1 c-————1i--—-a
\ | \

\ | \

G D H 7 4 8 g d h

The special character ‘/’ can be put before any character to make the move without inserting the new point. The
string should start with a ‘0’ or ‘9’ to include the starting point (the origin) in the output.

Parameters
* s (str)— A string with characters generating subsequent points.

* aslist (bool, optional)-—If True, the points are returned as lists of integer coordi-
nates instead of a Coords object.

Returns Coords or list of ints — The default is to return the generated points as a Coords. With
aslist=True however, the points are returned as a list of tuples holding 3 integer grid coor-

dinates.
See also:

xpattern ()

6.1. Autoloaded modules 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Examples

>>> pattern('0123")

Coords ([[O., 0., 0.1,
(1., 0., 0.1,
1., 1., 0.1,
[0., 1., 0.11)

>>> pattern('2'x4)

Coords ([[O., 1., 0.],
[0., 2., 0.1,
[0., 3., 0.1,
[0., 4., 0.11)

coords .xpattern (s, nplex=1)
Create a Coords object from a string pattern.

Create a sequence of points using pattern (), and groups the points by nplex to create a Coords with shape
(-1,nplex, 3).

Parameters
* s (str)—The string to pass to pattern () to produce the sequence of points.

* nplex (int)— The number of subsequent points to group together to create the structured
Coords.

Returns Coords — A Coords with shape (-1,nplex,3).

Raises ValueError — If the number of points produced by the input string s is not a multiple of

nplex.

Examples
>>> print (xpattern('.12.34",3))
[[[0. 0. 0.]

[1. 0. 0.]

[1. 1. 0.1]
<BLANKLINE>

[[1. 1. 0.]

[0. 1. 0.]

[0. 0. 0.111

coords.align (L, align, offset=(0.0, 0.0, 0.0))
Align a list of geometrical objects.

Parameters

* L(list of Coords or Geometry objects)— A list of objects that have an ap-
propriate align method, like the Coords and Geomet ry (and its subclasses).

* align (str)— A string of three characters, one for each coordinate direction, that define
how the subsequent objects have to be aligned in each of the global axis directions:

— ’-: align on the minimal coordinate value
— ’4’ : align on the maximal coordinate value

— ‘0’ : align on the middle coordinate value

’I’ [align the minimum value on the maximal value of the] previous item

136 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Thus the string ' | ——"' will juxtapose the objects in the x-direction, while aligning them on
their minimal coordinates in the y- and z- direction.

» offset (float array_like (3,), optional) — An extra translation to be given to each subse-
quent object. This can be used to create a space between the objects, instead of juxtaposing
them.

Returns list of objects — A list with the aligned objects.

Notes

See also example Align.

See also:

Coords.align () align a single object with respect to a point.

6.1.2 formex — Formex algebra in Python

This module defines the Formex class, which is one of the two major classes for representing geometry in pyFormex
(the other one being Mesh). The Formex class represents geometry as a simple 3-dim Coords array. This allows an
implementation of most functionality of Formex algebra with a consistent and easy to use syntax.

Classes defined in module formex

class formex.Formex (data=None, prop=None, eltype=None)

A structured collection of points in 3D space.

A Formex is a collection of points in a 3D cartesian space. The collection is structured into a set of elements all
having the same number of points (e.g. a collection triangles all having three points).

As the Formex class is derived from Geomet ry, a Formex object has a coords attribute which is a Coords
object. In a Formex this is always an array with 3 axes (numbered 0,1,2). Each scalar element of this array
represents a coordinate. A row along the last axis (2) is a set of 3 coordinates and represents a point (aka. node,
vertex).

For simplicity’s sake, the current implementation only deals with points in a 3-dimensional space. This means
that the length of axis 2 always equals 3. The user can create Formices (plural of Formex) in a 2-D space,
but internally these will be stored with 3 coordinates, by adding a third value 0. All operations work with 3-D
coordinate sets. However, it is easy to extract only a limited set of coordinates from the results, permitting to
return to a 2-D environment

A plane of the array along the axes 2 and 1 is a set of points: we call this an element. This can be thought of
as a geometrical shape (2 points form a line segment, 3 points make a triangle, ...) or as an element in Finite
Element terms. But it really is up to the user as to how this set of points is to be interpreted. He can set an
element type on the Formex to make this clear (see below).

The whole Formex then represents a collection of such elements. The Formex concept and layout is made more
clear in Formex data model in the pyFormex tutorial.

Additionally, a Formex may have a property set, which is an 1-D array of integers. The length of the array is
equal to the length of axis 0 of the Formex data (i.e. the number of elements in the Formex). Thus, a single
integer value may be attributed to each element. It is up to the user to define the use of this integer (e.g. it
could be an index in a table of element property records). If a property set is defined, it will be copied together
with the Formex data whenever copies of the Formex (or parts thereof) are made. Properties can be specified at

6.1.

Autoloaded modules 137

pyFormex Documentation, Release 2.2

creation time, and they can be set, modified or deleted at any time. Of course, the properties that are copied in
an operation are those that exist at the time of performing the operation.

Finally, a Formex object can have an element type, because plexitude alone does not uniquely define what the
geometric entities are, and how they should be rendered. By default, pyFormex will render plex-1 as points,
plex-2 as line segments, plex-3 as triangles and any higher plexitude as polygons. But the user could e.g. set
eltype = 'tet4' on aplex-4 Formex, and then that would be rendered as tetraeders.

Parameters

* data (Formex, Coords, array_like or string) — Data to initalize the coordinates attribute
coords in the Formex. See more details below.

* prop (int array_like, optional) — 1-dim int array with non-negative element property num-
bers. If provided, setProp () will be called to assign the specified properties.

* eltype (str| Element Type, optional) — The element type of the geometric entities (el-
ements). If provided, it should be an Element Type instance or the name of such an
instance. If not provided, the pyFormex default is used when needed and is based on the
plexitude: 1 = point, 2 = line segment, 3 = triangle, 4 or more is a polygon.

The Formex coordinate data can be initialized by another Formex, by a Coords, by a 1D, 2D or 3D array_like,
or by a string to be used in one of the pattern functions to create a coordinate list. If 2D coordinates are given, a
3-rd coordinate 0.0 is added. Internally, Formices always work with 3D coordinates. Thus:

F = Formex([[[1,0],[0,111,(10,1],[1,2]1]1])

creates a Formex with two elements, each having 2 points in the global z-plane. The innermost level of brackets
group the coordinates of a point, the next level groups the points in an element, and the outermost brackets group
all the elements of the Formex. Because the coordinates are stored in an array with 3 axes, all the elements in a
Formex must contain the same number of points. This number is called the plexitude of the Formex.

A Formex may be initialized with a string instead of the numerical coordinate data. The string has the format
#:data where # is a leader specifying the plexitude of the elements to be created. The data part of the string
is passed to the pattern () function to generate a list of points on a regular grid of unit distances. Then the
generated points are grouped in elements. If # is a number it just specifies the plexitude:

F = Formex ('3:012034")

This creates six points, grouped by 3, thus leading to two elements (triangles). The leader can als be the character
1. In that case each generated point is turned into a 2-point (line) element, by connecting it to the previous point.
The following are two equivalent definitions of (the circumference of) a triangle:

F = Formex ('2:010207")
G = Formex ('1:127")

Note: The legacy variant of initializing a Formex with a string without the leading ‘#:” is no longer accepted.

Because the Formex class is derived from Geomet ry, it has the following attributes:
* coords,
* prop,
e attrib,
e fields.

Furthermore it has the following properties and methods that are applied on the coords attribute.

138

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* xz,

e points (),

e bbox (),

e center(),

* bboxPoint (),

e centroid(),

* sizes (),

e dsize(),

* bsphere (),

* bboxes (),

e inertia(),

* principalCS(),

* principalSizes (),

* distanceFromPlane (),
e distanceFromLine (),
e distanceFromPoint (),
e directionalSize(),

* directionalWidth(),
e directionalExtremes ().

Also, the following Coords transformation methods can be directly applied to a Formex object. The return
value is a new Formex identical to the original, except for the coordinates, which are transformed by the specified
method. Refer to the corresponding Coords method for the usage of these methods:

e scale(),

e adjust (),

e translate(),
* centered(),
* align(),

e rotate(),

* shear(),

e reflect(),

e affine(),

6.1. Autoloaded modules 139

pyFormex Documentation, Release 2.2

e toCS (),

e fromCS (),

¢ transformCS (),

* position(),

e cylindrical (),

e hyperCylindrical (),
e toCylindrical(),

e spherical (),

e superSpherical (),
* toSpherical (),

* bump (),

e flare(),

* map (),

* mapl (),

* mapd(),

e copyAxes (),

¢ swapAxes (),

* rollAxes (),

* projectOnPlane (),
* projectOnSphere (),
e projectOnCylinder(),
e isopar(),

e addNoise (),

e rot (),

e trl().

Examples

>>> print (Formex ([[0,1],1[2,311))

{10.0,1.0,0.01, [2.0,3.0,0.0]}

>>> print (Formex ('1:0123"))

{ro.o0,0.0,0.01, f1.0,0.0,0.01, [1.0,1.0,0.0], [0.0,1.0,0.01}
>>> print (Formex ('4:0123"))

{rc.0,0.0,0.0; 1.0,0.0,0.0; 1.0,1.0,0.0; 0.0,1.0,0.07]%}

>>> print (Formex ('2:0123"))

{rc.o0,0.0,0.0; 1.0,0.0,0.03, f(1.0,1.0,0.0; 0.0,1.0,0.07%}

>>> F = Formex ('1:1234")

>>> print (F)

{f0.0,0.0,0.0; 1.0,0.0,0.0], [1.0,0.0,0.0; 1.0,1.0,0.01, (1.0,1.0,0.0; 0.0,1.
-0,0.0], [0.0,1.0,0.0; 0.0,0.0,0.07}
>>> print (F.info())

(continues on next page)

140 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

(continued from previous page)

shape (4, 2, 3)
bbox[lo] = [0. 0. 0.]
bbox[hi] = [1. 1. 0.]
center = [0.5 0.5 0]
maxprop = -1
<BLANKLINE>
>>> F.nelems ()
4
>>> F.level ()
1
>>> F.x
array ([[0., 1.7,

[1., 1.1,

[1., 0.1,

[0., 0.11)
>>> F.center ()
Coords ([0.5, 0.5, 0. 1)
>>> F.bboxPoint ('+++")
Coords ([1., 1., 0.1)

The Formex class defines the following attributes above the ones inherited from Geometry:
eltype
Type None or Element Type

shape
Return the shape of the Formex.

The shape of a Formex is the shape of its coords array.

Returns ruple of ints — A tuple (nelems, nplex, ndim).

Examples

>>> Formex ('1:1234") .shape
(4, 2, 3)
>>> Formex ('1:1234") .shape
(4, 1, 3)

nelems ()
Return the number of elements of the Formex.

The number of elements is the length of the first axis of the coords array.

Returns int — The number of elements in the Formex

Examples

>>> Formex ('1:1234") .nelems ()
4

nplex ()
Return the plexitude of the Formex.

The plexitude is the number of points per element. This is the length of the second axis of the coords array.

6.1. Autoloaded modules 141

pyFormex Documentation, Release 2.2

Examples:
1. unconnected points,
2. straight line elements,
3. triangles or quadratic line elements,

4. tetraeders or quadrilaterals or cubic line elements.

Returns int — The plexitude of the elements in the Formex

Examples

>>> Formex ('1:1234") .nplex()
2

npoints ()
Return the number of points in the Formex.

This is the product of the number of elements in the Formex with the plexitude of the elements.

Returns int — The total number of points in the Formex

Notes

ncoords is an alias for npoints

Examples

>>> Formex ('1:1234") .npoints ()
8

ncoords ()
Return the number of points in the Formex.

This is the product of the number of elements in the Formex with the plexitude of the elements.

Returns int — The total number of points in the Formex

Notes

ncoords is an alias for npoints

Examples

>>> Formex ('1:1234") .npoints ()
8

elType ()
Return the element type of the Formex.

Returns Element Type or None — If an element type was defined for the Formex, returns the
corresponding ElementType; else returns None.

142 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

See also:

elName () Return the name of the ElementType

Examples

>>> Formex ('1:1234") .elType ()
>>> Formex ('1:1234",eltype="1line2") .elType ()
Line2

elName ()
Return the element name of the Formex.

Returns str or None — If an element type was defined for the Formex, returns the name of the
ElementType ; else returns None.

See also:

elType () Return the ElementType

Examples
>>> Formex ('1:1234") .elName ()
>>> Formex ('1:1234",eltype="1ine2") .elName ()
'line2’
level ()

Return the level (dimensionality) of the Formex.

The level or dimensionality of a geometrical object is the minimum number of parametric directions re-
quired to describe the object. Thus we have the following values:

0: points 1: lines 2: surfaces 3: volumes

Because the geometrical meaning of a Formex is not always defined, the level may be unknown. In that
case, -1 is returned.

If the Formex has an ‘eltype’ set, the value is determined from the Element database. Else, the value is
equal to the plexitude minus one for plexitudes up to 3, and equal to 2 for any higher plexitude (since the
default is to interprete a higher plexitude as a polygon).

Returns int — An int 0..3 giving the number of parametric dimensions of the geometric entities
in the Formex.

Examples

>>> Formex ('1:123") .1level ()
>>> Formex ('1:123") .level ()
>>> Formex ('3:123") .level ()

>>> Formex ('3:123",eltype="'1ine3") .level ()

6.1. Autoloaded modules 143

pyFormex Documentation, Release 2.2

view ()
Return the Formex coordinates as a numpy array (ndarray).

Returns a view to the Coords array as an ndarray. The use of this method is deprecated: use the xyz

property instead.

element (i)
Return element i of the Formex.

Parameters i (int) - The index of the element to return.

Returns Coords object — A Coords with shape (self.nplex(), 3)

Examples

>>> Formex ('1:12") .element (0)
Coords ([[0., 0., 0.1,

(1., 0., 0.11)
>>> Formex ('1:12") .select (0)
Formex ([[[0., 0., 0.7,
[1., 0., 0.111)
point (i,))

Return point j of element i.
Parameters
* i (int)—The index of the element from which to return a point.
* j (int)— The index in element i of the point to be returned.

Returns Coords object — A Coords with shape (3,), being point j of element i.

Examples

>>> Formex ('1:12") .point (0, 1)
Coords ([1., 0., 0.1])

coord (i,], k)
Return coordinate k of point j of element i.

Parameters
e i (int)— The index of the element from which to return a point.
* j (int)— The index in element i of the point for which to return a coordinate.
* k (int)— The index in point (i,j) of the coordinate to be returned.

Returns float — The value of coordinate k of point j of element i.

Examples

>>> Formex ('1:12") .coord(0,1,0)
1.0

144 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

centroids ()
Return the centroids of all elements of the Formex.

The centroid of an element is the point whose coordinates are the average values of all points of the
element.

Returns Coords — A Coords object with shape (nelems (), 3), holding the centroids of all the
elements in the Formex.

Examples
>>> Formex ('1:123") .centroids ()
Coords ([[0.5, 0. , 0. 1,

[1. , 0.5, 0.1,

[0.5, 1., 0. 11)

toMesh (**kargs)
Convert a Formex to a Mesh.

Converts a geometry in Formex model to the equivalent Mesh model. In the Mesh model, all points with
nearly identical coordinates are fused into a single point (using fuse ()), and elements are defined by a
connectivity table with integers pointing to the corresponding vertex.

Parameters kargs — Keyword parameters to be passed to fuse ().

Returns Mesh — A Mesh representing the same geometrical model as the input Formex. Property
numbers prop and element type e 1t ype are also set to the same values as in the Formex.

Examples
>>> F = Formex ('l1:12")
>>> F
Formex ([[[O., 0., 0.7,
[1., 0., 0.11,
<BLANKLINE>
[[f 1., 0., 0.1,
[1., 1., 0.111)

>>> M = F.toMesh /()

>>> print (M)

Mesh: nnodes: 3, nelems: 2, nplex: 2, level: 1, eltype: line2
BBox: [O. 0. 0.1, [1. 1. 0.]
Size: [1. 1. 0.]
Length: 2.0

toSurface ()
Convert a Formex to a Surface.

Tries to convert the Formex to a TriSurface. First the Formex is converted to a Mesh, and then the resulting
Mesh is converted to a TriSurface.

Returns TriSurface — A TriSurface if the conversion is successful, else an error is raised.
Notes

The conversion will only work if the Formex represents a surface and its elements are triangles or quadri-
laterals. If the plexitude of the Formex is 3, the element type is ‘tri3’ or None, the returned TriSurface

6.1.

Autoloaded modules 145

pyFormex Documentation, Release 2.2

is equivalent with the Formex. If the Formex contains higher order triangles or quadrilaterals, The new
geometry will be an approximation of the input. Any other input geometry will fail to convert.

Examples

>>> F = Formex ('3:.12.34")

>>> F

Formex ([[[O., 0., 0.1,
(1., 0., 0.1,
(1., 1., 0.11,

<BLANKLINE>

[(r ., 1., 0.1,
[0., 1., 0.1,
[0., 0., 0.110)
>>> print (F.toSurface())
Mesh: nnodes: 4, nelems: 2, nplex: 3, level: 2, eltype: tri3

BBox: [O. 0. 0.1, [1. 1. 0.]
Size: [1. 1. 0.]
Area: 1.0

info ()

Return information about a Formex.
Returns
* A multiline string with some basic information about the Formex

e its shape, bounding box, center and maxprop.

Examples

>>> print (Formex ('3:.12.34") .info())
shape = (2, 3, 3)

bbox[lo] = [0. 0. 0.]

bbox[hi] = [1. 1. 0.]

center = [0.5 0.5 0.]

maxprop = -1

<BLANKLINE>

classmethod point2str (point)
Return a string representation of a point

Parameters elem (float array_like (3,)) — The coordinates of athe point to return as a string.

Returns str — A string with the representation of a single point.

Examples

>>> Formex.point2str([l.,2.,3.])
'1.0,2.0,3.0"

classmethod element2str (elem)
Return a string representation of an element

Parameters elem (float array_like (nplex,3)) — The element to return as a string.

Returns str — A string with the representation of a single element.

146 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Examples

>>> Formex.element2str ([[1.,2.,3.],[4.,5.,6.]11)
'(1.0,2.0,3.0; 4.0,5.0,6.0]"

asFormex ()
Return string representation of all the coordinates in a Formex.

Returns str — A single string with all the coordinates of the Formex. Coordinates are separated
by commas, points are separated by semicolons and grouped between brackets, elements are
separated by commas and grouped between braces.

Examples

>>> F = Formex([[[1,0],([0,1]],([[0,1],[1,2]111)
>>> F.asFormex ()
'‘{r1.0,0.0,0.0; 0.0,1.0,0.01, [(0.0,1.0,0.0; 1.0,2.0,0.07}"

asFormexWithProp ()
Return string representation as Formex with properties.

Returns str — The string representation as done by asFormex (), followed by the words “with
prop” and a list of the properties.

Examples

>>> F = Formex ([[[1,0],[0,111,[[0,11,[1,2111]).setProp([1,2])
>>> F.asFormexWithProp ()
'{f12.0,0.0,0.0; 0.0,1.0,0.01, [0.0,1.0,0.0; 1.0,2.0,0.0]1} with prop [1 2]'

asCoords ()
Return string representation as a Coords.

Returns str — A multiline string with the coordinates of the Formex as formatted by the
meth:coords.Coords.__repr__ method.

Examples

>>> F = Formex ([[[1,0],
>>> print (F.asCoords())
Formex ([[[1., 0., 0.]
[0., 1., 0.11,
<BLANKLINE>
([0., 1.,
[1., 2.,

(0,111, 000,11,01,2]111)

asarray ()
Return string representation as a numpy array.

Returns str — A multiline string with the coordinates of the Formex as formatted by the
meth:coords.Coords.__str___ method.

6.1.

Autoloaded modules 147

pyFormex Documentation, Release 2.2

Examples
>>> F = Formex ([[[1,01,[0,111,1([(0,211,11,2111)
>>> print (F.asarray())
[f(f 1. 0. 0.]
[0. 1. 0.]]
<BLANKLINE>
[f 0. 1. 0.]
[1. 2. 0.]1]1]

classmethod setPrintFunction (func)

Choose the default formatting for printing formices.

This sets how formices will be formatted by a print statement. Currently there are two available methods:
asFormex, asarray. The user may create his own formatting method. This is a class method. It should be
used asfollows: Formex.setPrintFunction(Formex.asarray).

classmethod concatenate (Flist)

Concatenate a list of Formices.

All the Formices in the list should have the same plexitude, If any of the Formices has property numbers,
the resulting Formex will inherit the properties. In that case, any Formices without properties will be
assigned property 0. If all Formices are without properties, so will be the result. The eltype of the resulting
Formex will be that of the first Formex in the list.

Parameters Flist (1ist of Formex objects)— A listof Formices all having the same
plexitude.

Returns Formex — The concatenation of all the Formices in the list. The number of elements in
the Formex is the sum of the number of elements in all the Formices.

Note: This is a class method, not an instance method. It is commonly invoked as Formex.
concatenate.

See also:

__add__ () implements concatenation as simple addition (F+G)

Examples

>>> F = Formex([l.,1.,1.]).setProp(l)

>>> G = Formex([2.,2.,2.])

>>> H = Formex([3.,3.,3.]) .setProp(3)

>>> K = Formex.concatenate ([F,G,H])

>>> print (K.asFormexWithProp())

{r1.0,1.0,1.01, [2.0,2.0,2.0], [3.0,3.0,3.0]} with prop [1 0 3]
add__ (F)

Concatenate two formices.
Parameters F (Formex)— A Formex with the same plexitude as self.

Returns Formex — The concatenation of the Formices self and F.

148

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Note: This method implements the addition operation and allows to write simple expressions as F+G
to concatenate the Formices F and G. When concatenating many Formices, concatenate () is more
efficient however, because all the Formices in the list are concatenated in one operation.

See also:

concatenate () concatenate a list of Formices

Examples

>>> = Formex ([1l.,1.,1.]).setProp(l)
>>> = Formex ([2.,2.,2.1])

>>> = Formex ([3.,3.,3.]) .setProp(3)

>>>

{[1.

rint (K.asFormexWithProp ())

F
G
H

>>> K = F+G+H
p
0,1.0,1.01, [2.0,2.0,2.0], [3.0,3.0,3.0]} with prop [1 0 3]

split (n=1)
Split a Formex in Formices containing n elements.

Parameters n (int)— Number of elements per Formex

Returns list of Formices — A list of Formices all containing n elements, except for the last, which
may contain less.

Examples

>>> Formex ('1:111") .split(2)
[Formex ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
[(r 1., 0., 0.1,
[2., 0., 0.11D)
[3., 0., 0.1]

selectNodes (idx)
Extract a Formex holding only some points of the parent.

This creates subentities of all elements in the Formex. The returned Formex inherits the properties of the
parent.

Parameters idx (1ist of ints)-— Indices of the points to retain in the new Formex.
Notes

For example, if F is a plex-3 Formex representing triangles, the sides of the triangles are given by
F.selectNodes([0,1]) + F.selectNodes([1,2]) + F.selectNodes([2,0])

See also:

select () Select elements from a Formex

6.1. Autoloaded modules 149

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> F = Formex ('3:.12.34")
>>> print (F.selectNodes ((0,1)))
{f0.0,0.0,0.0; 1.0,0.0,0.0J], [1.0,1.0,0.0; 0.0,1.0,0.01}

asPoints ()
Reduce the Formex to a simple set of points.

This removes the element structure of the Formex.

Returns Formex — A Formex with plexitude 1 and number of elements (points) equal to self.
nelems () » self.nplex (). The Formex shares the coordinate data with the parent.
If the parent has properties, they are multiplexed so that each point has the property of its
parent element. The eltype of the returned Formex is None.

See also:

points () returns the list of points as a Coords object

Examples

>>> F = Formex('3:.12.34",prop=[1,2]) .asPoints ()

>>> print (F.asFormexWithProp())

{t0.0,0.0,0.01, [(1.0,0.0,0.0], f[1.0,1.0,0.0], [1.0,1.0,0.071, [0.0,1.0,
—~0.0], [0.0,0.0,0.0]} with prop [1 1 1 2 2 2]

remove (F, permutations="roll’, rtol=1e-05, atol=1e-05)
Remove elements that also occur in another Formex.

Parameters
* F (Formex) — Another Formex with the same plexitude as self.
e permutations (bool, optional)-If True, elements consisting of the
e is also the subtraction of the current Formex with F. (This)-

* are only removed if they have the same nodes in the same
(Elements)—

e order. —

Examples

>>> F = Formex ('l:111")

>>> G = Formex ('1l:1")

>>> print (F.remove (G))

{f+.0,0.0,0.0;, 2.0,0.0,0.01, [2.0,0.0,0.0; 3.0,0.0,0.071}

removeDuplicate (permutations="all’, rtol=1e-05, atol=1e-08)
Return a Formex which holds only the unique elements.

Parameters

* permutations (str)— Defines which permutations of the element points are allowed
while still considering the elements equal. Possible values are:

150 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

— ’none’: no permutations are allowed: elements must have matching points at all loca-
tions. This is the default;

— ’roll’: rolling is allowed. Elements that can be transformed into each other by rolling
their points are considered equal;

— ’all’: any permutation of the same points will be considered an equal element.

e rtol (float, optional)- Relative tolerance used when considering two points be-
ing equal.

* atol (float, optional) — Absolute tolerance used when considering two points
being equal.

Notes

rtol and atol are passed to coords.Coords. fuse () to find equal points. permutation is
passed to arraytools.unique () to remove the duplicates.

Examples

>>> F = Formex('1l:111") + Formex('l:1")

>>> print (F.removeDuplicate())

{r0.0,0.0,0.0; 1.0,0.0,0.03, f[1.0,0.0,0.0;, 2.0,0.0,0.01, [2.0,0.0,0.0;
-~ 3.0,0.0,0.01}

test (nodes="all’, dir=0, min=None, max=None, atol=0.0)
Flag elements having coordinates between min and max.

This is comparable with coords. Coords. test () but operates at the Formex element level. It tests
the position of one or more points of the elements of the F'o rme x with respect to one or two parallel planes.
This is very useful in clipping a Formex in a specified direction. In most cases the clipping direction is one
of the global coordinate axes, but a general direction may be used as well.

Testing along global axis directions is highly efficient. It tests whether the corresponding coordinate is
above or equal to the min value and/or below or equal to the max value. Testing in a general direction tests
whether the distance to the min plane is positive or zero and/or the distance to the max plane is negative or
ZEero.

Parameters

* nodes (int, list of ints or string) — Specifies which points of the ele-
ments are taken into account in the tests. It should be one of the following:

— asingle point index (smaller than self.nplex()),
— alist of point numbers (all smaller than < self.nplex()),
— one of the special strings: ‘all’, ‘any’, ‘none’.

The default (‘all’) will flag the elements that have all their nodes between the planes x=min
and x=max, i.e. the elements that fall completely between these planes.

* dir (asingle int or a float array_like (3,)) — The direction in which to measure distances.
If an int, it is one of the global axes (0,1,2). Else it is a vector with 3 components. The
default direction is the global x-axis.

e min (float or point-like, optional) — Position of the minimal clipping
plane. If dir is an int, this is a single float giving the coordinate along the specified global
axis. If dir is a vector, this must be a point and the minimal clipping plane is defined by

6.1. Autoloaded modules 151

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

this point and the normal vector dir. If not provided, there is no clipping at the minimal
side.

* max (float or point-like.)—Position of the maximal clipping plane. If dir is an
int, this is a single float giving the coordinate along the specified global axis. If dir is a
vector, this must be a point and the maximal clipping plane is defined by this point and the
normal vector dir. If not provided, there is no clipping at the maximal side.

* atol (float)— Tolerance value added to the tests to account for accuracy and rounding
errors. A min test will be ok if the point’s distance from the min clipping plane is > -atol
and/or the distance from the max clipping plane is < atol. Thus a positive atol widens the
clipping planes.

Returns [/-dim bool array — Array with length self.nelems () flagging the elements that
pass the test(s). The return value can directly be used as an index in select () or cse-
lect to obtain a Formex with the elements satisfying the test or not. Or you can use np.
where (result) [0] to get the indices of the elements passing the test.

Raises ValueError: At least one of min or max have to be specified — If neither min nor max are
provided.

See also:

select () return only the selected elements

cselect () return all but the selected elements

Examples

>>> F = Formex ('1:1122")

>>> print (F)

{r0.0,0.0,0.0; 1.0,0.0,0.01, [1.0,0.0,0.0; 2.0,0.0,0.071, [2.0,0.0,0.0;
- 2.0,1.0,0.01, [2.0,1.0,0.0; 2.0,2.0,0.01}

>>> F.test (min=0.0,max=1.0)

array ([True, False, False, False])

>>> F.test (nodes=[0],min=0.0,max=1.0)

array ([True, True, False, False])

>>> F.test (dir=[1.,-1.,0.],min=[1.,1.,0.1)

array ([False, True, True, False])

>>> F.test (nodes='any',dir=[1.,-1.,0.],min=[1.,1.,0.1)
array ([True, True, True, Truel])

shrink (factor)
Scale all elements with respect to their own center.

Parameters factor (float) — Scaling factor for the elements. A value < 1.0 will shrink the
elements, while a facter > 1.0 will enlarge them.

Returns Formex — A Formex where each element has been scaled with the specified factor in
local axes with origin at the element’s center.

Notes

This operation is called ‘shrink’ because it is commonly used with a factor smaller that 1 (often around
0.9) to draw an exploded view where touching elements are disconnected.

152 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples
>>> Formex ('1:12") .shrink (0.8)
Formex ([[[0.1, 0. , 0. 1,
[0.9, 0., 0. 11,
<BLANKLINE>
[1., 0.1, 0.1,
[1. , 0.9, 0. 110

circulizel ()
Transforms the first octant of the 0-1 plane into 1/6 of a circle.

Points on the 0-axis keep their position. Lines parallel to the 1-axis are transformed into circular arcs. The
bisector of the first quadrant is transformed in a straight line at an angle Pi/6. This function is especially
suited to create circular domains where all bars have nearly same length. See the Diamatic example.

reverse ()
Return a Formex where all elements have been reversed.

Reversing an element means reversing the order of its points.

Returns Formex — A Formex with same shape, where the points of all elements are in reverse
order.

Notes

This is equivalent to self.selectNodes (np.arange (self.nplex()-1,-1,-1)).

Examples

>>> F = Formex ('l:11")
>>> F.reverse ()

Formex ([[[1., 0., 0.1,
[0., 0., 0.171,
<BLANKLINE>
[{t 2., 0., 0.]

[1., 0., 0.110)

mirror (dir=0, pos=0.0, keep_orig=True)
Add a reflection in one of the coordinate directions.

This method is like reflect (), but by default adds the reflected part to the original.
Parameters
e dir (int (0, 1,2))- Global axis direction of the reflection (default O or x-axis).
* pos (float)— Offset of the mirror plane from origin (default 0.0)

* keep_orig (bool, optional) - If True (default) the original plus the mirrored ge-
ometry is returned. Setting it to False will only return the mirror, and thus behaves just
like reflect ().

Returns Formex — A Formex with the original and the mirrored elements, or only the mirrored
elements if keep_orig is False.

6.1.

Autoloaded modules 153

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Examples

>>> F = Formex ('1:11")
>>> F.mirror ()

Formex ([[[O., 0., 0.]

[1., 0., 0.11,
<BLANKLINE>

[r 1., 0., 0.1,

[2., 0., 0.11,
<BLANKLINE>

[l 0., 0., 0.1,

[-1., 0., 0.11,
<BLANKLINE>

[[71-1 O'I O']I
[-2., 0., 0.111)
>>> F.mirror (keep_orig=False)

Formex ([[[O., 0., 0.1,
[-1., 0., 0.11,
<BLANKLINE>
[(-1., 0., 0.1,
[-2., 0., 0.111)

translatem (*args)
Multiple subsequent translations in axis directions.

Parameters xargs (one or more tuples (axis, step))—Eachargumentisa tuple
(axis, step) which will do a translation over a length step in the direction of the global axis
axis.

Returns Formex — The input Formex translated over the combined translation vector of the ar-
guments.

Notes

This function is especially convenient to translate over computed steps.

See also:

translate () translate a Formex

Examples

>>> F = Formex ('1:11")

>>> d = np.random.random(3)
np.allclose(F.translatem((0,d[0]), (2,d[2]), (1,d[1])) .coords,
—F.translate (d) .coords)

True

>>>

replicate (n, dir=0, step=1.0)
Create copies at regular distances along a straight line.

Parameters
* n (int)— Number of copies to create

e dir (int (0,1,2) or float array_like (3,)) — The translation vector. If an int, it specifies a
global axis and the translation is in the direction of that axis.

154

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* step (float)—1If dir is an int, this is the length of the translation. Else, it is a multi-
plying factor applied to the translation vector.

Returns Formex — A Formex with the concatenation of n copies of the original. Each copy is
equal to the previous one translated over a distance step * length (dir) in the direc-
tion dir. The first of the copies is equal to the original.

See also:

repm () replicate in multiple directions

replic2 () replicate in two directions with bias and taper

Examples
>>> Formex ('l:1'") .replicate(4,1)
Formex ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
[r 0., 1., 0.1,
[1., 1., 0.11,
<BLANKLINE>
[t 0., 2., 0.1,
[1., 2., 0.11,
<BLANKLINE>
[f 0., 3., 0.]

[1., 3., 0.11D1)

rep (n, dir=0, step=1.0)

Create copies at regular distances along a straight line.
Parameters
e n (int)— Number of copies to create

e dir (int (0,1,2) or float array_like (3,)) — The translation vector. If an int, it specifies a
global axis and the translation is in the direction of that axis.

* step (float)—1If dir is an int, this is the length of the translation. Else, it is a multi-
plying factor applied to the translation vector.

Returns Formex — A Formex with the concatenation of n copies of the original. Each copy is
equal to the previous one translated over a distance step » length (dir) in the direc-
tion dir. The first of the copies is equal to the original.

See also:

repm () replicate in multiple directions

replic2 () replicate in two directions with bias and taper

Examples
>>> Formex ('l:1") .replicate(4,1)
Formex ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
(continues on next page)
6.1. Autoloaded modules 155

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

(continued from previous page)

[0., 1., 0.1,
[1., 1., 0.11,
<BLANKLINE>
[0., 2., 0.1,
[1., 2., 0.11,
<BLANKLINE>
[[0., 3., 0.1,
[1., 3., 0.111)

repm (n, dir=(0, 1, 2), step=(1.0, 1.0, 1.0))
Repeatedly replication in different directions

This repeatedly applies replicate () a number of times. The parameters are lists of values like those
for replicate.

Parameters
* n(list of int)-— Number of copies to create in the subsequent replications.

e dir (list of int (0,1,2) or list of float array_like (3,)) — Subsequent translation vectors. See
replicate().

* step (1list of floats)— The step for the subsequent replications.

Returns Formex — A Formex with the concatenation of prod(n) copies of the original, translated
as specified by the dir and step parameters. The first of the copies is equal to the original.

Note: If the parameter lists n, dir, step have different lengths, the operation is executed only for the
shortest of the three.

See also:

replicate () replicate in a single direction

replic2 () replicate in two directions with bias and taper

Examples
>>> Formex ('l:1") .repm((2,2), (1,2))
Formex ([[[O., 0., 0.1,
1., 0., 0.11,
<BLANKLINE>
[r 0., 1., 0.7,
r1., 1., 0.11,
<BLANKLINE>
[r 0., 0., 1.7,
1., 0., 1.11,
<BLANKLINE>
[r 0., 1., 1.7,
[1., 1., 1.111)
>>> print (Formex ([origin()]) .repm((2,2)))
{r0.0,0.0,0.01, f[1.0,0.0,0.01, [0.0,1.0,0.0], [1.0,1.0,0.01}

replic (n, step=1.0, dir=0)
Return a Formex with n replications in direction dir with step.

156 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Note: This works exactly like replicate () but has another order of the parameters. It is kept for
historical reasons, but should not be used in new code.

replic2 (nl,n2,tl=1.0,12=1.0, d1=0, d2=1, bias=0, taper=0)
Replicate in two directions with bias and taper.

Parameters
* nl (int)— Number of replications in first direction
* n2 (int)— Number of replications in second direction
e t1 (float)— Step length in the first direction
* t2 (float)— Step length in the second direction
e dl (int) - Global axis of the first direction
e d2 (int)— Global axis of the second direction
* bias (float)— Extra translation in direction d1 for each step in direction d2

* taper (int)—Extra number of copies generated in direction d1 for each step in direction
d2

Note: If no bias nor taper is needed, the use of repm () is recommended.

See also:

replicate () replicate in a single direction

repm () replicate in multiple directions

Examples

>>> print (Formex ([origin()]) .replic2(2,2))

{to0.0,0.0,0.01, f[1.0,0.0,0.0], [0.0,1.0,0.0], [1.0,1.0,0.01}
>>> print (Formex ([origin()]) .replic2(2,2,bias=0.2))
{[0.0,0.0,0.071, I[1. 0,0 0,0.0], [(0.2,1.0,0.0], [1.2,1.0,0.071}
>>> print (Formex ([origin()]) .replic2(2,2,taper=-1))
{ro.0,0.0,0.01, [11.0,0.0,0.0], [0.0,1.0,0.07}

repliecm (n, step=(1.0, 1.0, 1.0), dir=(0, 1, 2))
Replicate in multiple global axis directions.

Note: This works exactly like repm () but has another order of the parameters. It is kept for historical
reasons, but should not be used in new code.

rosette (n, angle, axis=2, around=(0.0, 0.0, 0.0), angle_spec=0.017453292519943295, **kargs)
Create rotational replications of a Formex.

Parameters
* n (int)— Number of copies to create

* angle (f1oat)— Angle between successive copies.

6.1.

Autoloaded modules 157

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

* axis (int or (3,) float array_like) — The rotation axis. If an int one of 0,1,2, specifying
a global axis, or a vector with 3 components specifying an axis through the origin. The
returned matrix is 3D.

* around (float array_like (3,)) — If provided, it species a point on the rotation axis. If not,
the rotation axis goes through the origin of the global axes.

* angle_spec (float, DEG or RAD, optional) — The default (DEG) inter-
pretes the angle in degrees. Use RAD to specify the angle in radians.

Returns Formex — A Formex with n rotational replications with given angular step. The original
Formex is the first of the n replicas.

Examples
>>> Formex ('l:1'") .rosette(4,90.)
Formex ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
[r 0., 0., 0.7,
[0., 1., 0.11,
<BLANKLINE>
[r 6., 0., 0.7,
[-1., 0., 0.11,
<BLANKLINE>
[r 6., 0., 0.7,
[-0., -1., 0.111)
>>> Formex ('l:1") .rosette(3,90.,around=(0.,1.,0.))
Formex ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
(r 1., 1., 0.7,
r1., 2., 0.11,
<BLANKLINE>
[r 0., 2., 0.7,
[-1., 2., 0.111)

extrude (*args, **kargs)
Extrude a Formex along a straight line.

The Formex is extruded over a given length in the given direction. This operates by converting the Formex
to a Mesh, extruding the Mesh with the given parameters, and converting the result back to a Formex.

Parameters: see extrude ().
Returns

» Formex — The Formex obtained by extruding the input Formex over the given length in
direction dir, subdividing this length according

* to the seeds specified by dir. The plexitude of the result will be
* double that of the input.

* This method works by converting the Formex to a Mesh,

e using the Mesh.extrude () and then converting the result

* back to a Formex.

See also:

158 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

connect () create a higher plexitude Formex by connecting Formices

Examples
>>> Formex (origin()) .extrude (4,dir=0, length=3)
Formex ([[[0. , 0. , 0. 1,

[0.75, 0. , 0. 17,
<BLANKLINE>

[[0.75, 0. , 0. 1,

[1.5, 0. , 0. 17,
<BLANKLINE>

(1.5, 0. , 0. 1,

[2.25, 0. , 0. 171,
<BLANKLINE>

[[2.25, 0. , 0. 1,

[3. , 0. , 0. 11D

interpolate (G, div, swap=False)
Create linear interpolations between two Formices.

A linear interpolation of two equally shaped Formices F and G at parameter value t is an equally
shaped Formex H where each coordinate is obtained from: Hijk = Fijk + t * (Gijk-Fijk). Thus, a F.
interpolate (G, [0.,0.5,1.0]) will contain all elements of F and G and all elements with mean
coordinates between those of F and G.

Parameters
* G (Formex) — A Formex with same shape as self.

e div(int or list of floats)—Thelistof parameter values for which to compute
the interpolation. Usually, they are in the range 0.0 (self) to 1.0 (X). Values outside the
range can be used however and result in linear extrapolations.

If an int is provided, a list with (div+1) parameter values is used, obtained by divid-
ing the interval [0..1] into div equal segments. Then, specifying div=n is equivalent to
specifying div=np.arange (n+l1) /float (n)).

* swap (bool, optional)-If swap=True, the returned Formex will have the elements
of the interpolation Formices interleaved. The default is to return a simple concatenation.

Returns Formex — A Formex with the concatenation of all generated interpolations, if swap is
False (default). With swap=True, the elements of the interpolations are interleaved: first all
the first elements from all the interpolations, then all the second elements, etc. The elements
inherit the property numbers from self, if any. The Formex has the same eltype as self, if it
is set.

See also:
coords.Coords.interpolate ()

Notes

See also example Interpolate.

6.1. Autoloaded modules 159

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Examples

>>> F = Formex ([[[0.0,0.0,0.0],[1.0,0.0,0.0111)
>>> G = Formex([[[1.5,1.5,0.0],[4.0,3.0,0.0111)
>>> F.interpolate (G,div=3)

[
[
(-
Formex ([[[0. , 0. , 0. 1,
[1., 0 0
<BLANKLINE>
[T 0.5, 0.5, 0.1,
r2., 1., 0. 11,

<BLANKLINE>
(¢ 2., 1., 0.1,

[3., 2., 0.11,

<BLANKLINE>
[[1.5, 1.5, 0.1,

[4., 3., 0.111
>>> F = Formex ([[[0.0,0.0,0.011,([[1.0,0.0,0.0111)
>>> G = Formex ([[[1.5,1.5,0.0]],1[[4.0,3.0,0.0111)
>>> F.interpolate (G,div=3)
Formex ([[[0. , 0. , 0. 1171,
<BLANKLINE>

[1., 0., 0. 11,
<BLANKLINE>

[[0.5, 0.5, 0. 11,
<BLANKLINE>

[c2., 1., 0. 11,
<BLANKLINE>

(., 1., 0. 11,
<BLANKLINE>

[t 3., 2., 0.11,
<BLANKLINE>

[{ 1.5, 1.5, 0. 11,
<BLANKLINE>

[(r 4., 3., 0.11D
>>> F.interpolate (G,div=3, swap=True)

Formex ([[[0. , 0. , 0. 1171,
<BLANKLINE>

[[0.5, 0.5, 0. 11,
<BLANKLINE>

(1., 1., 0. 11,
<BLANKLINE>

[[1.5, 1.5, 0. 11,
<BLANKLINE>

rr 1., 0., 0. 11,
<BLANKLINE>

[r2., 1., 0. 11,
<BLANKLINE>

[r 3., 2., 0.11,
<BLANKLINE>

(r 4., 3., 0.111

subdivide (div)

Subdivide a plex-2 Formex at the parameter values in div.

Replaces each element of the plex-2 Formex (line segments) by a sequence of elementsobtained by subdi-
viding the Formex at the specified parameter values.

Parameters div (int or list of floats) — The list of parameter values at which to
subdivide the elements. Usually, they are in the range 0.0 to 1.0.

160

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

If an int is provided, a list with (div+1) parameter values is used, obtained by dividing the
interval [0..1] into div equal segments. Thus, specifying div=n is equivalent to specifying
div=np.arange (n+l)/float (n)).

Examples
>>> Formex ('l:1") .subdivide (4)
Formex ([[[O. , 0. , 0. 1,
[0.25, 0. , 0. 11,
<BLANKLINE>
[[0.25, 0. , 0. 1,
[o.5, 0. , 0. 11,
<BLANKLINE>
[6.5, 0. , 0. 1,
[0.75, 0. , 0. 171,
<BLANKLINE>
[T 0.75, 0. , 0. 1,
1. , 0. , 0. 111
>>> Formex ('l:1") .subdivide([-0.1,0.3,0.7,1.11)
Formex ([[[-0.1, 0. , 0. 1,
[0.3, 0., 0. 171,
<BLANKLINE>
[[0.3, 0., 0.1,
[0.7, 0., 0. 171,
<BLANKLINE>
[[0.7, 0., 0.1,
[1.1, 0., 0. 110

intersectionWithPlane (p, n, atol=0.0)
Compute the intersection of a Formex with a plane.

Note: This is currently only available for plexitude 2 (lines) and 3 (triangles).

Parameters
* p (array_like (3,)) — A point in the plane
* n (array_like (3,)) — The normal vector on the plane.

* atol (float) — A tolerance value: points whose distance from the plane is less than
atol are considered to be lying in the plane.

Returns Formex — A Formex of plexitude self.nplex()-1 holding the intersection with the plane
(p,n). For a plex-2 Formex (lines), the returned Formex has plexitude 1 (points). For a plex-3
Formex (triangles) the returned Formex has plexitude 2 (lines).

See also:

cutWithPlane () return parts of Formex after cutting with a plane

Examples

. Autoloaded modules 161

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

>>> Formex ('1:1212") .intersectionWithPlane([0.5,0.,0.1,[-1.,1.,0.1)

Formex ([[[0.5, 0. , 0. 11,
<BLANKLINE>

((1. , 0.5, 0. 11,
<BLANKLINE>

([1.5, 1., 0. 11,
<BLANKLINE>

(r 2., 1.5, 0. 111)
>>> Formex ('3:.12.34") .intersectionWithPlane([0.5,0.,0.]1,[1.,0.,0.1)
Formex ([[[0.5, 0. , 0. 1,
[0.5, 0.5, 0. 11,
<BLANKLINE>
[[0.5, 0.5, 0. 1,
[0.5, 1., 0. 111)

cutWithPlane (p, n, side=", atol=None, newprops=None)
Cut a Formex with the plane (p,n).

Note: This is currently only available for plexitude 2 (lines) and 3 (triangles).

Parameters
e p (array_like (3,)) — A point in the cutting plane.
* n (array_like (3,)) — The normal vector to the cutting plane.

e side(str, one of '', '+' or '-'")-—Specifies which side of the plane should
be returned. If an empty string (default), both sides are returned. If ‘+’ or ‘-°, only the part
at the positive, resp. negative side of the plane (as defined by its normal) is returned.

Returns

* Fpos (Formex) — Formex with the part of the Formex at the positive side of the plane. This
part is not returned is side=="-".

* Fneg (Formex) — Formex with the part of the Formex at the negative side of the plane.
This part is not returned is side=="+".

Notes
Elements of the input Formex that are lying completely on one side of the plane will return unaltered.
Elements that are cut by the plane are split up into multiple parts.
See also:
intersectionWithPlane () return intersection of Formex and plane
lengths ()
Compute the length of all elements of a 2-plex Formex.
The length of an element is the distance between its two points.

Returns float array (self-nelem(),) — An array with the length of each element.

Raises ValueError —If the Formex is not of plexitude 2.

162 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

Examples

>>> Formex ('1:127") .1lengths ()
array ([1. , 1. , 1.4171)

areas ()
Compute the areas of all elements of a 3-plex Formex.

The area of an element is the area of the triangle formed by its three points.
Returns float array (self.nelem(),) — An array with the area of each element.

Raises ValueError —If the Formex is not of plexitude 3.

Examples

>>> Formex ('3:.12.34") .areas ()
array ([0.5, 0.5])

volumes ()
Compute the volume of all elements of a 4-plex Formex.

The volume of an element is the volume of the tetraeder formed by its 4 points.
Returns float array (self.nelem(),) — An array with the volume of each element.

Raises ValueError —If the Formex is not of plexitude 4.

Examples

>>> Formex ('4:1641") .volumes ()
array ([0.17])

classmethod fromstring (s, sep="", nplex=1, ndim=3, count=-1)
Create a Formex reading coordinates from a string.

This uses the Coords . fromstring () method to read coordinates from a string and restructures them
into a Formex of the specified plexitude.

Parameters

* s (str)— A string containing a single sequence of float numbers separated by whitespace
and a possible separator string.

* sep (str, optional)— The separator used between the coordinates. If not a space,
all extra whitespace is ignored.

* nplex (int, optional)— Plexitude of the elements to be read.

* ndim (int, optional)— Number of coordinates per point. Should be 1, 2 or 3 (de-
fault). If 1, resp. 2, the coordinate string only holds x, resp. x,y values.

e count (int, optional) — Total number of coordinates to read. This should be a
multiple of ndim. The default is to read all the coordinates in the string.

Returns Formex — A Formex object of the given plexitude, with the coordinates read from the
string.

Raises ValueError —If count was provided and the string does not contain that exact number
of coordinates. If the number of points read is not a multiple of nplex.

. Autoloaded modules 163

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

Examples

>>> Formex.fromstring('4 0 0 3 1 2 6 5 7',nplex=3)
Formex ([[[4., 0., 0.]
[3., 1., 2.1,
[6., 5., 7.111)

4

classmethod fromfile (fil, nplex=1, **kargs)
Read the coordinates of a Formex from a file

This uses Coords.fromfile () to read coordinates from a file and create a Formex of the specified
plexitude. Coordinates X, Y and Z for subsequent points are read from the file. The total number of
coordinates on the file should be a multiple of 3.

Parameters
e £fil (str or file)-Ifstr, itis afile name. An open file object can also be passed
* nplex (int, optional)— Plexitude of the elements to be read.
* xxkargs — Arguments to be passed to numpy . fromfile ().

Returns Formex — A Formex object of the given plexitude, with the coordinates read from the
specified file.

Raises ValueError —If the number of coordinates read is not a multiple of 3 * nplex.

See also:

Coords. fromfile () read a Coords object from file

numpy . fromfile () read an array to file

Functions defined in module formex

formex.connect (Flist, nodid=None, bias=None, loop=False, eltype=None)
Return a Formex which connects the Formices in list.

Creates a Formex of any plexitude by combining corresponding points from a number of Formices.
Parameters

e Flist (1ist of Formices)— The Formices to connect. The number of Formices in
the list will be the plexitude of the newly created Formex. One point of an element in each
Formex is taken to create a new element in the output Formex.

* nodid(list of int, optional)- Listof pointindices to be used from each of the
input Formices. If provided, the list should have the same length as F1ist. The default is
to use the first point of each element.

* bias (list of int, optional)— Listof element bias values for each of the input
Formices. Element iteration in the Formices will start at this number. If provided,, the list
should have the same length as F1ist. The default is to start at element 0.

* loop (bool)—If False (default), element generation will stop when the first input Formex
runs out of elements. If True, element iteration in the shorted Formices will wrap around
until all elements in all Formices have been used.

Returns

Formex — A Formex with plexitude equal to 1en (F1ist) . Each element of the Formex consists
of a point from the corresponding element of each of the Formices in list. By default this is the

164 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

first point of that element, but a nodid list may specify another point index. Corresponding
elements in the Formices are by default those with the same element index; the bias argument
may specify another value to start the element indexing for each of the input Formices.

If loop is False (default), the number of elements is the minimum over all Formices of the
number of elements minus the corresponding bias. If loop is True, the number of elements is the
maximum of the number of elements of all input Formices.

Notes

See also example Connect.

Examples

>>> F = Formex ('1:1111")
>>> G = Formex ('1:222")
>>> connect ([F,G])

Formex ([[[1., 0., 0.1,

[0., 0., 0.17,
<BLANKLINE>

(r 2., 0., 0.1,

[o., 1., 0.171,

<BLANKLINE>
([3., 0., 0.1,

[0., 2., 0.110)
>>> connect ([F,G],nodid=[0,1])
Formex ([[[1., 0., 0.1,

[o., 1., 0.17,
<BLANKLINE>

(r 2., 0., 0.7,

[0., 2., 0.17,

<BLANKLINE>
[r 3., 0., 0.7,

[0., 3., 0.111)
>>> connect ([F,F],bias=[0,1])
Formex ([[[1., 0., 0.1,

[2., 0., 0.17,
<BLANKLINE>

[(r 2., 0., 0.7,

[3., 0., 0.17,

<BLANKLINE>
[r 3., 0., 0.7,

[4., 0., 0.11D)
>>> connect ([F,F],bias=[0,1], loop=True)
Formex ([[[1., 0., 0.1,

[2., 0., 0.17,
<BLANKLINE>

[(r 2., 0., 0.7,

[3., 0., 0.17,

<BLANKLINE>
[r 3., 0., 0.7,

[4., 0., 0.]1,

<BLANKLINE>
[{ 4., 0., 0.7,
[1., 0., 0.111)

6.1. Autoloaded modules

165

pyFormex Documentation, Release 2.2

formex.interpolate (self, G, div, swap=False)
Create linear interpolations between two Formices.

A linear interpolation of two equally shaped Formices F and G at parameter value t is an equally shaped Formex
H where each coordinate is obtained from: Hijk = Fijk + t * (Gijk-Fijk). Thus, a F.interpolate (G, [0.,
0.5,1.01) will contain all elements of F and G and all elements with mean coordinates between those of F

and G.

Parameters

* G (Formex) — A Formex with same shape as self.

e div (int or list of floats)- The list of parameter values for which to compute
the interpolation. Usually, they are in the range 0.0 (self) to 1.0 (X). Values outside the range

can be used however and result in linear extrapolations.

If an int is provided, a list with (div+1) parameter values is used, obtained by dividing the
interval [0..1] into div equal segments. Then, specifying div=n is equivalent to specifying

div=np.arange (n+l)/float (n)).

* swap (bool, optional) — If swap=True, the returned Formex will have the elements
of the interpolation Formices interleaved. The default is to return a simple concatenation.

Returns Formex — A Formex with the concatenation of all generated interpolations, if swap is False
(default). With swap=True, the elements of the interpolations are interleaved: first all the first
elements from all the interpolations, then all the second elements, etc. The elements inherit the
property numbers from self, if any. The Formex has the same eltype as self,, if it is set.

See also:

coords.Coords.interpolate ()

Notes

See also example Interpolate.

Examples
>>> F = Formex ([[[0.0,0.0,0.0],[1.0,0.0,0.0111)
>>> G = Formex ([[[1.5,1.5,0.0],[4.0,3.0,0.0111)
>>> F.interpolate (G,div=3)
Formex ([[[O. , 0. , 0. 1,

r1., 0., 0. 11,
<BLANKLINE>

[[0.5, 0.5, 0.1,

r2., 1., 0. 11,
<BLANKLINE>

(r .., 1., 0. 1,

[3., 2., 0.11,
<BLANKLINE>

[r 1.5, 1.5, 0. 7],

r4. , 3., 0. 110
>>> F = Formex([[[0.0,0.0,0.011,([[1.0,0.0,0.0111)
>>> G = Formex ([[[1.5,1.5,0.011,([[4.0,3.0,0.0111)
>>> F.interpolate (G,div=3)
Formex ([[[O. , 0. , 0. 11,
<BLANKLINE>

(r 1., 0., 0. 11,

(continues on next page)

166

. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

<BLANKLINE>

[[0.5, 0.5, 0. 11,
<BLANKLINE>

(r 2., 1., 0. 11,
<BLANKLINE>

(¢ 2., 1., 0. 171,
<BLANKLINE>

(r 3., 2., 0. 11,
<BLANKLINE>

([1.5, 1.5, 0. 11,
<BLANKLINE>

(r 4., 3., 0. 111
>>> F.interpolate (G,div=3, swap=True)
Formex ([[[O. , 0. , 0. 11,
<BLANKLINE>

[[0.5, 0.5, 0. 11,
<BLANKLINE>

(1., 1., 0. 11,
<BLANKLINE>

([1.5, 1.5, 0. 11,
<BLANKLINE>

[(r 1., 0. , 0. 11,
<BLANKLINE>

(r 2., 1., 0. 171,
<BLANKLINE>

([3., 2., 0. 11,
<BLANKLINE>

(r 4. , 3., 0.1101)

6.1.3 mesh — Finite element meshes in pyFormex.

This module defines the Mesh class, which can be used to describe discrete geometrical models like those used in
Finite Element models. It also contains some useful functions to create such models.

Classes defined in module mesh

class mesh.Mesh (coords=None, elems=None, prop=None, eltype=None)

A Mesh is a discrete geometrical model defined by nodes and elements.

The Mesh class is one of the two basic geometrical models in pyFormex, the other one being the Formex. Both
classes have a lot in common: they represent a collection of geometrical entities of the same type (e.g., lines,
or triangles, ...). The geometrical entities are also called ‘elements’, and the number of elements in the Mesh
is nelems (). The plexitude (the number of points in an element) of a Mesh is found from nplex (). Each
point has ndim=3 coordinates. While in a Formex all these points are stored in an array with shape (nelems,
nplex, 3), the Mesh stores the information in two arrays: the coordinates of all the points are gathered in a
single twodimensional array with shape (ncoords,3). The individual geometrical elements are then described by
indices into that array: we call that the connectivity, with shape (nelems, nplex).

This model has some advantages over the Formex data model:

* a more compact storage, because coordinates of coinciding points require only be stored once (and we
usually call the points node s);

* the single storage of coinciding points represents the notion of connections between elements (a Formex
to the contrary is always a loose collection of elements);

6.1. Autoloaded modules 167

pyFormex Documentation, Release 2.2

 connectivity related algorithms are generally faster;

* the connectivity info also allows easy identification of geometric subentities (entities of a lower level, like
the border lines of a surface).

The downside is that geometry generating and replicating algorithms are often far more complex and possibly
slower.

In pyFormex we therefore mostly use the Formex data model when creating, copying and replicating geometry,
but when we come to the point of needing connectivity related algorithms or exporting the geometry to file (and
to other programs), a Mesh data model usually becomes more appropriate. A Formex can be converted
into a Mesh with the :meth: Formex.toMesh method, while the Mesh. toFormex () method
performs the inverse conversion.

Parameters

* coords (Coords or other object.) — Usually, a 2-dim Coords object holding the coordi-
nates of all the nodes used in the Mesh geometry. See details below for different initializa-
tion methods.

* elems (Connectivity (nelems,nplex)) — A Connectivity object, defining the elements
of the geometry by indices into the coords Coords array. All values in elems should be in
the range 0 <= value < ncoords.

* prop (int array_like, optional) — 1-dim int array with non-negative element property num-
bers. If provided, setProp () will be called to assign the specified properties.

* eltype (str or Element Type, optional) — The element type of the geometric entities
(elements). This is only needed if the element type has not yet been set in the elems
Connectivity. See below.

A Mesh object can be initialized in many different ways, depending on the values passed for the coords and
elems arguments.

» Coords, Connectivity: This is the most obvious case: coords is a 2-dim Coords object holding the
coordinates of all the nodes in the Mesh, and elems isa Connectivity object describing the geometric
elements by indices into the coords.

* Coords, : If A Coords is passed as first argument, but no elems, the result is a Mesh of points, with
plexitude 1. The Connectivity will be constructed automatically.

» object with toMesh, : As a convenience, if another object is provided that has a t oMesh method and
elems is not provided, the result of the t oMesh method will be used to initialize both coords and
elems.

e None: If neither coords nor elems are specified, but eltype is, a unit sized single element Mesh of
the specified EIlement Type is created.

* Specifying no parameters at all creates an empty Mesh, without any data.

Setting the element type can also be done in different ways. If e lems is a Connectivity, it will normally already
have a element type. If not, it can be done by passing it in the eltype parameter. In case you pass a simple
array or list in the elems parameter, an element type is required. Finally, the user can specify an eltype to
override the one in the Connectivity. It should however match the plexitude of the connectivity data.

eltype should be one of the E1ement Type instances or the name of such an instance. If required but not
provided, the pyFormex default is used, which is based on the plexitude: 1 = point, 2 = line segment, 3 = triangle,
4 or more is a polygon.

A properly initialized Mesh has the following attributes:

coords
A 2-dim Coords object holding the coordinates of all the nodes used to describe the Mesh geometry.

168

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Type Coords (ncoords,3)

elems
A Connectivity object, defining the elements of the geometry by indices into the coords Coords array.
All values in elems should be in the range 0 <= value < ncoords.

The Connectivity also stores the element type of the Mesh.

Type Connectivity (nelems,nplex)

prop
Element property numbers. See geometry.Geometry.prop.

Type int array, optional

attrib
An Attributes object. See geometry.Geometry.attrib.

Type Attributes

fields
The Fields defined on the Mesh. See geometry.Geometry. fields.

Type OrderedDict

Note: The coords* attribute of a Mesh can hold points that are not used or needed to describe the Geometry.
They do not influence the result of Mesh operations, but only use up some memory. If their number becomes
large, you may want to free up that memory by calling the compact () method. Also, before exporting a Mesh
(e.g. to a numerical simulation program), you may want to compact the Mesh first.

Examples

Create a Mesh with four points and two triangle elements of type ‘tri3’.

>>> coords = Coords ('0123")
>>> elems = [[0,1,2], [0,2,3]]
>>> M = Mesh(coords,elems,eltype="tri3")

>>> print (M.report ())
Mesh: nnodes: 4, nelems: 2, nplex: 3, level: 2, eltype: tri3

BBox: [0. O0. 0.], [1. 1. 0.]
Size: [1 1. 0.]
Area: 1.0
Coords: [[O 0. 0.]
[1 0. 0.]
[1. 1. 0.]
[0. 1. 0.1]
Elems: [[0 1 2]
[0 2 3]]
>>> M.nelems (), M.ncoords(), M.nplex(), M.level(), M.elName ()
(2, 4, 3, 2, 'tri3")

And here is a line Mesh converted from of a Formex:

>>> Ml = Formex('l:11").toMesh ()

>>> print (Ml.report())

Mesh: nnodes: 3, nelems: 2, nplex: 2, level: 1, eltype: line2
BBox: [0. 0. 0.], [2. 0. 0.]
Size: [2. 0. 0.]

(continues on next page)

6.1. Autoloaded modules 169

pyFormex Documentation, Release 2.2

(continued from previous page)

Length: 2.0

Coords: [[O. 0. 0.]
[1. O 0.]
[2. O 0.1]
Elems: [[0 1]
[1 2]]

Indexing returns the full coordinate set of the element(s):

>>> M1[0]
Coords ([[O., 0., 0.1,
[1., 0., 0.11)

The Mesh class inherits from Geomet ry and therefore has all the coordinate transform methods defined there
readily available:

>>> M2 = Ml.rotate(90)
>>> print (M2.coords)

[l 0. 0. 0.]
[0. 1. 0.]
[0. 2. 0.]11]
eltype

Return the element type of the Mesh.

Returns elements.Element Type — The eltype attribute of the e 1 ems attribute.

Examples

>>> M = Mesh(eltype="tri3")

>>> M.eltype

Tri3

>>> M.eltype = 'line3'

>>> M.eltype

Line3

>>> print (M)

Mesh: nnodes: 3, nelems: 1, nplex: 3, level: 1, eltype: line3
BBox: [0. 0. 0.], [1. 1. 0.]
Size: [1. 1. 0.]

Length: 1.0

One cannot set an element type with nonmatching plexitude:

>>> M.eltype = 'quad4'
>>> M.eltype
'plex3!

setEltype (eltype=None)
Set the eltype from a character string.

Parameters eltype (str or Element Type, optional) — The element type to be set in the
elems Connectivity. It is either one of the ElementType instances defined in elements.py, or
the name of such an instance. The plexitude of the ElementType should match the plexitude
of the Mesh.

Returns Mesh — The Mesh itself with possibly changed eltype.

170

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Examples

>>> Mesh (eltype="tri3'"') .setEltype('line3') .eltype
Line3

elType ()
Return the element type of the Mesh.

Returns Element Type — The ElementType of the Mesh.

See also:

elName () returns the name of the ElementType.

Examples

>>> Formex ('4:0123") .toMesh () .elType ()
Quad4

elName ()
Return the element name of the Mesh.

Returns str — The name of the ElementType of the Mesh.

See also:

elType () returns the ElementType instance

Examples

>>> Formex ('4:0123") .toMesh () .elName ()
'quad4'

setNormals (normals=None)
Set/Remove the normals of the mesh.

Parameters normals (float array_like) — A float array of shape (ncoords,3) or
(nelems,nplex,3). If provided, this will set these normals for use in rendering, overriding
the automatically computed ones. If None, this will clear any previously set user normals.

__getitem__ (i)
Return element i of the Mesh.

This allows addressing element i of Mesh M as M[i].

Parameters i (index) — The index of the element(s) to return. This can be a single element
number, a slice, or an array with a list of numbers.

Returns Coords — A Coords with a shape (nplex, 3), or if multiple elements are requested, a
shape (nelements, nplex, 3), holding the coordinates of all points of the requested elements.

Notes

This is normally used in an expression as M[1i], which will return the element i. Then M[1i] [J] will
return the coordinates of node j of element i.

6.1.

Autoloaded modules 171

pyFormex Documentation, Release 2.2

level ()
Return the level of the elements in the Mesh.

Returns int — The dimensionality of the elements: 0 (point), 1(line), 2 (surface), 3 (volume).

nelems ()
Return the number of elements in the Mesh. This is the first dimension of the e 1 ems array.

nplex ()
Return the plexitude of the elements in the Mesh. This is the second dimension of the e 1ems array.

ncoords ()
Return the number of nodes in the Mesh. This is the first dimension of the coords array.

nnodes ()
Return the number of nodes in the Mesh. This is the first dimension of the coords array.

npoints ()
Return the number of nodes in the Mesh. This is the first dimension of the coords array.

shape ()
Return the shape of the e Iems array.

nedges ()
Return the number of edges.

Returns int — The number of rows that would be returned by getEdges (), without actually
constructing the edges.

Notes
This is the total number of edges for all elements. Edges shared by multiple elements are counted multiple
times.

info ()
Return short info about the Mesh.

Returns str — A string with info about the shape of the coords and elems attributes.

report (full=True)
Create a report on the Mesh shape and size.

The report always contains the number of nodes, number of elements, plexitude, dimensionality, element
type, bbox and size. If full==True(default), it also contains the nodal coordinate list and element connec-
tivity table. Because the latter can be rather bulky, they can be switched off.

Note: NumPy normally limits the printed output. You will have to change numpy settings to actually
print the full arrays.

shallowCopy (prop=None)
Return a shallow copy.

Parameters prop (int array_like, optional) — 1-dim int array with non-negative element prop-
erty numbers.

Returns Mesh — A shallow copy of the Mesh, using the same data arrays for coords and
elems. If prop was provided, the new Mesh can have other property numbers. This is a
convenient method to use the same Mesh with different property attributes.

172 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

toFormex ()
Convert a Mesh to a Formex.

Returns Formex — A Formex equivalent with the calling Mesh. The Formex inherits the element
property numbers and eltype from the Mesh. Drawing attributes and Fields are not transfered
though.

Examples

>>> M = Mesh([[0,0,0],[1,0,011,[10,11,[1,0]],eltype="1line2")
>>> M.toFormex ()
Formex ([[[O., 0., 0.1,
[1., 0., 0.11,
<BLANKLINE>
[ri1., 0., 0.1,
[0., 0., 0.111)

toMesh ()
Convert to a Mesh.

Returns Mesh — The Mesh itself. This is provided as a convenience for use in functions that
need to work on different Geometry types.

toSurface ()
Convert a Mesh to a TriSurface.

Only Meshes of level 2 (surface) and 3 (volume) can be converted to a TriSurface. For a level 3 Mesh, the
border Mesh is taken first. A level 2 Mesh is converted to element type ‘tri3” and then to a TriSurface.

Returns TriSurface — A TriSurface corresponding with the input Mesh. If that has eltype
‘tri3’, the resulting TriSurface is fully equivalent. Otherwise, a triangular approximation is
returned.

Raises ValueError —If the Mesh can not be converted to a TriSurface.

toCurve (connect=False)
Convert a Mesh to a Curve.

If the element type is one of ‘line*’ types, the Mesh is converted to a Curve. The type of the returned
Curve is dependent on the element type of the Mesh:

e ‘line2’: PolyLine,
e ‘line3’: BezierSpline (degree 2),
e ‘lined’: BezierSpline (degree 3)

If connect is False, this is equivalent to

self.toFormex () .toCurve ()

Any other type will raise an exception.

centroids ()
Return the centroids of all elements of the Mesh.

The centroid of an element is the point with coordinates equal to the average of those of all nodes of the
element.

Returns Coords — A Coords object with shape (nelems (), 3), holding the centroids of all the
elements in the Mesh.

6.1.

Autoloaded modules 173

https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

Examples
>>> rectangle (L=3,W=2,nl=3,nw=2) .centroids ()
Coords ([[0.5, 0.5, 0.1,
[1.5, 0.5, 0.1,
[2.5, 0.5, 0.1,
[0.5, 1.5, 0. 171,
[1.5, 1.5, 0.1,
[2.5, 1.5, 0. 11)
bboxes ()

Returns the bboxes of all elements in the Mesh.

Returns float array (nelems,2,3). — An array with the minimal and maximal values of the coor-

dinates of the nodes of each element, stored along the 1-axis.

getLowerEntities (level=-1, unique=False)

Get the entities of a lower dimensionality.

Parameters

* level (int)— The level of the entities to return. If negative, it is a value relative to the
level of the caller. If non-negative, it specifies the absolute level. Thus, for a Mesh with
a 3D element type, getLowerEntities(-1) returns the faces, while for a 2D element type, it
returns the edges. For both meshes however, getLowerEntities(+1) returns the edges.

* unique (bool,

Returns

optional) - If True, return only the unique entities.

Connectivity — A Connectivity defining the lower entities of the specified level in terms
of the nodes of the Mesh. By default, all entities for all elements are returned and enti-
ties shared by multiple elements will appear multiple times. With unique=True only the
unique ones are returned.

The return value may be an empty table, if the element type does not have the requested

entities (e.g. ‘quad4’ Mesh does not have entities of level 3).

If the targeted entity level is outside the range 0..3, the return value is None.

See also:

level () return the dimensionality of the Mesh

connectivity.Connectivity.insertLevel () returns two tables: elems vs. lower entities,

lower enitites vs. nodes.

Examples

Mesh with one ‘quad4’ element and 4 nodes.

>>> M = Mesh(eltype="quad4')

The element defined in function of the nodes.

>>> print (M.elems)
([0 1 2 3]]

The edges of the element defined in function of the nodes.

174

. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

>>> print (M.getLowerEntities(-1))
1]

w N = O

2]
3]
0]]

And finally, the nodes themselves: not very useful, but works.

>>> print (M.getLowerEntities (-2))
(0]
[1]
[2]
[31]

getElems ()
Get the elems table.

Returns EIems — The element connectivity table (the e Iems attribute).

Notes

This is deprecated. Use the el ems attribute instead.

getNodes ()
Return the set of unique node numbers in the Mesh.

Returns int array — The sorted node numbers that are actually used in the connectivity table.
For a compacted Mesh, it is equal to np.arange (self.nelems).

getPoints ()
Return the nodal coordinates of the Mesh.

Returns Coords —The coordinates of the nodes that are actually used in the connectivity table.
For a compacted Mesh, it is equal to the coords attribute.

getEdges ()
Return the unique edges of all the elements in the Mesh.

Returns Elems — A connectivity table defining the unique element edges in function of the
nodes. This is like self.getLowerEntities (1, unique=True), but the result is
stored internally in the Mesh object so that it does not need recomputation on a next call.

getFaces ()
Return the unique faces of all the elements in the Mesh.

Returns Elems — A connectivity table defining all the element faces in function of the nodes.
This is like self.getLowerEntities (2, unique=True), but the result is stored
internally in the Mesh object so that it does not need recomputation on a next call.

getCells ()
Return the cells of the elements.

This is a convenient function to create a table with the element cells. It is equivalent to self.
getLowerEntities (3, unique=True), but this also stores the result internally so that future re-
quests can return it without the need for computing it again.

edgeMesh ()
Return a Mesh with the unique edges of the elements.

This can only be used with a Mesh of level >= 1.

6.1.

Autoloaded modules 175

pyFormex Documentation, Release 2.2

faceMesh ()

Return a Mesh with the unique faces of the elements.

This can only be used with a Mesh of level >= 2.

getElemEdges ()

Defines the elements in function of its edges.
Returns Elems — A connectivity table with the elements defined in function of the edges.
Notes

As a side effect, this also stores the definition of the edges and the returned element to edge connectivity
in the attributes edges, resp. elem_edges.

getFreeEntities (level=-1, return_indices=False)

Return the free entities of the specified level.
Parameters

* level (int)— The level of the entities to return. If negative, it is a value relative to the
level of the caller. If non-negative, it specifies the absolute level.

* return_indices (bool) - If True, also returns an index array (nentities,2) for inverse
lookup of the higher entity (column 0) and its local lower entity number (column 1).

Returns Elems — A connectivity table with the free entities of the specified level of the Mesh.
Free entities are entities that are only connected to a single element.

See also:

getFreeEntitiesMesh () return the free entities as a Mesh

getBorder () return the free entities of the first lower level

Examples

>>> M = Formex ('3:.12.34") .toMesh ()
>>> print (M.report())
Mesh: nnodes: 4, nelems: 2, nplex: 3, level: 2, eltype: tri3

BBox: [0. 0. 0.], [1. 1. 0.]
Size: [1 1. 0.]
Area: 1.0
Coords: [[O. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[1. 1. 0.]]
Elems: [[0 1 3]
[3 2 0]]

>>> M.getFreeEntities (1)
Elems ([[0, 11,

(1, 31,

(3, 21,

[2, 0]], eltype=Line2)
>>> M.getFreeEntities (1, True) [1]
array ([[0, O],

[0, 1]
[1, 0]
(1, 1]

14

’

1)

176

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

getFreeEntitiesMesh (level=-1, compact=True)
Return a Mesh with lower entities.

Parameters

e level (int)— The level of the entities to return. If negative, it is a value relative to the
level of the caller. If non-negative, it specifies the absolute level.

* compact (bool) — If True (default), the returned Mesh will be compacted. If False, the
returned Mesh will contain all the nodes present in the input Mesh.

Returns Mesh — A Mesh containing the lower entities of the specified level. If the Mesh has
property numbers, the lower entities inherit the property of the element to which they belong.

See also:

getFreeEdgesMesh () return a Mesh with the free entities of the level 1

getBorderMesh () return the free entities Mesh of the first lower level
getFreeEdgesMesh (compact=True)

Return a Mesh with the free edges.

Parameters compact (bool) — If True (default), the returned Mesh will be compacted. If
False, the returned Mesh will contain all the nodes present in the input Mesh.

Returns Mesh — A Mesh containing the free edges of the input Mesh. If the input Mesh has
property numbers, the edge elements inherit the property of the element to which they belong.

See also:

getFreeEntitiesMesh () return the free entities Mesh of any lower level
getBorderMesh () return the free entities Mesh of level -1
getBorder (return_indices=False)
Return the border of the Mesh.
Border entities are the free entities of the first lower level.

Parameters return_indices (bool)—If True, also returns an index array (nentities,2) for
inverse lookup of the higher entity (column 0) and its local lower entity number (column 1).

Returns E£1ems— A connectivity table with the border entities of the specified level of the Mesh.
Free entities are entities that are only connected to a single element.

See also:

getFreeEntities () return the free entities of any lower level
getBorderMesh () return the border as a Mesh

Notes

This is a convenient shorthand for

self.getFreeEntities (level=-1,return_indices=return_indices)

getBorderMesh (compact=True)
Return a Mesh representing the border.

. Autoloaded modules 177

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Parameters compact (bool) — If True (default), the returned Mesh will be compacted. If
False, the returned Mesh will contain all the nodes present in the input Mesh.

Returns Mesh — A Mesh containing the border of the input Mesh. The level of the Mesh is one
less than that of the input Mesh. If the input Mesh has property numbers, the border elements
inherit the property of the element to which they belong.

Notes

This is a convenient shorthand for

self.getFreeEntitiesMesh (level=-1, compact=compact)

borderMesh (compact=True)
Return a Mesh representing the border.

Parameters compact (bool) — If True (default), the returned Mesh will be compacted. If
False, the returned Mesh will contain all the nodes present in the input Mesh.

Returns Mesh — A Mesh containing the border of the input Mesh. The level of the Mesh is one
less than that of the input Mesh. If the input Mesh has property numbers, the border elements
inherit the property of the element to which they belong.

Notes

This is a convenient shorthand for

self.getFreeEntitiesMesh (level=-1, compact=compact)

getBorderElems ()
Find the elements that are touching the border of the Mesh.

Returns int array — A list of the numbers of the elements that fully contain at least one of the
elements of the border Mesh. Thus, in a volume Mesh, elements only touching the border by
a vertex or an edge are not considered border elements.

getBorderNodes ()
Find the nodes that are on the border of the Mesh.

Returns int array — A list of the numbers of the nodes that are on the border of the Mesh.

peel (nodal=False)
Remove the border elements from a Mesh.

Parameters nodal (bool) — If True, all elements connected to a border node are removed.
The default will only remove the elements returned by get BorderElems ().

Returns Mesh — A Mesh with the border elements removed.

connectedTo (entities, level=0)
Find the elements connected to specific lower entities.

Parameters

e entities (int or int array_like) — The indices of the lower entities to which connection
should exist.

e level (int)— The level of the entities to which connection should exist. If negative, it
is a value relative to the level of the caller. If non-negative, it specifies the absolute level.
Default is 0 (nodes).

178 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Returns int array — A list of the numbers of the elements that contain at least one of the specified
lower entities.

adjacentTo (elements, level=0)
Find the elements adjacent to the specified elements.

Adjacent elements are elements that share some lower entity.
Parameters
* elements (int or int array_like) — Element numbers to find the adjacent elements for.

e level (int) - The level of the entities used to define adjacency. If negative, it is a value
relative to the level of the caller. If non-negative, it specifies the absolute level. Default is
0 (nodes).

Returns int array — A list of the numbers of all the elements in the Mesh that are adjacent to any
of the specified elements.

reachableFrom (elements, level=0)
Select the elements reachable from the specified elements.

Elements are reachable if one can travel from one of the origin elements to the target, by only following
the specified level of connections.

Parameters
* elements (int or int array_like) — Element number(s) from where to start the walk.

* level (int) — The level of the entities used to define connections. If negative, it is
a value relative to the level of the caller. If non-negative, it specifies the absolute level.
Default is 0 (nodes).

Returns int array — A list of the numbers of all the elements in the Mesh reachable from any of
the specified elements by walking over entities of the specified level. The list will include
the original set of elements.

adjacency (level=0, diflevel=-1)
Create an element adjacency table.

Two elements are said to be adjacent if they share a lower entity of the specified level.
Parameters

* level (int) — Hierarchic level of the geometric items connecting two elements: 0 =
node, 1 = edge, 2 = face. Only values of a lower hierarchy than the level of the Mesh itself
make sense. Default is to consider nodes as the connection between elements.

e diflevel (int, optional) — If >=level, and smaller than the level of the Mesh
itself, elements that have a connection of this level are removed. Thus, in a Mesh with
volume elements, self.adjacency(0,1) gives the adjacency of elements by a node but not
by an edge.

Returns adj (Adjacency) — An Adjaceny table specifying for each element its neighbours
connected by the specified geometrical subitems.

frontWalk (level=0, startat=0, frontinc=1, partinc=1, maxval=-1)
Visit all elements using a frontal walk.

In a frontal walk a forward step is executed simultanuously from all the elements in the current front. The
elements thus reached become the new front. An element can be reached from the current element if both
are connected by a lower entity of the specified level. Default level is ‘point’.

Parameters

6.1.

Autoloaded modules 179

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* level (int)— Hierarchy of the geometric items connecting two elements: 0 =node, 1 =
edge, 2 = face. Only values of a lower hierarchy than the elements of the Mesh itself make
sense. There are no connections on the upper level.

e startat (int or list of ints)- Initial element number(s) in the front.
e frontinc (int) - Increment for the front number on each frontal step.

* partinc (int) — Increment for the front number when the front gets empty and a new
part is started.

* maxval (int) — Maximum frontal value. If negative (default) the walk will continue
until all elements have been reached. If non-negative, walking will stop as soon as the
frontal value reaches this maximum.

Returns int array — An array of ints specifying for each element in which step the element was
reached by the walker. Unwalked elements have a value -1.

See also:

adjacency.Adjacency. frontWalk ()

Examples

>>> M = Mesh (eltype="quad4') .subdivide (5, 2)
>>> print (M.frontWalk())

[01 234112 34)]

>>> print (M. frontWalk (maxval=2))

o 1 2-1-1 1 1 2 -1 -1]

maskedEdgeFrontWalk (mask=None, startat=0, frontinc=1, partinc=1, maxval=-1)
Perform a front walk over masked edge connections.

This is like frontWalk(level=1), but has an extra parameter mask to select the edges that are used as con-
nectors between elements. The remainder of the parameters are like in frontwalk ().

Parameters mask (array_like, bool or int) — A boolean array or index flagging the nodes which
are to be considered as connectors between elements. If None, all nodes are connections.

See also:
frontwalk ()

partitionByConnection (level=0, startat=0, sort="number’, nparts=-1)
Detect the connected parts of a Mesh.

The Mesh is partitioned in parts in which all elements are connected. Two elements are connected if it
is possible to draw a continuous line from a point in one element to a point in the other element without
leaving the Mesh.

Parameters

e sort (str, optional)- One of ‘number’ (default), ‘length’, ‘area’, ‘volume’. De-
fines the weights to be used in sorting the parts. Specifying another string will leave the
parts unsorted.

* level (int, optional)-Hierarchy of the geometric items connecting two elements:
0 =node, 1 = edge, 2 = face. Only values of a lower hierarchy than the elements of the
Mesh itself make sense. There are no connections on the upper level.

180 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

e startat (int or list of ints, optional)-Initial element number(s)in the
front. Beware: if you specify unconnected elements, their parts will be returned as a single

part.

* nparts (int, optional)— Maximum number of parts to detect. If negative, the
procedure continues until all elements have been attributed to some part.

Returns int array — An int array specifyin for each element the part number to which it belongs.
By default the parts are sorted in decreasing order of the number of elements.

splitByConnection (level=0, startat=0, sort="number’, nparts=-1)
Split a Mesh into connected parts.

This is like partitionByConnection () butreturns a list of partial Meshes. The parameters are like
in partitionByConnection ()

See also:

largestByConnection ()

Returns list of Mesh — A list of Meshes that each form a connected part. By default the parts are
sorted in decreasing order of the number of elements.

largestByConnection (level=0)
Return the largest connected part of the Mesh.

See also:

splitByConnection ()

Notes

This is equivalent with, but more efficient than

self.splitByConnection (level) [0]

growSelection (sel, mode="node’, nsteps=1)
Grow a selection of a Mesh by frontal steps.

Parameters
e sel (int or 1list of ints)- Initial element number(s) in the selection.
* mode (str) — Specifies how a single frontal step is done:
— ’node’ : add all elements that have a node in common,
— ’edge’ : add all elements that have an edge in common.
* nsteps (int)— Number of frontal steps to undertake.
Returns int array — The list of element numbers obtained by growing the front nsteps times.

partitionByCurve (edges, sort="number’)
Partition a level-2 Mesh by closed curve(s) along the edges.

Parameters

* edges (bool or int array_like | level-1 Mesh) — If a bool type array, it flags for every edge
with a True value whether the edge is part of the partitioning curve(s). The ordering of the
edges is that as obtained from getEdges ().

6.1.

Autoloaded modules 181

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

If an int type array, it is a list of edge nummers that constitute the curve(s). Numbers refer
to the getEdges () order of edges. The order in which the edge numbers are given is
irrelevant though.

If alevel-1 Mesh, it is a Mesh containing the edges that constitute the partitioning curve(s).
In this case the edge numbers will be determined by matching the edges centroids on the
level-2 Mesh.

* sort (str) — Defines how the resulting parts are sorted (by assigning them increasing
part numbers). The following sort criteria are currently defined (any other value will return
the parts unsorted):

— ’number’: sort in decreasing order of the number of triangles in the part. This is the
default.

— ’area’: sort according to decreasing surface area of the part.

Returns int array — An int array specifying for each triangle to which part it belongs. Values are
in the range 0..nparts.

Notes
In order for the operation to be non-trivial, the specified edges, possibly together with (parts of) the border,
should form one or more closed loops.

partitionByAngle (**kargs)
Partition a level-2 Mesh by the angle between adjacent elements.

The Mesh is partitioned in parts bounded by the sharp edges in the surface. The arguments and return
value are the same as in t risurface. TriSurface.partitionByAngle ().

For eltypes other than ‘tri3’, a conversion to ‘tri3’ is done before computing the partitions.

nodeConnections ()
Find and store the elems connected to nodes.

nNodeConnected ()
Find the number of elems connected to nodes.

edgeConnections ()
Find and store the elems connected to edges.

nEdgeConnected ()
Find the number of elems connected to edges.

nodeAdjacency ()
Find the elems adjacent to each elem via one or more nodes.

nNodeAdjacent ()
Find the number of elems which are adjacent by node to each elem.

edgeAdjacency ()
Find the elems adjacent to elems via an edge.

nEdgeAdjacent ()
Find the number of adjacent elems.

nonManifoldNodes ()
Return the non-manifold nodes of a Mesh.

Non-manifold nodes are nodes where subparts of a mesh of level >= 2 are connected by a node but not by
an edge.

182

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Returns an integer array with a sorted list of non-manifold node numbers. Possibly empty (always if the
dimensionality of the Mesh is lower than 2).

nonManifoldEdges ()
Return the non-manifold edges of a Mesh.

Non-manifold edges are edges where subparts of a mesh of level 3 are connected by an edge but not by an
face.

Returns an integer array with a sorted list of non-manifold edge numbers. Possibly empty (always if the
dimensionality of the Mesh is lower than 3).

As a side effect, this constructs the list of edges in the object. The definition of the nonManifold edges in
terms of the nodes can thus be got from

self.edges[self.nonManifoldEdges ()]

nonManifoldEdgeNodes ()
Return the non-manifold edge nodes of a Mesh.

Non-manifold edges are edges where subparts of a mesh of level 3 are connected by an edge but not by an
face.

Returns an integer array with a sorted list of numbers of nodes on the non-manifold edges. Possibly empty
(always if the dimensionality of the Mesh is lower than 3).

fuse (parts=None, nodes=None, **kargs)
Fuse the nodes of a Meshes.

Nodes that are within the tolerance limits of each other are merged into a single node.
Parameters

* parts (int array_like, optional) — If provided, it is an int array with length equal to the
number of elements that will be used to split the Mesh into parts (see splitProp ())
and the fuse operation will be executed per part. Elements for which the value of nparts is
negative will not be involved in the fuse operations.

* nodes (int array_like, optional) — A list of node numbers. If provided, only these nodes
will be involved in the fuse operation. This option can not be used together with the parts
option.

* xxkargs — Extra arguments for tuning the fuse operation are passed to the coords.
Coords: fuse () method.

matchCoords (coords, **kargs)
Match nodes of coords with nodes of self.

coords can be a Coords or a Mesh object This is a convenience function equivalent to

’ self.coords.match (mesh.coords, xxkargs)

or

self.coords.match (coords, xxkargs)

See also coords.Coords.match ()

matchCentroids (mesh, **kargs)
Match elems of Mesh with elems of self.

self and Mesh are same eltype meshes and are both without duplicates.

6.1.

Autoloaded modules 183

pyFormex Documentation, Release 2.2

Elems are matched by their centroids.

compact (return_index=False)

Remove unconnected nodes and renumber the mesh.

Returns a mesh where all nodes that are not used in any element have been removed, and the nodes are
renumbered to a compacter scheme.

If return_index is True, also returns an index specifying the index of the new nodes in the old node scheme.

Examples

>>> x = Coords([[i] for i in np.arange(5)])

>>> M = Mesh(x, [[0,2],[1,41,104,211)

>>> M, ind = M.compact (True)

>>> print (M.coords)

[[0. 0. 0.]
[1. 0. 0.]

[2. 0. 0.]
4. 0. 0.1]

>>> print (M.elems)

Mesh(x, [[0,2], [1,3],[3,211])
= M.compact ()
t (M.coords)

[3 2]]
>>> print (ind)
[0 1 2 4]
>>> M = M.cselect ([0,1,2])
>>> M.coords.shape, M.elems.shape
(4, 3), (0, 2))
>>> M = M.compact ()
>>> M.coords.shape, M.elems.shape
(0, 3), (0, 2))

selectNodes (nodsel, eltype=None)

Return a Mesh with subsets of the original nodes.
Parameters

* nodsel (I-dim or 2-dim int array_like) — An object that can be converted to a 1-dim
or 2-dim array. Each row of nodsel holds a list of local node numbers that should be
retained in the new connectivity table. See also connectivity.Connectivity.
selectNodes ().

* eltype (ElementType or str, optional) — The element type or name for the new Mesh.
It should be specified if the default for the plexitude would not be correct.

Returns Mesh — A Mesh with the same node set as the input but other element connectivity and
eltype

184

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Examples

From a Mesh of triangles, create a Mesh with the edges.

>>> M = Formex ('3:.12.34") .toMesh ()

>>> M.elems

Elems ([[0, 1, 37,

[3, 2, 0]], eltype=Tri3)

>>> M1l = M.selectNodes ([(0,1), (1,2), (2,0)])
>>> Ml.elems
Elems ([[0, ,

’

’

1]
(3]
(3, 01,
[3, 2]
(2, 0]
(0, 31

1, eltype=Line2)

avgNodes (nodsel, wts=None)
Create average nodes from the existing nodes of a mesh.

Parameters
¢ nodsel —is a local node selector as in selectNodes ()

* wts —isa 1-D array of weights to be attributed to the points. Its length should be equal to
that of nodsel.

Returns array — the (weighted) average coordinates of the points in the selector as
(nelems*nnod,3) array of coordinates, where nnod is the length of the node selector.

meanNodes (nodsel)
Create nodes from the existing nodes of a mesh.

nodsel is a local node selector as in selectNodes () Returns the mean coordinates of the points in the
selector as (nelems*nnod,3) array of coordinates, where nnod is the length of the node selector.

addNodes (newcoords, eltype=None)
Add new nodes to elements.

newcoords is an (nelems,nnod,3) or‘(nelems*nnod,3)‘ array of coordinates. Each element gets exactly
nnod extra nodes from this array. The result is a Mesh with plexitude self.nplex() + nnod.

addMeanNodes (nodsel, eltype=None)
Add new nodes to elements by averaging existing ones.

nodsel is a local node selector as in selectNodes () Returns a Mesh where the mean coordinates of the
points in the selector are added to each element, thus increasing the plexitude by the length of the items in
the selector. The new element type should be set to correct value.

hits (entities, level=0)
Count the lower entities from a list connected to the elements.

entities: a single number or a list/array of entities

splitRandom (n, compact=True)
Split a Mesh in n parts, distributing the elements randomly.

Returns a list of n Mesh objects, constituting together the same Mesh as the original. The elements are
randomly distributed over the subMeshes.

By default, the Meshes are compacted. Compaction may be switched off for efficiency reasons.

. Autoloaded modules 185

pyFormex Documentation, Release 2.2

reverse (sel=None)
Reverse some or all elements of a Mesh.

Reversing an element has the following meaning:
¢ for 1D elements: reverse the traversal direction,
* for 2D elements: reverse the direction of the positive normal,
e for 3D elements: reverse inside and outside directions of the element’s border surface. This also
changes the sign of the element’s volume.
Parameters sel (int or boolean array_like, optional) — The selected elements to be reversed.
Default is to reverse all elements.

Returns Mesh — A Mesh like the input but with the specified elements reversed.

Notes
The reflect () method by default calls this method to undo the element reversal caused by the reflection
operation.

reflect (dir=0, pos=0.0, reverse=True, **kargs)
Reflect the coordinates in one of the coordinate directions.

This applies the reflect () transformation on the coords of the Mesh, and then by default does a reversal
of the elements.

Parameters
e dir (int (0, 1,2))- Global axis direction of the reflection (default O or x-axis).
* pos (float)— Offset of the mirror plane from origin (default 0.0)

e reverse (bool, optional) — If True (default), the reverse () method is called
after the reflection to undo the element reversal caused by the reflection of its coordinates.
This has in most cases the desired effect. If not, the user can set this to False to skip the
element reversal.

convert (totype, fuse=None, verbose=False)
Convert a Mesh to another element type.

Converting a Mesh from one element type to another can only be done if both element types are of the
same dimensionality. Thus, 3D elements can only be converted to 3D elements.

Parameters

* totype (str or ElementType)— The name or type of the target element to which
to convert.

e fuse (bool, optional) - If True, the resulting Mesh will be run through fuse ()
before returning. If False, no fuse will be done. The default (None) will is a smart mode:
a fuse will be applied if new nodes were added during the conversion.

* verbose (bool, optional)-If True, intermediate steps during the conversion will
be reported.

Returns Mesh — A Mesh of the requested element type, representing the same geometry (possi-
bly approximatively) as the original Mesh.

Raises ValueError — If the Mesh can not be transformed to the specified eltype.

186 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

Notes

The conversion uses two basic methods for converting the element type: split the elements in smaller parts
and add new nodes to the elements. Adding new nodes may produce duplicate nodes at the common border
of elements. Not using a final fuse operation will then likely produce unwanted results.

In many cases a conversion is done over one (or more) intermediary element types. The fuse operation is
only done once, after all transformation steps have occurred.

If the user wants/needs to apply multiple conversions in sequence, he may opt to switch off the fusing for
all but the last conversion.

Not all conversions between elements of the same dimensionality are possible. The possible conversion
strategies are implemented in a table in e lements. New strategies may be added however.

Examples

>>> M = Mesh(eltype="'quad4') .convert ('tri3")
>>> M.coords
Coords ([[O., 0 ,
[1., 0., ,
[1., 1
[0., 1
>>> M.elems
Elems ([[0, 1, 27,
[2, 3, 0]], eltype=Tri3)

O O O O

-]
-]
-1
11

convertRandom (choices)
Convert choosing randomly between choices

Returns a Mesh obtained by converting the current Mesh by a randomly selected method from the available
conversion type for the current element type.

subdivide (*ndiv, **kargs)
Subdivide the elements of a Mesh.

Parameters

* ndiv — Specifies the number (and place) of divisions (seeds) along the edges of the el-
ements. Accepted type and value depend on the element type of the Mesh. Currently
implemented:

— ’tri3’: ndiv is a single int value specifying the number of divisions (of equal size) for
each edge.

— ’quad4’: ndiv is a sequence of two int values nx,ny, specifying the number of divisions
along the first, resp. second parametric direction of the element

— ’hex8’: ndiv is a sequence of three int values nx,ny,nz specifying the number of divisions
along the first, resp. second and the third parametric direction of the element

» fuse (bool, optional) - If True (default), the resulting Mesh is completely fused.
If False, the Mesh is only fused over each individual element of the original Mesh.

Returns Mesh — A Mesh where each element is replaced by a number of smaller elements of the
same type.

6.1. Autoloaded modules 187

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Note: This is currently only implemented for Meshes of ty
class ‘TriSurface’.

pe ‘tri3’ ‘quad4’ and ‘hex8’ and for the derived

Examples

>>> M = Mesh (eltype="quad4') .subdivide (5, 2)
>>> print (M)

BBox: [0. 0. 0.], [1. 1. 0.]
Size: [1. 1. 0.]
Area: 1.0

Mesh: nnodes: 18, nelems: 10, nplex: 4, level: 2, eltype: quad4

splitDegenerate (reduce=True, return_indices=False)

Split a Mesh in non-degenerate and degenerate elements.

Splits a Mesh in non-degenerate elements and degenerate elements, and tries to reduce degenerate elements
to lower plexitude elements.

Parameters

* reduce (bool or Element Type name) — If True, the degenerate elements will be tested
against known degeneration patterns, and the matching elements will be transformed to
non-degenerate elements of a lower plexitude. If a string, it is an element name and only
transforms to this element type will be considered. If False, no reduction of the degenerate
elements will be attempted.

e return_indices (bool, optional) - If True, also returns the element indices in
the original Mesh for all of the elements in the derived Meshes.

Returns ML (list of Mesh objects) — The list of Meshes resulting from the split operation. The
first holds the non-degenerate elements of the original Mesh. The last holds the remaining
degenerate elements. The intermediate Meshes, if any, hold elements of a lower plexitude
than the original.

Warning: The Meshes that hold reduced elements may still contain degenerate elements for the new
element type

Examples

>>> M = M

>>> M.elems.listDegenerate ()

array ([0, 1, 2, 4, 51)

>>> for Mi in M.splitDegenerate(): print (Mi)

Mesh: nnodes: 4, nelems: 1, nplex: 4, level: 2, eltype: quad4
BBox: [0. 0. 0.1, [0. 0. 0.]

(continues on next page)

188

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

Size: [O. 0. 0.]
Area: 0.0
Mesh: nnodes: 4, nelems: 5, nplex: 3, level: 2, eltype: tri3
BBox: [0. 0. 0.], [0. 0. 0.]
Size: [O. 0. 0.]
Area: 0.0

>>> conn,ind = M.splitDegenerate (return_indices=True)
>>> print (ind[0],ind[1])

[3] [0 1 2 5 4]

>>> print (conn[l].elems)

[0 0]

1

=N O O O

[
[]
[]
[]
[]

N W O

]

removeDegenerate ()
Remove the degenerate elements from a Mesh.

Returns Mesh — A Mesh with all degenerate elements removed.

removeDuplicate (permutations="all’)
Remove the duplicate elements from a Mesh.

Duplicate elements are elements that consist of the same nodes.
Parameters

* permutations (str) — Defines which permutations of the nodes are allowed while
still considering the elements duplicates. Possible values are:

* 'none' (-)— must have the same value at every position in order to be considered dupli-
cates;

e 'roll' (-) - each other by rolling are considered equal;
e 'all' (-)—aduplicate element. This is the default.
Returns Mesh — A Mesh with all duplicate elements removed.

renumber (order="elems’)
Renumber the nodes of a Mesh in the specified order.

Parameters order (int array_like or str) — If an array, it is an index with length equal to the
number of nodes. It should be a permutation of np.arange (self.nnodes ()). The
index specifies the node number that should come at this position. Thus, the order values are
the old node numbers on the new node number positions.

order can also be a predefined string that will generate the node index automatically:
* ’elems’: the nodes are number in order of their appearance in the Mesh connectivity.
* ’random’: the nodes are numbered randomly.
* ’front’: the nodes are numbered in order of their frontwalk.
Returns Mesh — A Mesh equivalent with the input, but with the nodes numbered differently.

reorder (order="nodes’)
Reorder the elements of a Mesh.

Parameters order (array_like or str) — If an array, it is a permutation of the numbers in np.
arange (self.nelems ()), specifying the requested order of the elements.

6.1.

Autoloaded modules 189

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

order can also be one of the following predefined strings:
* 'nodes’: order the elements in increasing node number order.
¢ ’random’: number the elements in a random order.
* ’reverse’: number the elements in reverse order.
Returns Mesh — A Mesh equivalent with self but with the elements ordered as specified.

connectedElements (startat, mask, level=0)
Return the elements reachable from startat.

Finds the elements which can be reached from startat by walking along a mask (a subset of elements).
Walking is possible over nodes, edges or faces, as specified in level.

Parameters
* startat (int or array_like, int.) — The starting element number(s).
* level (int)— Specifies how elements can be reached: via node (0), edge (1) or face (2).

* mask (array_like, bool or int) — Flags the elements that are considered walkable. It is an
int array with the walkable element numbers, or a bool array flagging the these elements
with a value True.

connect (coordslist, div=1, degree=1, loop=False, eltype=None)
Connect a sequence of topologically congruent Meshes into a hypermesh.

Parameters

* coordslist (1ist of Coords | list of Mesh | Mesh)—If Mesh objects
are given, they should (all) have the same element type as self. Their connectivity tables
will not be used. They will only serve to construct a list of Coords objects by taking the
coords attribute of each of the Meshes. If only a single Mesh was specified, self.coords
will be added as the first Coords object in the list.

All Coords objects in the coordslist (either specified or constructed from the Mesh objects),
should have the exact same shape as self.coords. The number of Coords items in the list
should be a multiple of degree, plus 1.

Each of the Coords in the final coordslist is combined with the connectivity table, element
type and property numbers of self to produce a list of toplogically congruent Meshes. The
return value is the hypermesh obtained by connecting each consecutive slice of (degree+1)
of these Meshes.

Note that unless a single Mesh was specified as coordslist parameter, the coords of self
are not used. In many cases however self or self.coords will be one of the items in the
specified coordslist.

* degree (int) — The degree of the connection. Currently only degree 1 and 2 are sup-
ported:

— If degree is 1, every Coords from the coordslist is connected with hyperelements of a
linear degree in the connection direction.

— If degree is 2, quadratic hyperelements are created from one Coords item and the next
two in the list. Note that all Coords items should contain the same number of nodes,
even for higher order elements where the intermediate planes contain less nodes.

Currently, degree=2 is not allowed when coordslist is specified as a single Mesh.

190

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* loop (bool, optional)-If True, the connections with loop around the list and con-
nect back to the first. This is accomplished by adding the first Coords item back at the end
of the list.

e div (seed) — This parameter can only be used for degree==1.

With this parameter the generated connections can be further subdivided along the connec-
tion direction. div can be any of the values accepted by smartSeed (), or a list thereof.
In the latter case, the length of the list should be one less than the length of the coordslist.
Each pair of consecutive items from the coordinate list will be connected using the seeds
generated by the corresponding value from div, passed to smartSeed ().

If seed values are specified directly as a list of floats, the list should start with a value 0.0
and end with 1.0.

* eltype (str or ElementType, optional) — The element type of the constructed hyper-
mesh. Normally, this is set automatically from the base element type and the connection
degree. If a different element type is specified, a final conversion to the requested element
type is attempted (using convert ()).

Returns Mesh — The hypermesh obtained by connecting each consecutive slice of (degree+1) of
the Meshes created as explained above under the parameters. The hypermesh has a dimen-
sionality that is one higher than the original Mesh (i.e. points become lines, lines become
surfaces, surfaces become volumes). The resulting elements are of the given degree in the
direction of the connection.

extrude (div, dir=0, length=1.0, degree=1, eltype=None)

Extrude a Mesh along a straight line.
The Mesh is extruded over a given length in the given direction.
Parameters

* div (smartseed)— Specifies how the extruded direction will be subdivided in elements.
It can be anything that is acceptable as input for smartSeed ().

e dir (int (0,1,2) or float array_like (3,)) — The direction of the extrusion: either a global
axis number or a direction vector.

* length (float)— The length of the extrusion, measured along the direction dir.

Returns Mesh — A Mesh obtained by extruding the input Mesh over the given 1ength in direc-
tion dir, subdividing this length according to the seeds generated by smartSeed (div).

See also:

sweep () extrusion along a general path

Examples

>>> M = Mesh (Formex ([0])) .extrude (3,0, 3)

>>> print (M)

Mesh: nnodes: 4, nelems: 3, nplex: 2, level: 1, eltype: line2
BBox: [0. 0. 0.], [3. 0. 0.]
Size: [3. 0. 0.]
Length: 3.0

revolve (n, axis=0, angle=360.0, around=None, loop=False, eltype=None)

Revolve a Mesh around an axis.

6.1. Autoloaded modules

191

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Revolving a Mesh extrudes the Mesh along a circular path.

Parameters

n (int) — Number of circumferential steps

axis (int (0,1,2) or float array_like (3,)) — The direction of the rotation axis: either one
of 0,1,2 for a global axis, or a vector with 3 components for a general direction.

angle (float)— The total angle (in degrees) of the revolve operation.

around (float array_like (3,)) — If provided, it specifies a point on the rotation axis. If
not, the rotation axis goes through the origin of the global axes.

loop (bool) — If True, the end of the revolution will be connected back to the start.

eltype (str of Element Type, optional.) — The final element type. If specified, and it
does not match the natural extruded element type, a final conversion to this target type will
be attempted.

Returns Mesh — A Mesh obtained by revolving the given Mesh over an angle around an axis in
n steps, while extruding the mesh from one step to the next. This extrudes points into lines,
lines into surfaces and surfaces into volumes.

See also:

sweep () extrusion along a general path

sweep (path, eltype=None, **kargs)
Sweep a mesh along a path, creating an extrusion.

Parameters

See also:

path (Curve object. The path over which to sweep the Mesh.)-
eltype (-) — returned Meshes.

*xkargs (-) — curve.Curve.sweep?2 (), with the same meaning. Usually, you will
need to at least set the normal parameter.

a Mesh obtained by sweeping the given Mesh over a path.
(Returns) —

returned Mesh has double plexitude of the original. (The)-—
path is a closed Curve connect back to the first. (If)-

operation is similar to the extrude() method, but the path
(This) -

be any 3D curve. (can)-

extrude () extrusion along a straight path

revolve () extrusion along a circular path

connect () general connection of Meshes into a hypermesh

smooth (iterations=1, lamb=0.5, k=0.1, edg=True, exclnod=[], exclelem=[], weight=None)
Smooth a Mesh.

Smoothing tries to reduce sudden changes in geometry. The algorithm is based on a lowpass filter. The
more iterations through the filter, the smoother the result, at the cost of increasing shrinkage.

192

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Parameters
e iterations (int)— The number of iterations of the smoothing algorithm to perform.
e lamb (float)— Lambda value for the lowpass filter.

* k (float) —k-value for the lowpass filter. Values of k higher than the default can reduce
shrinkage (up to a point where the mesh expands again), but will result in less smoothing
per iteration.

* edg (bool) — If True, the algorithm tries to smooth the outer border of the mesh sepa-
rately to reduce mesh shrinkage.

e exclnod (I1ist of int | 'border' | 'inner') - A list of node indices to
exclude from the smoothing and thus retaining their position. If set to ‘border’, all nodes
on the border of the mesh will be unchanged, and the smoothing will only act inside. If set
to ‘inner’, only the nodes on the border of the mesh will take part to the smoothing.

* exclelem (list of int)— A list of elements to exclude from the smoothing. The
nodes of these elements will not take part to the smoothing.

* weight ('inversedistance' | 'distance')— Specifies the weight of the ad-
jacent points depending on their to their distance to the point. If not provided, all points
have weight 1.

Notes

If both exclnod and exclelem are used the union of all specified nodes will be exluded from smoothing.

classmethod concatenate (meshes, fuse=True, **kargs)
Concatenate a list of meshes of the same plexitude and eltype.

Parameters

* meshes (1ist of Mesh) — A list of Meshes all having the same plexitude. Meshes
without plexitude are silently ignored: this allow empty Meshes to be appear in the list.

e fuse (bool) - If True, the resulting concatenation will be fused.

* xkargs — Optional extra parameters for the fuse () operation.

Notes

If any of the meshes has property numbers, the resulting mesh will inherit the properties. In that case, any
meshes without properties will be assigned property 0. If all meshes are without properties, so will be the
result.

This is a class method, and should be invoked as follows:

Mesh.concatenate ([mesh0,meshl, mesh2])

Examples

>>> MO = Mesh(eltype="quadi')

>>> M1l = MO.trl(0,1.)

>>> M = Mesh.concatenate ([MO,M11])
>>> print (M.coords)

(continues on next page)

6.1. Autoloaded modules 193

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

O P O O

[]
[]
[-]
[]
[]

DN PO O
O O O O O O

[2. 1. .11
>>> print (M.elems)
[[0 2 3 1]

[2 45 3]]

Concatenate Meshes using the same Coords block

>>> MO = Mesh (M.coords, M.elems[:11])
>>> M1l = Mesh (M.coords, M.elems[1l:])
>>> M2 = Mesh.concatenate ([M0O,M1])

>>> id(M.coords) == 1id(M2.coords)

False

>>> M2 = Mesh.concatenate ([MO,M1], fuse=False)
>>> id(M.coords) == 1d(M2.coords)

True

test (nodes="all’, dir=0, min=None, max=None, atol=0.0)
Flag elements having nodal coordinates between min and max.

This is comparable with coords. Coords. test () but operates at the Mesh element level. It tests the
position of one or more nodes of the elements of the e sh with respect to one or two parallel planes. This
is very useful in clipping a mesh in a specified direction. In most cases the clipping direction is one of the

global coordinate axes, but a general direction may be used as well.

Testing along global axis directions is highly efficient. It tests whether the corresponding coordinate is
above or equal to the min value and/or below or equal to the max value. Testing in a general direction tests
whether the distance to the min plane is positive or zero and/or the distance to the max plane is negative or

Zero.
Parameters

* nodes (int, list of ints or string) — Specifies which points of the ele-
ments are taken into account in the tests. It should be one of the following:

— asingle node index (smaller than self.nplex()),
— alist of node indices (all smaller than self.nplex()),
— one of the special strings: ‘all’, ‘any’, ‘none’.

The default (‘all’) will flag the elements that have all their nodes between the planes x=min
and x=max, i.e. the elements that fall completely between these planes.

e dir (a single int or a float array_like (3,)) — The direction in which to measure distances.
If an int, it is one of the global axes (0,1,2). Else it is a vector with 3 components. The
default direction is the global x-axis.

e min (float or point-like, optional) — Position of the minimal clipping
plane. If dir is an int, this is a single float giving the coordinate along the specified global
axis. If dir is a vector, this must be a point and the minimal clipping plane is defined by
this point and the normal vector dir. If not provided, there is no clipping at the minimal
side.

* max (float or point-1like.)—Position of the maximal clipping plane. If dir is an
int, this is a single float giving the coordinate along the specified global axis. If dir is a

194

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

vector, this must be a point and the maximal clipping plane is defined by this point and the
normal vector dir. If not provided, there is no clipping at the maximal side.

* atol (float) - Tolerance value added to the tests to account for accuracy and rounding
errors. A min test will be ok if the point’s distance from the min clipping plane is > -atol
and/or the distance from the max clipping plane is < atol. Thus a positive atol widens the
clipping planes.

Returns [/-dim bool array — Array with length self.nelems () flagging the elements that
pass the test(s). The return value can directly be used as an index in select () or cs-
elect to obtain a Mesh with the elements satisfying the test or not. Or you can use np.
where (result) [0] to get the indices of the elements passing the test.

Raises ValueError: At least one of min or max have to be specified — If neither min nor max are
provided.

See also:

coords.Coords.test () testing individual points
select () return only the selected elements

cselect () return all but the selected elements

Examples

>>> M = Mesh(eltype="tri3") .subdivide (2)
>>> M.coords

Coords ([[0. , 0. , 0. 1,
[0.5, 0., 0.1,
r1. , 0., 0.1,
[0., 0.5 0.1,
[0.5, 0.5, 0. 1],
ro., 1., 0. 11)

>>> M.elems

Elems ([[0, 1, 31,
(1, 2, 41,
[3, 4, 5]

[1, 4, 311, eltype=Tri3)

>>> M.test (min=0.0,max=0.5)

array ([True, False, True, Truel])

>>> M.test (nodes=[0],min=0.0,max=0.2)

array ([True, False, True, False])

>>> M.test (dir=[1.,1.,0.],min=[0.25,0.25,0.],atol=0.01)
array ([False, True, True, Truel])

>>> M.test (nodes='any',dir=[1.,-1.,0.],min=[1.,1.,0.1)
array ([True, True, False, Truel])

clipAtPlane (p, n, nodes="any’, side="+")
Return the Mesh clipped at plane (p,n).

This is a convenience function returning the part of the Mesh at one side of the plane (p,n)

intersectionWithLines (approximated=True, **kargs)
Return the intersections of a level-2 Mesh with lines.

The Mesh is intersected with lines. The arguments and return values are the same as in trisurface.
TriSurface.intersectionWithLines (), except for the approximated.

6.1.

Autoloaded modules 195

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

For a Mesh with eltype ‘tri3’, the intersections are exact. For other eltypes, if approximated is True a
conversion to ‘tri3’ is done before computing the intersections. This may produce an exact result, an ap-
proximate result or no result (if the conversion fails). Of course the user can create his own approximation
to a ‘tri3” surface first, before calling this method.

levelVolumes ()

Return the level volumes of all elements in a Mesh.
The level volume of an element is defined as:
* the length of the element if the Mesh is of level 1,
¢ the area of the element if the Mesh is of level 2,
¢ the (signed) volume of the element if the Mesh is of level 3.

The level volumes can be computed directly for Meshes of eltypes ‘line2’, ‘tri3” and ‘tet4’ and will produce
accurate results. All other Mesh types are converted to one of these before computing the level volumes.
Conversion may result in approximation of the results. If conversion can not be performed, None is
returned.

If successful, returns an (nelems,) float array with the level volumes of the elements. Returns None if the
Mesh level is 0, or the conversion to the level’s base element was unsuccessful.

Note that for level-3 Meshes, negative volumes will be returned for elements having a reversed node
ordering.

lengths ()

Return the length of all elements in a level-1 Mesh.

For a Mesh with eltype ‘line2’, the lengths are exact. For other eltypes, a conversion to ‘line2’ is done
before computing the lengths. This may produce an exact result, an approximated result or no result (if the
conversion fails).

If successful, returns an (nelems,) float array with the lengths. Returns None if the Mesh level is not 1, or
the conversion to ‘line2’ does not succeed.

areas ()

Return the area of all elements in a level-2 Mesh.

For a Mesh with eltype ‘tri3’, the areas are exact. For other eltypes, a conversion to ‘tri3’ is done before
computing the areas. This may produce an exact result, an approximate result or no result (if the conversion
fails).

If successful, returns an (nelems,) float array with the areas. Returns None if the Mesh level is not 2, or
the conversion to ‘tri3’ does not succeed.

volumes ()

Return the signed volume of all the mesh elements
For a ‘tet4’ tetraecder Mesh, the volume of the elements is calculated as 1/3 * surface of base * height.
For other Mesh types the volumes are calculated by first splitting the elements into tetraeder elements.

The return value is an array of float values with length equal to the number of elements. If the Mesh
conversion to tetraeder does not succeed, the return value is None.

length ()

Return the total length of a Mesh.

Returns the sum of self.lengths(), or 0.0 if the self.lengths() returned None.

area ()

Return the total area of a Mesh.

196

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Returns the sum of self.areas(), or 0.0 if the self.areas() returned None.

volume ()
Return the total volume of a Mesh.

For a Mesh of level < 3, a value 0.0 is returned. For a Mesh of level 3, the volume is computed by
converting its border to a surface and taking the volume inside that surface. It is equivalent with

self.toSurface () .volume ()

This is far more efficient than self.volumes().sum().

fixVolumes ()
Reverse the elements with negative volume.

Elements with negative volume may result from incorrect local node numbering. This method will reverse
all elements in a Mesh of dimensionality 3, provided the volumes of these elements can be computed.

Functions defined in module mesh
mesh .mergeNodes (nodes, fuse=True, **kargs)
Merge a list of Coords into a single one.

Merging the Coords creates a single Coords object containing all points, and the indices to find the points of the
original Coords in the merged set.

Parameters

* nodes (1list of Coords)— A list of Coords objects, all having the same shape, except
possibly for their first dimension.

* fuse (bool, optional)-If True (default), coincident (or very close) points are fused
into a single point. If False, a simple concatenation will result.

* xxkargs — Keyword arguments that are passed to the fuse operation.
Returns
* coords (Coords) — A single Coords with the coordinates of all (unique) points.

* index (list of int arrays) — A list of indices giving for each Coords in the input list the
position of its nodes in the merged output Coords.

Examples

>>> M1l = Mesh(eltype='quad4')
>>> Ml.coords

Coords ([[O., 0., 0.1,
[1., 0., 0.1,
1., 1., 0.1,
[0., 1., 0.11)
>>> M2 = Mesh(eltype="'tri3") .rot (90)
>>> M2.coords
Coords ([[O., 0., 0.1,
[0., 1., 0.1,
[-1., 0., 0.11)

>>> coords, index = mergeNodes ([Ml.coords, M2.coords])
>>> print (coords)
[[-1. 0. 0.]

(continues on next page)

6.1. Autoloaded modules 197

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

o - O
O O O

[-1
[-1
[-]

= P O O

[1. 0.]]
>>> print (index)
[array ([1, 3, 4, 2]), array([1l, 2, 0])]

mesh .mergeMeshes (meshes, fuse=True, **kargs)
Merge a list of Meshes to a single list of nodes.

Parameters
* meshes (1ist of Mesh instances)- The Meshes to be merged.

* fuse (bool) — If True (default), coinciding nodes will be fused to single nodes. If set
False, all original nodes are retained, only renumbered.

* xxkargs (other parameters to pass to the mergeNodes () method.) —
Returns
* coords (Coords) — The single list of nodal coordinates obtained from merging the Meshes.

* elems (/ist of Elems) — A list of Elems instances corresponding to those of the input Meshes,
but with numbers referring to the new (single) coords array.

Notes

This method cleverly detects if the input Meshes use the same coords block, and will not concatenate and
fuse these. The fuse parameter still might change the single coords. If you want to make sure that the coords
remains unaltered, either fuse the Meshes in advance, or use the fuse=False argument. See Examples in Mesh.
concatenate ().

mesh.line2 wts (seed0)
Weights for line2 subdivision.

Note: This is a helper function for the subdivide () method.

Parameters seedO (int or list of floats)- The subdivisions along the first parametric
direction of the element. If an int, the subdivisions will be equally spaced between 0 and 1

Examples

>>> line2_wts (4)

array ([[O. , 1. 1,
[0.25, 0.757,
[0.5, 0.5 1,
[0.75, 0.25]
[1. 0.]

4

mesh.line2_els (nx)
Connectivity table for line2 subdivision.

198 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Note: This is a helper function for the subdivide () method.

mesh.tri3_wts (ndiv)
Weights for tri3 subdivision.

Note: This is a helper function for the subdivide () method.

mesh.tri3 els (ndiv)
Connectivity table for tri3 subdivision.

Note: This is a helper function for the subdivide () method.

mesh.quad4_wts (seed0, seedl)
Weights for quad4 subdivision.

Note: This is a helper function for the subdivide () method.

Parameters

* seed0 (int or 1list of floats)-Subdivisions along the first parametric direction
of the element. If an int, the subdivisions are equally spaced between 0 and 1.

* seedl (int or list of floats)- Subdivisions along the second parametric direc-
tion of the element. If an int, the subdivisions are equally spaced between 0 and 1.

* is equivalent with ~arraytools.gridpoints (seed0, seedl) (This)

mesh.quad4_els (nx, ny)
Connectivity table for quad4 subdivision.

Note: This is a helper function for the subdivide () method.

The node numbers vary first in the x, then in the y direction.

mesh.hex8_wts (seed0, seedl, seed?)
Weights for hex8 subdivision.

Note: This is a helper function for the subdivide () method.

Parameters
* seed0 (seed) — Seed for the elements along the parametric direction 0.
* seedl (seed) — Seed for the elements along the parametric direction 1.

* seed2 (seed) — Seed for the elements along the parametric direction 2.

6.1. Autoloaded modules

199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

mesh.hex8_els (nx, ny, nz)
Connectivity table for hex8 subdivision.

Note: This is a helper function for the subdivide () method.

mesh.quadgrid (seed0, seedl, roll=0)
Create a quadrilateral mesh of unit size with the specified seeds.

Parameters
* seed0 (seed) — Seed for the elements along the parametric direction 0.
* seedl (seed) — Seed for the elements along the parametric direction 1.

* roll (int, optional)-If provided, the set of axis direction are rolled this number of
positions, allowing the quadgrid to be created in the (x,y), (y,z) or (z,x) plane.

Returns Mesh — A Mesh of Quad4 elements filling a unit square between the values 0 and 1 in
the two parametric directions (default x,y). The node and element numbers vary first in the
directionO, then in the direction 1.

mesh.rectangle (L=1.0, W=1.0, nl=1, nw=1)
Create a plane rectangular mesh of quad4 elements.

Parameters
* L (float)— The length of the rectangle.
* W(float) - The width of the rectangle.
* nl (seed) — The element seed along the length.
* nw (seed) — The element seed along the width.

Returns Mesh — A Mesh of eltype Quad4 representing a rectangular domain.

Notes

This is syntactical sugar for:

quadgrid(nl, nw) .resized([L, W, 1.0])

mesh.rectangleWithHole (L, W, r, nr, nl, nw=None)
Create a Mesh of quarter of a rectangle with a central circular hole.

Parameters
* L (float)- Length of the (quarter) rectangle.
* W(float)— Width of the (quarter) rectangle.
e r (float) - Radius of the hole.
e nr (seed) — The element seed in radial direction.
* nl (seed) — The element seed in tangential direction along L.

* nw (seed, optional) — The element seed in tangential direction along W. If not provided, it is
set equal to nl.

Returns Mesh — A Mesh of eltype Quad4 representing a quarter of a rectangular domain with a
central hole.

200 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

mesh.quadrilateral (x, nl, n2)
Create a quadrilateral mesh.

Parameters

e x (Coords (4, 3)) — The four corners of the mesh, in anti-clockwise order.

* nl (int)—The number of elements along the sides x0-x1 and x2-x3.

* n2 (int)— The number of elements along the sides x1-x2 and x3-x4.
Returns Mesh — A Mesh of quads filling the quadrilateral defined by the four points x.

mesh.continuousCurves (c0, cl)
Make two curves continuous.

Ensures that the end point of curve cO and the start point of curve cl are coincident.
Parameters
¢ c¢0 (Curve) - First Curve.

* ¢l (Curve) — Second Curve.

Note: This is done by replacing these two points with their mean value. If the points are originally far apart,
the curves may change shape considerably.

The curves are changed inplace! There is no return value.

mesh.triangleQuadMesh (PO, CO, n, POwgt=1.0)
Create a quad Mesh over a triangular region.

The triangle can have a single non-straight edge. The domain is described by a curve and a point. The curve
and the two straight lines between the curve ends and the point are the three lines bounding the domain. For
example, a circular sector is defined by a circular arc and the center of the circle.

Parameters
* PO (tuple of 3 floats)- The coordinates of a point.

* C (Curve) — A Curve defining one side of the domain. The other two sides are the lines
connecting the point with the curve endpoints.

* n(tuple of 3 ints) - Specifies the number of elements along the subdomain edges.
Near the point is a quad kernel with n0*n1 elements (n0O along the straight line to the start-
point of the curve, nl along the straight line to the endpoint of the curve. The boundary
zone near the curve has n0+nl elements along the curve, and n2 elements perpendicular to
the curve.

mesh.quarterCircle (nl, n2)
Create a mesh of quadrilaterals filling a quarter circle.

Parameters
* nl (int)— Number of elements along the edges 01 and 23
* n2 (int)— Number of elements along the edges 12 and 30

Returns Mesh — A ‘quad4’ Mesh filling a quarter circle with radius 1 and center at the origin, in the
first quadrant of the axes.

6.1. Autoloaded modules 201

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Notes

The quarter circle mesh has a kernel of n1*n1 cells, and two border meshes of n1*n2 cells. The resulting mesh
has n1+n2 cells in radial direction and 2*n1 cells in tangential direction (in the border mesh).

mesh.wedge6_roll (elems)
Roll wedge6 elems to make the lowest node of bottom plane the first

This is a helper function for the wedge6_tet 4 () conversion.

mesh.wedge6_tet4d (M)
Convert a Mesh from wedgeb6 to tet4

Converts a ‘wedge6’ Mesh to ‘tetd’, by replacing each wedge element with three tets. The conversion en-
sures that the subdivisions of the wedge elements are compatible in the common quad faces of any two wedge
elements.

Note: This is a helper function for the convert () method. It is better to use Mesh.convert(‘tet4’) instead of
calling this function directly.

Parameters M (Mesh) — A Mesh of eltype ‘wedge6’.

Returns Mesh — A Mesh of eltype ‘tet4’ representing the same domain as the input Mesh. The nodes
are the same as those of the input Mesh. The number of elements is three times that of the input
Mesh. The order of numbering of the elements is dependent on the conversion algorithm.

6.1.4 arraytools — A collection of nhumerical utilities.

This module contains a large collection of numerical utilities. Many of them are related to processing arrays. Some
are similar to existing NumPy functions but offer some extended functionality.

Note: While these functions were historically developed for pyFormex, this module only depends on numpy and can
be used outside of pyFormex without changes.

Variables defined in module arraytools

arraytools.Float = <class 'numpy.float32'>
Single-precision floating-point number type, compatible with C £ 1oat. Character code: ' £'. Canonical name:
np.single. Alias on this platform: np.float32: 32-bit-precision floating-point number type: sign bit, 8
bits exponent, 23 bits mantissa.

arraytools.Int = <class 'numpy.int32'>
Signed integer type, compatible with C int. Character code: '1i'. Canonical name: np.intc. Alias on this
platform: np . int 32: 32-bit signed integer (-2147483648 to 2147483647).

arraytools.DEG = 0.017453292519943295
multiplier to transform degrees to radians = pi/180.

Type float

arraytools.RAD = 1.0
multiplier to transform radians to radians

Type float

202 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

arraytools.golden_ratio = 1.618033988749895
golden ratio is defined as 0.5 * (1.0 + sqrt(5.))

Functions defined in module arraytools

arraytools.numpy_version ()
Return the numpy version as a tuple of ints.
This allow easy comparison with some required version.

Returns fuple — A tuple of three ints with the version of the loaded numpy module.

Examples

>>> numpy_version() > (1, 9, 2)
True

arraytools.isInt (obj)
Test if an object is an integer number.

Returns bool — True if the object is a single integer number (a Python int or a numpy . integer
type), else False.

Examples

>>> isInt (1)

True

>>> isInt (np.arange(3) [1])
True

arraytools.isFloat (0obj)
Test if an object is a floating point number.

Returns bool — True if the object is a single floating point number (a Python float or a numpy .
floating type), else False.

Examples

>>> isFloat (1.)

True

>>> isFloat (np.array([1l,2],dtype=np.float32)[1])
True

arraytools.isNum (obj)
Test if an object is an integer or a floating point number.

Returns bool — True if the object is a single integer or floating point number, else False. The type
of the object can be either a Python int or float or a numpy integer or floating.

Examples

6.1. Autoloaded modules 203

pyFormex Documentation, Release 2.2

>>> isNum (1)
True
>>> isNum(1.0)

True

>>> igsNum(np.array([1l,2],dtype=np.int32) [1])
True

>>> isNum(np.array([1l,2],dtype=np.float32)[1])
True

arraytools.checkInt (value, min=None, max=None)
Check that a value is an int in the range min..max.

Parameters
* value (int—-11ike)— The value to check.
* min (int, optional)-If provided, minimal value to be accepted.
* max (int, optional)-If provided, maximal value to be accepted.
Returns checked_int (inf) — An integer not exceeding the provided boundaries.

Raises ValueError: — If the value is not convertible to an integer type or exceeds one of the specified
boundaries.

Examples

>>> checkInt (1)

1

>>> checkInt (1, min=0,max=1)
1

>>> checkInt ('2',min=0)

2

arraytools.checkFloat (value, min=None, max=None)
Check that a value is a float in the range min..max.

Parameters
* value (float—-11ike)— The value to check
* min (float-like, optional)-If provided, minimal value to be accepted.
* max (float-1ike, optional)— If provided, maximal value to be accepted.
Returns checked_float (floar) — A float not exceeding the provided boundaries.

Raises ValueError: — If the value is not convertible to a float type or exceeds one of the specified
boundaries.

Examples

>>> checkFloat (1)

1.0

>>> checkFloat (1, min=0,max=1)
1.0

>>> checkFloat ('2',min=0)

2.0

204 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

arraytools.checkBroadcast (shapel, shape2)

Check that two array shapes are broadcast compatible.

In many numerical operations, NumPy will automatically broadcast arrays of different shapes to a single shape,
if they have broadcast compatible shapes. Two array shapes are broadcast compatible if, in all the last dimensions
that exist in both arrays, either the shape of both arrays has the same length, or one of the shapes has a length 1.

Parameters

* shapel (tuple of ints)- Shape of first array

* shape2 (tuple of ints)- Shape of second array

Returns ruple of ints — The broadcasted shape of the arrays.

Raises ValueError: Shapes are not broadcast compatible — If the two shapes can not be broadcast

to a single one.

Examples

>>> checkBroadcast ((8,1,6,1), (7,1,5))
(8, 7, 6, 5)

>>> checkBroadcast ((5,4), (1,))

(5, 4)

>>> checkBroadcast ((5,4), (4,))

(5, 4)

>>> checkBroadcast ((15,3,5), (15,1,5))
(15, 3, 5)

>>> checkBroadcast ((15,3,5), (3,5))
(15, 3, 5)

>>> checkBroadcast ((15,3,5), (3,1))
(15, 3, 5)

>>> checkBroadcast ((7,1,5), (8,1,6,1))
(8, 5)

arraytools.checkArray (a, shape=None, kind=None, allow=None, size=None, ndim=None,

bcast=None, subok=False, addaxis=False)

Check that an array a has the correct shape, type and/or size.

Parameters

* a (array_like) — An instance of a numpy.ndarray or a subclass thereof, or anything that can

be converted into a numpy array.

shape (tuple of ints, optional) — If provided, the shape of the array should
match this value along each axis for which a nonzero value is specified. The length of the
shape tuple should also match (unless addaxis=True is provided, see below).

kind (dtype.kind character code, optional) — If provided, the array’s
dtype.kind should match this value, or one of the values in allow, if provided.

allow (string of dtype.kind character codes, optional) — If pro-
vided, and kind is also specified, any of the specified array types will also be accepted
if it is convertible to the specified kind. See also Notes below.

size (int, optional)-If provided, the total array size should match this value.

ndim (int, optional)-If provided the input array should have exactly ndim dimen-
sions (unless addaxis=True is provided, see below).

6.1. Autoloaded modules

205

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* becast (tuple of ints, optional) — If provided, the array’s shape should be
broadcast comaptible with the specified shape.

* subok (bool, optional) - If True, the returned array is of the same class as the in-
put array a, if possible. If False (default), the returned array is always of the base type
numpy.ndarray.

* addaxis (bool, optional) — If False (default), and either ndim or shape are speci-
fied, the input array should have precisely the number of dimensions specified by ndim or
the length of shape. If True, an input array with less dimensions will automatically be trans-
formed by adding length 1 axes at the start of the shape tuple until the correct dimension is
reached.

Returns array — The checked_array is equivalent to the input data. It has the same contents and
shape. It also has the same type, unless kind is is provided, in which case the result is converted
to this type. If subok=True was provided, the returned array will be of the same array subclass
as the input a, if possible.

Raises ValueError: invalid array — The input data failed for one of more of the tests requested by
the provided parameters.

Notes

Currently, the only allowed conversion from an allow type to kind type, is to ‘f’. Thus specifiying
kind='f', allow='i"' will acceptinteger input but return float32 output.

See also:

checkArrayl1D ()

Examples

>>> checkArray ([1,2])

array ([1, 2])

>>> checkArray ([1,2],shape=(2,))

array ([1, 2])

>>> checkArray ([[1,2],[3,4]1],shape=(2,-1))
array ([[1, 21, [3, 411)

>>> checkArray ([1,2],kind="1")

array ([1l, 2])

>>> checkArray ([1,2],kind="f",allow="1")
array ([1., 2.1)

>>> checkArray ([1,2],size=2)

array ([1, 2])

>>> checkArray ([1,2],ndim=1)

array ([1, 2])

>>> checkArray ([[1,2],[3,4]1],bcast=(3,1,2))
array ([[1, 2], [3, 411)

>>> checkArray ([[1,2]1,[3,4]1]1,ndim=3, addaxis=True)

array ([[[1, 2],

[3, 4111)
>>> checkArray ([[1,2]1,1[3,4]11,shape=(-1,-1,2),addaxis=True)
array ([[[1, 2],

[3, 4111)

arraytools.checkArraylD (a, kind=None, allow=None, size=None)
Check and force an array to be 1D.

206 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

This is equivalent to calling checkArray () without the shape and ndim parameters, and then turning the
result into a 1D array.

:param See checkArray ().

Returns 1D array — The checked_array holds the same data as the input, but the shape is rveled to
1D. It also has the same type, unless kind is is provided, in which case the result is converted
to this type.

Examples

>>> checkArraylD([[1,2],[3,4]1]1,size=4)
array ([1, 2, 3, 41)

arraytools.checkUniqueNumbers (nrs, nmin=0, nmax=None)
Check that an array contains a set of unique integers in a given range.

This functions tests that all integer numbers in the array are within the range math:nmin <= i < nmax. Default
range is [O,unlimited].

Parameters
* nrs (array_like, int) — Input array with integers to check against provided limits.

e nmin (int or None, optional) - If not None, no value in a should be lower than
this.

* nmax (-) —
* nmax — If provided, no value in a should be higher than this.
Returns D int array — Containing the sorted unique numbers from the input.

Raises ValueError — If the numbers are not unique or some input value surpasses one of the
specified limmits.

Examples

>>> checkUniqueNumbers ([0,5,1,7,2])

array ([0, 1, 2, 5, 71)

>>> checkUniqueNumbers ([0,5,1,7,-2],nmin=None)
array([-2, 0, 1, 5, 71)

arraytools.growAxis (a, add, axis=-1, fill=0)
Increase the length of an array axis.

Parameters
* a (array_like) — The array in which to extend n axis.

* add (int) — The length over which the specified axis should grow. If add<=0, the array is
returned unchanged.

* axis (int)— Position of the target axis in the array. Default is last (-1).
e £ill (int or float)— Value to set the new elements along the grown axis to.

Returns array — Same type and data as a, but length of specified axis has been increased with a
value add and the new elements are filled with the value fill.

Raises ValueError: — If the specified axis exceeds the array dimensions.

6.1. Autoloaded modules 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples
>>> growAxis ([[1,2,3]1,14,5,611,2)
array ([[1, 2, 3, 0, 0],

[4, 5, 6, 0, 011)
>>> growAxis ([[1,2,3]1,[4,5,6]1]1,1,axis=0,£i11=-3)
array ([[1, 2, 3],

[4, 5, 6],

[-3, -3, =-311)
>>> growAxis([[1,2,3],[4,5,611,-1)
array ([[1, 2, 31,

[4, 5, 611])

arraytools.reorderAxis (a, order, axis=-1)
Reorder the planes of an array along the specified axis.

Parameters
* a (array_like) — The array in which to reorder the elements.

* order (int array_like | str) — Specifies how to reorder the elements. It can be an integer
index which should be a permutation of arange(a.shape[axis]). Each value in the index
specified the old index of the elements that should be placed at its position. This is equivalent
to a.take(order,axis).

order can also be one of the following predefined sting values, resulting in the corresponding
renumbering scheme being generated:

— ’reverse’: the elements along axis are placed in reverse order
— ’random’: the elements along axis are placed in random order

* axis (int)— The axis of the array along which the elements are to be reordered. Default
is last (-1).

Returns array — Same type and data as a, but the element planes are along axis have been reordered.

Examples

>>> reorderAXis([[llZIBJl[41516]]1 [21011])
array ([[3, 1, 21,
(6, 4, 511)

arraytools.reverseAxis (a, axis=-1)
Reverse the order of the elements along an axis.

Parameters
* a (array_like) — The array in which to reorder the elements.

* axis (int) — The axis of the array along which the elements are to be reordered. Default
is last (-1).

Returns array — Same type and data as a, but the elements along axis are now in reversed order.

Note: This function is especially useful if axis has a computed value. If the axis is known in advance, it is more
efficient to use an indexing operation. Thus reverseAxis(A,-1) is equivalent to A[...,::-1].

208 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> A = np.array([[1,2,3]1,[4,5,6]11)
>>> reverseAxis (A)
array ([[3, 2, 11,

[6, 5, 411)
>>> A[...,::-1]
array ([[3, 2, 11,

[6, 5, 411)

arraytools.interleave (qa, b)
Interleave two arrays along their first axis.

Parameters
* a (array_like) — First array

* b (array_like) — Second array, with same type and shape as a, except that the first dimension
may be one less than that of a, and if data type of b can be one that is convertible to that of
a.

Returns array — An array with interleaved rows from a and b. The array has the datatype of a and
its first axis has the combined length of that of a and b.

Examples
>>> interleave (np.arange(4), 10*np.arange(3))
array ([O, 0, 1, 10, 2, 20, 31)
>>> a = np.arange (8) .reshape (2, 4)
>>> print (interleave(a,10xa))
[T 0 1 2 3]
[0 10 20 30]
[4 5 6 7]
[40 50 60 7011

arraytools.multiplex (a, n, axis, warn=True)
Multiplex an array over a length n in direction of a new axis.

Inserts a new axis in the array at the specified position and repeats the data of the array » times in the direction
of the new axis.

Parameters
* a (array_like) — The input array.
* n (int)— Number of times to repeat the data in direction of axis.

* axis (int, optional)— Position of the new axis in the expanded array. Should be in
the range -a.ndim..a.ndim.

Returns array — An array with n times the original data repeated in the direction of the specified
axis.

See also:

repeatValues () Repeat values in a 1-dim array a number of times

6.1. Autoloaded modules 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> a = np.arange (6) .reshape (2, 3)
>>> print (a)
[[0 1 2]
[3 4 5]]
>>> print (multiplex(a,4,-1))
[[[0 0 0 O]
[1 11 1]
[2 2 2 2]]
<BLANKLINE>
[[3 3 3 3]
[4 4 4 4]
[5 55 5111
>>> print (multiplex(a,4,-2))
[[[0 1 2]
[0 1 2]
[0 1 2]
(01 2]]
<BLANKLINE>
[[3 4 5]
3 4 5]
4 5]
4 5]

11

arraytools.repeatValues (a, n)
Repeat values in a 1-dim array a number of times.

Parameters
* a (array_like, 1-dim) — The input array. Can be a list or a single element.

* n (int array_like, 1-dim) — Number of times to repeat the corresponding value of a. If n has
less elements than a, it is reused until the end of a is reached.

Returns array — An 1-dim array of the same dtype as a with the value a [i] repeated n [1i] times.

See also:

multiplex () Multiplex an array over a length n in direction of a new axis

Examples

>>> repeatValues (2, 3)

array ([2, 2, 2])

>>> repeatValues ([2,3],2)
array([2, 2, 3, 31)

>>> repeatValues([2,3,4]1,[2,3])
array ([2, 2, 3, 3, 3, 4, 41)
>>> repeatValues (1.6, [3,5])
array ([1.6, 1.6, 1.61)

arraytools.concat (al, axis=0)
Smart array concatenation ignoring empty arrays.

Parameters

* al (list of arrays)— All arrays should have same shape except for the length of the
concatenation axis, or be empty arrays.

210 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* axis (int)— The axis along which the arrays are concatenated.

Returns array — The concatenation of all non-empty arrays in the list, or an empty array if all arrays
in the list are empty.

Note: This is just like numpy.concatenate, but allows empty arrays in the list and silently ignores them.

Examples

>>> concat ([np.array([0,1]),np.array([]),np.array([2,3]1)1)
array ([0, 1, 2, 31)

arraytools.splitrange (n, nblk)
Split a range of integers 0..n in almost equal sized slices.

Parameters
* n (int)— Highest integer value in the range.
* nblk (int)— Number of blocks to split into. Should be <= n to allow splitting.

Returns /-dim int array — If nblk <= n, returns the boundaries that divide the integers in the range
0..n in nblk almost equal slices. The outer boundaries 0 and n are included, so the length of the
array is nblk+1. If nblk >= n, returns range(n+1), thus all slices have length 1.

Examples

>>> splitrange (7, 3)
array ([0, 2, 5, 71)

arraytools.splitar (a, nblk, axis=0, close=False)
Split an array in nblk subarrays along a given axis.

Parameters
* a (array_like) — Array to be divided in subarrays.

* nblk (int) — Number of subarrays to obtain. The subarrays will be of almost the same
size.

* axis (int:) — Axis along which to split the array (default 0)

* close (bool) - If True, the last item of each block will be repeated as the first item of the
next block.

Returns list of arrays — A list of subarrays obtained by splitting a along the specified axis. All arrays
have almost the same shape. The number of arrays is equal to nblk, unless nblk is larger than
a.shape[axis], in which case a a list with only the original array is returned.

Examples

>>> splitar (np.arange(7), 3)

[array ([0, 1]), array([2, 3, 4]1), array([5, 61)]

>>> gplitar(np.arange(7),3,close=True)

[array ([0, 1, 2]), array([2, 3, 41), array([4, 5, 6])]

(continues on next page)

6.1. Autoloaded modules 211

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> X = np.array ([[0.,1.,2.1,[3.,4.,5.11)

>>> splitar(X,2)

[array ([[O., 1., 2.11), arrav([[3., 4., 5.11)1
>>> splitar(X,2,axis=-1)

l[array ([[0., 1.1,
[3., 4.]11), array([[2.1,
[5.1]

111

>>> splitar (X, 3)

[array ([[O., 1., 2.1,
[3., 4., 5.11)1

arraytools.minmax (a, axis=-1)
Compute the minimum and maximum along an axis.

Parameters
* a (array_like) — The data array for which to compute the minimum and maximum.
* axis (int) - The array axis along which to compute the minimum and maximum.

Returns array — The array has the same dtype as a. It also has the same shape, except for the
specified axis, which will have a length of 2. The first value along this axis holds the minimum
value of the input, the second holds the maximum value.

Examples

>>> a = np.array([[[1.,0.,0.1, [O.,
.. [[2.,0.,0.], [0.,2.,
>>> print (minmax (a,axis=1))

o

[[[0. 0. 0.]

[1. 1. 0.]]
<BLANKLINE>

([0. 0. 0.]

[2. 2. 0.]1]]

arraytools.stretch (a, min=None, max=None, axis=None)
Scale the values of an array to fill a given range.

Parameters
* a (array_like, int or float) — Input data.

* min (int or float, optional)— The targeted minimum value in the array. Same
type as a. If not provided, the minimum of a is used.

* max (int or float, optional)- The targeted maximum value in the array. Same
type as a. If not provided, the maximum of a is used.

* axis (int, optional) - If provided, each slice along the specified axis is indepen-
dently scaled.

Returns array — Array of the same type and size as the input array, but in which the values have
been linearly scaled to fill the specified range.

212 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> stretch([1.,2.,3.],min=0,max=1)
array ([0. , 0.5, 1. 1)
>>> A = np.arange (6) .reshape (2, 3)
>>> stretch (A, min=20,max=30)
array ([[20, 22, 247,

[26, 28, 3011)
>>> stretch (A, min=20,max=30,axis=1)
array ([[20, 25, 307,

[20, 25, 3011)
>>> stretch (A, max=30)
array ([[0, 6, 12],

[18, 24, 3011])

>>> stretch (A, min=2,axis=1)
array([[2, 4, 5],
[2, 4, 511)
>>> stretch(A.astype(Float),min=2,axis=1)
array ([[2. , 3.5, 5. 1,
[2., 3.5, 5. 11)

arraytools.stringar (s, a)
Nicely format a string followed by an array.

Parameters
* s (str) - String to appear before the formatted array
* a (array)— Array to be formatted after the string, with proper vertical alignment

Returns st — A multiline string where the first line consists of the string s and the first line of the
formatted array, and the next lines hold the remainder of the array lines, properly indented to
align with the first line of the array.

Examples
>>> print (stringar ("Indented array: ",np.arange(4).reshape(2,2)))
Indented array: [[0 1]

(2 311

arraytools.array2str (a)
String representation of an array.

This creates a string representation of an array. It is visually equivalent with numpy.ndarray.__repr__ without
the dtype, except for ‘uint.” types.

Note: This function can be used to set the default string representation of numpy arrays, using the following:

import numpy as np
np.set_string_function (array2str)

To reset it to the default, do:

np.set_string_function (None)

6.1. Autoloaded modules 213

https://docs.python.org/3/library/stdtypes.html#str
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

Because this reference manual was created with the default numpy routine replaced with ours, you will never

see the dtype, except for uint types. See also the examples below.

Parameters a (array)— Any numpy .ndarray object.
Returns
» The string representation of the array as created by its

* _ repr___ method, except that the dtype is left away.

Examples

>>> a = np.arange (5) .astype (np.1int8)
>>> print (array2str(a))

array ([0, 1, 2, 3, 41)

>>> g

array ([0, 1, 2, 3, 41)

Reset the numpy string function to its default. >>> np.set_string_function(None) >>> a array([0, 1, 2, 3, 4],
dtype=int8)

Change back to ours. >>> np.set_string_function(array2str) >>> a array([0, 1, 2, 3, 4])

arraytools.printar (s, a)

Print a string followed by a vertically aligned array.
Parameters
* s (str)— String to appear before the formatted array

* a(array)— Array to be formatted after the string, with proper vertical alignment

Note: This is a shorthand for print (stringar (s, a)).

Examples
>>> printar ("Indented array: ",np.arange (4).reshape(2,2))
Indented array: [[0 1]

[2 31]

arraytools.writeArray (fil, array, sep="")

Write an array to an open file.
This uses numpy .tofile () to write an array to an open file.
Parameters
e fil (file or str)— Open file object or filename.
* array (array_like) — The array to write to the file.

* sep (str)—If empty, the array is written in binary mode. If not empty, the array is written
in text mode, with this string as separator between the elements.

See also:

readArray ()

214

Chapter 6. pyFormex reference manual

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

arraytools.readArray (fil, dtype, shape, sep="")
Read data for an array with known size and type from an open file.

This uses numpy . fromfile () toread an array with known shape and data type from an open file.
Parameters
e fil (file or str)-—Open file object or filename.
* dtype (data-type) — Data type of the array to be read.
* shape (tuple of ints)- The shape of the array to be read.

* sep (str) — If not empty, the array is read in text mode, with this string as separator
between the elements. If empty, the array is read in binary mode and an extra ‘n’ after the
data will be stripped off

See also:
writeArray ()

arraytools.powers (x, n)
Compute all the powers of x from zero up to n.

Parameters

e x(int, float or array (int,float))-The number or numbers to be raised to
the specified powers.

* n (int)— Maximal power to raise the numbers to.

Returns powers (l/ist) — A list of numbers or arrays of the same shape and type as the input. The list
contains N+1 items, being the input raised to the powers in range (n+1).

Examples

>>> powers(2,5)
[1, 2, 4, 8, 16, 32]

>>> powers (np.array([1.0,2.01),5)
[array ([1., 1.1), array([1., 2.1), array ([1., 4.1y, array ([1., 8.1),.
—array ([1., 16.]1), array([1., 32.1)1

arraytools.sind (arg, angle_spec=0.017453292519943295)
Return the sine of an angle in degrees.

Parameters

* arg (float number or array)- Angle(s) for which the sine is to be returned. By
default, angles are specified in degrees (see angle_spec).

* angle_spec (DEG, RAD or float) — Multiplier to apply to arg before taking the sine. The
default multiplier DEG makes the argument being intrepreted as an angle in degrees. Use
RAD when angles are specified in radians.

Returns float number or array — The sine of the input angle(s)

See also:

cosd (), tand(),arcsind(),arccosd(), arctand(), arctand2 ()

6.1. Autoloaded modules 215

https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

Examples

>>> print (sind(30), sind(pi/6,RAD))

0.5 0.5
>>> sind(np.array([0.,30.,45.,60.,90.1))
array([0. , 0.5, 0.7, 0.87, 1. 1)

arraytools.cosd (arg, angle_spec=0.017453292519943295)
Return the cosine of an angle in degrees.

Parameters

* arg(float number or array)-— Angle(s)for which the cosine is to be returned. By
default, angles are specified in degrees (see angle_spec).

* angle_spec (DEG, RAD or float) — Multiplier to apply to arg before taking the sine. The
default multiplier DEG makes the argument being intrepreted as an angle in degrees. Use
RAD when angles are specified in radians.

Returns float number or array — The cosine of the input angle(s)
See also:

sind(), tand(),arcsind(),arccosd (), arctand (), arctand2 ()

Examples

>>> print (cosd(60), cosd(pi/3,RAD))
0.5 0.5

arraytools.tand (arg, angle_spec=0.017453292519943295)
Return the tangens of an angle in degrees.

Parameters

* arg (float number or array) - Angle(s) for which the tangens is to be returned.
By default, angles are specified in degrees (see angle_spec).

* angle_spec (DEG, RAD or float) — Multiplier to apply to arg before taking the sine. The
default multiplier DEG makes the argument being intrepreted as an angle in degrees. Use
RAD when angles are specified in radians.

Returns float number or array — The tangens of the input angle(s)
See also:

sind(),cosd(),arcsind(),arccosd(), arctand(), arctand2 ()

Examples

>>> print (tand(45), tand(pi/4,RAD))
1.0 1.0

arraytools.arecsind (arg, angle_spec=0.017453292519943295)
Return the angle whose sine is equal to the argument.

Parameters

216 Chapter 6. pyFormex reference manual

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

* arg (float number or array, in the range —-1.0 to 1.0.) — Value(s)
for which to return the arcsine.

* angle_spec (DEG, RAD or float, nonzero.) — Divisor applied to the resulting angles
before returning. The default divisor DEG makes the angles be returned in degrees. Use
RAD to get angles in radians.

Returns float number or array — The angle(s) for which the input value(s) is/are the cosine. The
default angle_spec=DEG returns values in the range -90 to +90.

See also:

sind(),cosd(), tand (), arccosd(),arctand (), arctand2()

Examples

>>> print (f"{arcsind(0.5):.1f} {arcsind(1.0,RAD):.4£f}")
30.0 1.5708

>>> arcsind(-1)

-90.0

>>> arcsind (1)

90.0

arraytools.arccosd (arg, angle_spec=0.017453292519943295)
Return the angle whose cosine is equal to the argument.

Parameters

* arg (float number or array, 1in the range -1.0 to 1.0.) — Value(s)
for which to return the arccos.

* angle_spec (DEG, RAD or float, nonzero.) — Divisor applied to the resulting angles
before returning. The default divisor DEG makes the angles be returned in degrees. Use
RAD to get angles in radians.

Returns float number or array — The angle(s) for which the input value(s) is/are the cosine. The
default angle_spec=DEG returns values in the range 0 to 180.

See also:

sind(), cosd(),tand(),arcsind(),arctand (), arctand2()

Examples

>>> print (f"{arccosd(0.5):.1f} {arccosd(-1.0,RAD):.4f}")
60.0 3.1416

>>> arccosd(np.array([-1,0,11))

array ([180., 90., 0.1)

arraytools.arctand (arg, angle_spec=0.017453292519943295)
Return the angle whose tangens is equal to the argument.

Parameters
* arg (float number or array.)- Value(s) for which to return the arctan.

* angle_spec (DEG, RAD or float, nonzero.) — Divisor applied to the resulting angles
before returning. The default divisor DEG makes the angles be returned in degrees. Use
RAD to get angles in radians.

6.1. Autoloaded modules 217

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

Returns float number or array — The angle(s) for which the input value(s) is/are the tangens. The
default angle_spec=DEG returns values in the range -90 to +90.

See also:

sind(),cosd(), tand (), arcsind(),arccosd (), arctand2()

Examples

>>> print (f"{arctand(1.0):.1f} {arctand(-1.0,RAD):.4f}")
45.0 -0.7854

>>> arctand(np.array([-np.inf,-1,0,1,np.inf]))

array ([-90., -45., 0., 45., 90.7)

arraytools.arctand2 (sin, cos, angle_spec=0.017453292519943295)

Return the angle whose sine and cosine values are given.

Parameters

* sin (float number or array with same shape as cos.) — Sine value(s) for which to return
the corresponding angle.

* cos (float number or array with same shape as sin) — Cosine value(s) for which to return
the corresponding angle.

* angle_spec (DEG, RAD or float, nonzero.) — Divisor applied to the resulting angles
before returning. The default divisor DEG makes the angles be returned in degrees. Use
RAD to get angles in radians.

Returns float number or array with same shape as sin and cos. — The angle(s) for which the input

value(s) are the sine and cosine. The default angle_spec=DEG returns values in the range
[-180, 180].

Note: The input values sin and cos are not restricted to the [-1.,1.] range. The returned angle is that for
which the tangens is given by sin/cos, but with a sine and cosine that have the same sign as the sin and cos
values.

See also:

sind(), cosd(),tand(),arcsind (), arccosd(),arctand()

Examples

>>> print (f"{arctand2(0.0,-1.0):.1£f} "
C. f"{arctand2 (-sqrt (0.5),-sqrt (0.5),RAD) : .4£f}")
180.0 -2.3562

>>> arctand2 (np.array([0., 1., 0., -1.1), np.array([1., 0., 1., 0.1))
array ([0., 90., 180., -90.]

>>> arctand2(2.,2.)

45.0

arraytools.niceLogSize (f)

Return an integer estimate of the magnitude of a float number.

Parameters £ (f1oat)— Value for which the integer magnitude has to be computed. The sign of
the value is disregarded.

218

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Returns int — An integer magnitude estimator for the input.

Note: The returned value is the smallest integer e such that 10+xe > abs (f). If positive, it is equal to

the number of digits before the decimal point; if negative, it is equal to the number of leading zeros after the
decimal point.

See also:

nicenumber ()

Examples

>>> print ([nicelogSize(a) for a in [1.3, 35679.23, 0.4, 0.0004567, -1.3]1 1)
[lr 5/ OI 73/ l]

arraytools.niceNumber (f, round=<ufunc ’ceil’>)
Return a nice number close to abs(f).

A nice number is a number which only has only one significant digit (in the decimal system).

Parameters

* £ (float) — A float number to approximate with a nice number. The sign of f is disre-
garded.

* round (callable)— A function that rounds a float to the nearest integer. Useful functions

are ceil, floor and round from either NumPy or Python’s math module. Default is
numpy.ceil.

Returns float — A float value close to the input value, but having only a single decimal digit.

Examples

>>> numbers = [0.0837, 0.867, 8.5, 83.7, 93.7]
>>> [str(niceNumber (f)) for f in numbers]
[*o.o09', 'o0.9', '9.0', '90.0', '100.0"]

>>> [str(niceNumber (f, round=np.floor)) for f in numbers]

[ro.os', 'o.8', 's.0', '80.0', '90.0"]

>>> [str(niceNumber (f, round=np.round)) for f in numbers]
]

[‘o.o8', 'o.9, 's.0"', 'so0.0', '90.0"

arraytools.isqrt (n)
Compute the square root of an integer number.

Parameters n (int)— An integer number that is a perfect square.
Returns int — The square root from the input number

Raises ValueError: — If the input integer is not a perfect square.

Examples

>>> isqrt (36)
6

6.1. Autoloaded modules 219

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

arraytools.dotpr (A, B, axis=-1)
Return the dot product of vectors of A and B in the direction of axis.

Parameters
* A (float array_like) — Array containing vectors in the direction of axis.

* B (float array_like) — Array containing vectors in the direction of axis. Same shape as A, or
broadcast-compatible.

* axis (int)— Axis of A and B in which direction the vectors are layed out. Default is the
last axis. A and B should have the same length along this axis.

Returns float array, shape as A and B with axis direction removed. — The elements contain the dot
product of the vectors of A and B at that position.

Note: This multiplies the elements of the A and B and then sums them in the direction of the specified axis.

Examples

>>> A = np.array([[1.0, 1.0], [1.0,-1.0], [0.0, 5.0171)
>>> B = np.array([[5.0, 3.0], [2.0, 3.0], [1.33,2.0]])
>>> print (dotpr (A,B))

[8. =1. 10.]
>>> print (dotpr(A,B,0))
[7. 10.]

arraytools.length (A, axis=-1)
Returns the length of the vectors of A in the direction of axis.

Parameters
* A (float array_like) — Array containing vectors in the direction of axis.

* axis (int) — Axis of A in which direction the vectors are layed out. Default is the last
axis. A and B shoud have the same length along this axis.

Returns float array, shape of A with axis direction removed. — The elements contain the length of
the vector in A at that position.

Note: This is equivalent with sgrt (dotpr (A,A)).

Examples

>>> A = np.array([[1.0, 1.0], [1.0,-1.01, [0.0, 5.011)
>>> print (length (A))

[1.41 1.41 5.]

>>> print (length (A, 0))

[1.41 5.2]

arraytools.normalize (A, axis=-1, on_zeros='n’, return_length=False, ignore_zeros=False)
Normalize the vectors of A in the direction of axis.

Parameters

220 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* A (float array_like) — Array containing vectors in the direction of axis.

* axis (int)— Axis of A in which direction the vectors are layed out.

* on_zeros ('n', 'e' or 'i')- Specifies how to treat occurrences of zero length

vectors (having all components equal to zero):
— ’n’: return a vector of nan values
— ’¢’: raise a ValueError
— ’i’: ignore zero vectors and return them as such.
* return_length (bool)—If True, also returns also the length of the original vectors.
* ignore_zeros (bool)— (Deprecated) Equivalent to specifying on_zeros="1i".
Returns

* norm (float array) — Array with same shape as A but where each vector along axis has been
rescaled so that its length is 1.

* len (float array, optional) — Array with shape like A but with axis removed. The length
of the original vectors in the direction of axis. Only returned if return_length=True
provided.

Raises ValueError: Can not normalize zero-length vector — If any of the vectors of B is a zero vector.

Examples
>>> A = np.array([[3.0, 3.0], [4.0,-3.0], [0.0, 0.011)
>>> print (normalize (A))
[[0.71 0.71]
[0.8 -0.6]
[nan nan]]
>>> print (normalize (A,on_zeros="1"))
[[0.71 0.71]
[0.8 -0.6]
[0. 0. 1]
>>> print (normalize (A,0))
[[0.6 0.71]
[0.8 -0.71]
[0. 0. 1]
>>> n,1l = normalize (A, return_length=True)
>>> print (n)
[[0.71 0.71]
[0.8 -0.6]
[nan nan]]
>>> print (1)
[4.24 5. 0.]

arraytools.projection (A, B, axis=-1)
Return the (signed) length of the projection of vectors of A on B.

Parameters
* A (float array_like) — Array containing vectors in the direction of axis.

* B (float array_like) — Array containing vectors in the direction of axis. Same shape as A, or
broadcast-compatible.

6.1. Autoloaded modules

221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

* axis (int)— Axis of A and B in which direction the vectors are layed out. Default is the
last axis. A and B should have the same length along this axis.

Returns float array, shape as A and B with axis direction removed. — The elements contain the
length of the projections of vectors of A on the directions of the corresponding vectors of B.

Raises ValueError: Can not normalize zero-length vector — If any of the vectors of B is a zero vector.

Note: This returns dotpr (A, normalize (B)).

Examples

>>> A = [[2.,0.]
>>> projection (A,
array ([2., 1., 0.
>>> projection
array ([1.41,

>>> projection
array ([2.12, 0.

— =~

1.1,[1.1,10.11,axis=0)

arraytools.parallel (A, B, axis=-1)
Return the component of vector of A that is parallel to B.

Parameters
* B (4,) — Broadcast compatible arrays containing vectors in the direction of axis.

* axis (int)— Axis of A and B in which direction the vectors are layed out. Default is the
last axis. A and B should have the same dimension along this axis.

Returns float array, same shape as A and B. — The vectors in the axis direction are the vectors of A
projected on the direction of the corresponding vectors of B.

See also:
orthog/()
Examples
>> A = [[2.,0.],[1.,1.],[0.,1.11]
>>> parallel(A,[1.,0.])
array ([[2., 0.1,
[1., 0.7,
[0., 0.1D)
>>> parallel (A,RA)
array ([[2., 0.1,
[1., 1.1,
[0., 1.11)
>>> parallel (A, [[1.],[1.]1,[0.1]1,axis=0)
array ([[1.5, 0.571,
[1.5, 0.57],
[0., 0.101

arraytools.orthog (A, B, axis=-1)
Return the component of vector of A that is orthogonal to B.

Parameters

222 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* A (float array_like) — Array containing vectors in the direction of axis.

* B (float array_like) — Array containing vectors in the direction of axis. Same shape as A, or
broadcast-compatible.

* axis (int)— Axis of A and B in which direction the vectors are layed out. Default is the
last axis. A and B should have the same length along this axis.

Returns float array, same shape as A and B. — The vectors in the axis direction are the components
of the vectors of A orthogonal to the direction of the corresponding vectors of B.

See also:

parallel ()

Examples

>>> A = [[2.,0.1,
>>> orthog(a, [1.,
array ([[0., 0.]
[0., 1.]
[0., 1.]
>>> orthog([
array ([[O.
[-0.
[O.

A, [[1
5, -0
5, 0.

1

’

arraytools.inside (p, mi, ma)
Return true if point p is inside bbox defined by points mi and ma.

Parameters
* p (float array_like with shape (ndim,)) — Point to test against the boundaries.
* mi (float array_like with shape (ndim,)) — Minimum values for the components of p
* ma (float array_like with shape (ndim,)) — Maximum values for the components of p

Returns bool — True is all components are inside the specified limits, limits included. This means
that the n-dimensional point p lies within the n-dimensional rectangular bounding box defined
by the two n-dimensional points (mi,ma).

Examples

>>> inside([0.5,0.5],[0.,0.1,[1.,1.1)
True

>>> inside([0.,1.]1,10.,0.1,([1.,1.])
True

>>> inside([0.,1.1]1,10.,0.1,[1.,1.1)
False

arraytools.unitVector (v)
Return a unit vector in the direction of v.

Parameters v (a single integer or a (3,) shaped float array_like) — If an int, it specifies one of the
global axes (0,1,2). Else, it is a vector in 3D space.

Returns (3,) shaped float array — A unit vector along the specified direction.

6.1. Autoloaded modules 223

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> unitVector (1)

array ([0., 1., 0.]1)

>>> unitVector ([0.,3.,4.])
array ([0. , 0.6, 0.81])

arraytools.rotationMatrix (angle, axis=None, angle_spec=0.017453292519943295)
Create a 2D or 3D rotation matrix over angle, optionally around axis.

Parameters
* angle (float)— Rotation angle, by default in degrees.

* axis (int or (3,) float array_like, optional) — If not provided, a 2D rotation matrix is re-
turned. If provided, it specifies the rotation axis in a 3D world. It is either one of 0,1,2,
specifying a global axis, or a vector with 3 components specifying an axis through the ori-
gin. The returned matrix is 3D.

* angle_spec (float, DEG or RAD, optional) - The default (DEG) interpretes
the angle in degrees. Use RAD to specify the angle in radians.

Returns float array — Rotation matrix which will rotate a vector over the specified angle. Shape is
(3,3) if axis is specified, or (2,2) if not.

See also:

rotationMatrix3 () subsequent rotation around 3 axes

rotmat () rotation matrix specified by three points in space

trfmat () transformation matrix to transform 3 points

rotMatrix () rotation matrix transforming global axis 0 into a given vector

rotMatrix2 () rotation matrix that transforms one vector into another

Examples

>>> rotationMatrix (30.,1)
array ([[0.87, 0. , —0.5
ro. , 1. , 0.

]
] r
[0.5, 0. , 0.8711)
>>> rotationMatrix (45.,[1.,1.,0.1)
array([[0.85, 0.15, -0.5 1,
[0.15, 0.85, 0.5 17,
[0.5, -0.5, 0.7111)

arraytools.rotationMatrix3 (rx, ry, rz, angle_spec=0.017453292519943295)
Create a rotation matrix defined by three angles.

This applies successive rotations about the 0, 1 and 2 axes, over the angles rx, ry and rz, respectively. These
angles are also known as the cardan angles.

Parameters
* rx (float)— Rotation angle around the O axis.
* ry (float)— Rotation angle around the 1 axis.

* rz (float)— Rotation angle around the 2 axis.

224 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

* angle_spec (float, DEG or RAD, optional)— The default (DEG) interpretes
the angles in degrees. Use RAD to specify the angle in radians.

Returns float array (3,3) — Rotation matrix that performs the combined rotation equivalent to sub-
sequent rotations around the three global axes.

See also:

rotationMatrix () rotation matrix specified by an axis and angle

cardanAngles () find cardan angles that produce a given rotation matrix

Examples

>>> rotationMatrix3(60,45,30)
array([[0.61, 0.35, -0.71],
[0.28, 0.74, 0.61],
[0.74, -0.57, 0.35]1)

arraytools.cardanAngles (R, angle_spec=0.017453292519943295)
Compute cardan angles from rotation matrix

Computes the angles over which to rotate subsequently around the 0-axis, the 1-axis and the 2-axis to obtain the
rotation corresponding to the given rotation matrix.

Parameters
* R ((3,3) float array_like) — Rotation matrix for post multiplication (see Notes)

* angle_spec (DEG, RAD or float, nonzero.) — Divisor applied to the resulting angles
before returning. The default divisor DEG makes the angles be returned in degrees. Use
RAD to get angles in radians.

Returns (rx,ry,rz) (tuple of floats) — The three rotation angles around that when applied subse-
quently around the global 0, 1 and 2 axes, yield the same rotation as the input. The default
angle_spec=DEG returns the angles in degrees.

Notes

The returned angles are but one of many ways to obtain a given rotation by three subsequent rotations around
frame axes. Look on the web for ‘Euler angles’ to get comprehensive information. Different sets of angles can
be obtained depending on the sequence of rotation axes used, and whether fixed axes (extrinsic) or rotated axes

(intrinsic) are used in subsequent rotations. The here obtained ‘cardan’ angles are commonly denoted as a zy’x
system with intrinsic angles or xyz with extrinsic angles. It is the latter angles that are returned.

Because pyFormex stores rotation matrices as post-multiplication matrices (to be applied on row-vectors), the
combined rotation around first the 0-axis, then the 1-axis and finally the 2-axis, is found as the matrix prod-
uct Rx.Ry.Rz. (Traditionally, vectors were often written as column matrices, and rotation matrices were pre-
multiplication matrices, so the subsequent rotation matrices would have to be multiplied in reverse order.)

Even if one chooses a single frame system for the subsequent rotations, the resulting angles are not unique.
There are infinitely many sets of angles that will result in the same rotation matrix. The implementation here
results in angles rx and rz in the range [-pi,pi], while the angle ry will be in [-pi/2,pi/2]. Even then, there remain
infinite solutions in the case where the elements R[0,2] == R[2,0] equal +1 or -1 (ry = +pi/2 or -pi/2). The result
will then be the solution with rx==0.

6.1. Autoloaded modules 225

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples

>>> print (" "x3 % cardanAngles (rotationMatrix3(60,45,30)))
60.00 45.00 30.00

>>> print (" "x3 % cardanAngles (rotationMatrix3(0,90,77)))
0.00 90.00 77.00

>>> print (" "x3 % cardanAngles (rotationMatrix3(0,-90,30)))
0.00 -90.00 30.00

But:

>>> print (" "x3 % cardanAngles (rotationMatrix3(20,-90,30)))
0.00 -90.00 50.00

arraytools.rotmat (x)

Create a rotation matrix defined by 3 points in space.

Parameters x (array_like (3,3)) — The rows contain the coordinates in 3D space of three non-

colinear points x0, x1, x2.

Returns

rotmat (matrix(3,3)) — Rotation matrix which transforms the global axes into a new (orthonor-

mal) coordinate system with the following properties:
* the origin is at point x0,

* the 0 axis is along the direction x1-x0

* the 1 axis is in the plane (x0,x1,x2) with x2 lying at the positive side.

Notes

The rows of the rotation matrix represent the unit vectors of the resulting

coordinate system. The coodinates

in the rotated axes of any point are obtained by the reverse transformation, i.e. multiplying the point with the

transpose of the rotation matrix.

See also:

rotationMatrix () rotation matrix specified by angle and axis

trfmat () transformation matrices defined by 2 sets of 3 points

rotMatrix () rotation matrix transforming global axis O into a given vector

rotMatrix2 () rotation matrix that transforms one vector into another

Examples

>>> rotmat ([[0,0,0],([1,0,0],[0,1,011)
array ([[1., 0., 0.7,
[o., 1., 0.1,
[0., 0., 1.11)
>>> rotmat (np.eye (3,3))
array ([[-0.71, 0.71, 0. 1,
[-0.41, -0.41, 0.82],
[0.58, 0.58, 0.5811])
>>> s,c = sind(30),cosd(30)

(continues on next page)

226

Chapter 6

. pyFormex reference manual

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> R = rotmat ([[0,0,0],[c,s,0],10,1,011)
>>> print (R)

[[0.87 0.5 0.]

[-0.5 0.87 0.]

[0. -0. 1. 1]

2

>>> B = np.array([[2.,0.,0.]1,[3*s,3xc,311)
>>> D = np.dot (B,R) # Rotate some vectors with the matrix R
>>> print (D)
[[1.73 1. 0.]
[-0. 3. 3. 1]

arraytools.trfmat (x,y)
Find the transformation matrices from 3 points x into y.

Constructs the rotation matrix and translation vector that will transform the points x thus that:
¢ point x0 coincides with point y0,
* line x0,x1 coincides with line y0,y1

¢ plane x0,x1,x2 coincides with plane y0,y1,y2

Parameters
* x (float array_like (3,3)) — Original coordinates of three non-colinear points.
* y (float array_like (3,3)) — Final coordinates of the three points.
Returns
* rot (float array (3,3)) — The rotation matrix for the transformation x to y.
* trf — float array(3,) The translation vector for the transformation x to y, Obviously, this is

equal to y0-x0.

The rotation is to be applied first and should be around the first point x0. The full transformation of a Coords
object is thus obtained by (coords-x0) xrot+trl+x0 = coords*rot+ (trl+x0-x0*rot).

Examples

>>> R, T = trfmat (np.eye(3,3), [10,0,0],[1,0,0]1,[0,1,011)
>>> print (R)
[[-0.71 -0.41 0.58]
[0.71 -0.41 0.58]
[0. 0.82 0.58]]
>>> print (T)
[0.71 0.41 -0.58]

arraytools.rotMatrix (u, w=/0.0, 0.0, 1.0])
Create a rotation matrix that rotates global axis O to a given vector.

Parameters

* u ((3,) array_like) — Vector specifying the direction to which the global axis 0 should be
rotated by the returned rotation matrix.

* w((3,) array_like) — Vector that is not parallel to u. This vector is used to uniquely define the
resulting rotation. It will be equivalen to rotating first around w, until the target u lies in the

6.1. Autoloaded modules 227

pyFormex Documentation, Release 2.2

plane of the rotated axis 0 and w, then rotated in that plane until the rotated axis 0 coincides
with u. See also Note. If a parallel w is provided, it will be replaced with a non-parallel one.

Returns float array (3,3) — Rotation matrix that transforms a vector [1.,0.,0.] into u. The returned
matrix should be used in postmultiplication to the coordinates.

See also:

rotMatrix2 () rotation matrix that transforms one vector into another
rotationMatrix () rotation matrix specified by an axis and angle
rotmat () rotation matrix specified by three points in space

trfmat () rotation and translation matrix that transform three points

Examples
>>> rotMatrix ([1,0,0])
array ([[1., 0., 0.1,
[o., 1., 0.1,
[0., 0., 1.11)
>>> rotMatrix ([0,1,0])
array ([[0., 1., 0.7,
[-1., 0., 0.7,
[0., =0., 1.11)
>>> rotMatrix ([0,0,1])
array([[0., 0., 1.7,
(1., 0., 0.1,
[0., 1., 0.11)
>>> rotMatrix ([0,1,1])
array ([[O. , 0.71, 0.7171,

[-1. 0. , 0. 1,
[o. , -0.71, 0.7111)
>>> rotMatrix ([1,0,1])
array ([[0.71, 0. , 0.7171,
ro. , 1. , 0. 1,
[-0.71, 0. , 0.7111)
>>> rotMatrix ([1,1,0])
array ([[0.71, 0.71, 0. 1,
[-0.71, 0.71, 0.]

ro. , -0. , 1 11)
>>> rotMatrix ([1,1,1])
array ([[0.58, 0.58, 0.587,
[-0.71, 0.71, 0. 1,
[-0.41, -0.41, 0.8211])

>>> np.dot ([1,0,0], rotMatrix([1l,1,11))
array ([0.58, 0.58, 0.58])

arraytools.rotMatrix2 (vecl, vec2, upvec=None)
Create a rotation matrix that rotates a vector vecl to vec2.

Parameters
» vecl ((3,) array_like) — Original vector.

* vec2 ((3,) array_like) — Direction of vec1 after rotation.

228 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* upvec ((3,) array_like, optional) — If provided, the rotation matrix will be such that the
plane of vec2 and the rotated upvec will be parallel to the original upvec. If not provided,
the rotation matrix will perform a rotation around the normal to the plane ov the two vectors.

Returns float array (3,3) — Rotation matrix that transforms a vector [1.,0.,0.] into u. The returned
matrix should be used in postmultiplication to the coordinates.

See also:

rotMatrix () rotation matrix transforming global axis O into a given vector
rotationMatrix () rotation matrix specified by an axis and angle
rotmat () rotation matrix specified by three points in space

trfmat () rotation and translation matrix that transform three points

Examples
>>> rotMatrix2([1,0,0],[1,0,01)
array ([[1., 0., 0.7,

[o., 1., 0.1,

[0., 0., 1.11)
>>> rotMatrix2([1,0,0],[0,1,01)
array ([[0., 1., 0.1,

[-1., 0., 0.7,

[0., 0., 1.11)
>>> rotMatrix2([1,0,0],[0,0,11)
array ([[0., 0., 1.1,

[o., 1., 0.1,

[-1., 0., 0.11)
>>> rotMatrix2([1,0,0]1,[0,1,11)
array ([[O. , 0.71, 0.7171,

[-0.71, 0.5, -0.51,

[-0.71, -0.5 , 0.5 11)
>>> rotMatrix2([1,0,0]1,[1,0,11)
array ([[0.71, 0. , 0.711,

[0. , 1. 0. 1,

[-0.71, 0. , 0.7117)
>>> rotMatrix2([1,0,0],[1,1,01])
array ([[0.71, 0.71, 0 1,

[-0.71, 0.71, 0 1,

[o. , 0. , 1. 101
>>> rotMatrix2([1,0,0],([1,1,11)
array ([[0.58, 0.58, 0.58],

[-0.58, 0.79, -0.217,

[-0.58, -0.21, 0.7911)
>>> rotMatrix2([1,0,0],[1,0,01,[0,0,11)
array ([[1., 0., 0.7,

[o., 1., 0.1,

[0., 0., 1.11)
>>> rotMatrix2([1,0,01,([0,1,01,[0,0,1])
array ([[0., 1., 0.7,

[-1., 0., 0.7,

[0., 0., 1.11)
>>> rotMatrix2([1,0,0],[0,0,11,10,0,11)

(continues on next page)

6.1. Autoloaded modules

229

pyFormex Documentation, Release 2.2

(continued from previous page)

array ([[0., 0., 1.1,

[1., 0., 0.1,

[0., 1., 0.11)
>>> rotMatrix2([1,0,0],[0,1,11,[0,0,11)
array ([[O , 0.71, 0.71],

[-1 , 0. , 0 1,

[O , —-0.71, 0.7111])
>>> rotMatrix2([1,0,0],[1,0,11,[0,0,11)
array([([0.71, 0. , 0.71],

ro. , 1. , O 1,

[-0.71, 0. , 0.7111)
>>> rotMatrix2([1,0,0],[1,1,0]1,[0,0,11)
array ([[0.71, 0.71, O 1,

[-0.71, 0.71, O 1,

[0 , 0. , 1. 11
>>> rotMatrix2([1,0,01,([1,1,11,[0,0,11)
array ([[0.58, 0.58, 0.58],

[-0.71, 0.71, O 1,

[-0.41, -0.41, 0.82]11)

arraytools.abat (a, b)
Compute the matrix product a * b * at.

Parameters
* a (array_like, 2-dim) — Array with shape (m,n).

* b (array_like, 2-dim) — Array with square shape (n,n).

Returns array — Array with shape (m,m) holding the matrix product a * b * at.

See also:

atba ()

Examples

>>> abat ([[1], [
array ([[3 6]
[6, 12]
[2]
8

>>> abat (
array ([[1

N

arraytools.atba (a, b)
Compute the matrix product at * b * a

Parameters
* a (array_like, 2-dim) — Array with shape (n,m).

* b (array_like, 2-dim) — Array with square shape (n,n).

Returns array — Array with shape (m,m) holding the matrix product at * b * a.

Note: This multiplication typically occurs when rotating a symmetric tensor b to axes defined by the rotation

matrix a.

See also:

230 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

abat ()

Examples

>>> atba ([[1,21]1,[[311)
array ([[3, 6],

[6, 1211)
>>> atba ([[1],([21],[[0,11,102,311)
array ([[18]])

arraytools.horner (a, u)
Compute the value of a polynom using Horner’s rule.

Parameters

* a (float array_like (n+1,nd)) — nd-dimensional coefficients of a polynom of degree n in a
scalar variable u. The coefficients are in order of increasing degree.

* u (float array_like (nu)) — Parametric values where the polynom is to be evaluated.

Returns float array(nu,nd) — The nd-dimensional values of the polynom at the specified nu param-
eter values.

Examples

>>> print (horner([[1.,1.,1.1,[1.,2.,3.11,00.5,1.01))
[[1.5 2. 2.5]
[2. 3. 4. 1]

arraytools.solveMany (A, B)
Solve many systems of linear equations.

Parameters

* A (float array_like (nsys,ndof,ndof)) — Coefficient matrices for nsys systems of ndof linear
equations in ndof unknowns.

* B (float array_like (nsys,ndof,nrhs)) — Right hand sides for the nsys systems of linear equa-
tions in ndof unkn owns. Each of the nsys systems is solved simultaneously for nrhs right
hand sides.

Returns X (float array (nsys,ndof,nrhs)) — The set of values X(nsys,ndof,nrhs) that solve the systems
of linear equations A @ X = B, where @ is the Python matrix multiplication operator. Thus for
each set of submatrices A[i], B[i], X[i], the normal matrix multiplication holds: A[i] . X[i] =
BI[i].

Notes

For values of ndof >= 4, a general linear system soultion method is used. For values 1, 2 or 3 however, a direct
solution method is used which is much faster.

Examples

This example creates random systems and random values for the variables, then computes the right hand sides,
and solves the equations. Finally the found solution is compared with the original values of the unknowns.

6.1. Autoloaded modules 231

pyFormex Documentation, Release 2.2

>>> def solveRandom(nsys, ndof, nrhs):
A = np.random.rand(nsys, ndof, ndof)
X = np.random.rand(nsys, ndof, nrhs)
B = np.stack([np.dot (a,x) for a,x in zip(A,X)])
Y = solveMany (A, B)
return np.allclose(X,Y,atol=1.e-3)
>>> nsys, nrhs = 10, 5
>>> print ([solveRandom(nsys,ndof,nrhs) for ndof in [1,2,3,4]])
[True, True, True, True]

arraytools.cubicEquation (a, b, c, d)
Solve a cubiq equation using a direct method.

Given a polynomial equation of the third degree with real coefficients:

a*x*+*3 + b*x#+2 + cxx + d =0

Such an equation (with a non-zero) always has exactly three roots, with some possibly being complex, or
identical. This function computes all three roots of the equation and returns full information about their nature,
multiplicity and sorting order. It uses scaling of the variables to enhance the accuracy.

Parameters
* a(float) - Coefficient of the third degree term.
* b (float)— Coefficient of the second degree term.
* c (float)— Coefficient of the first degree term.
* d(float)— Constant in the third degree polynom.
Returns
* rl (float) — First real root of the cubiq equation

* 12 (float) — Second real root of the cubiq equation or real part of the complex conjugate
second and third root.

* 13 (float) — Third real root of the cubiq equation or imaginary part of the complex conjugate
second and third root.

* kind (inf) — A value specifying the nature and ordering of the roots:

kind| roots

0 three real roots rl <12 <13

1 three real roots rl <12 =13

2 three real roots rl =12 <13

3 three real roots r1 =12 =13

4 one real root r1 and two complex conjugate roots with real part r2 and imaginary
part r3; the complex roots are thus: r2+i*r3 en r2-i*r3, where i=sqrt(-1).

Raises ValueError: — If the coefficient a==0 and the equation reduces to a second degree.

Examples

>>> cubicEquation(l.,-6.,11.,-6.)
(array ([1., 2., 3.1), 0)
>>> cubicEquation(l.,-2.,1.,0.)

(continues on next page)

232 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

(continued from previous page)

(array ([-0., 1., 1.1), 1)
>>> cubicEquation(l.,-5.,8.,-4.)
(array ([1., 2., 2.1), 1)
>>> cubicEquation(l.,-4.,5.,-2.)
(array ([1., 1., 2.1), 2)
>>> cubicEquation(l.,-3.,3.,-1.)
(array ([1., 1., 1.1), 3)
>>> cubicEquation(l.,-1.,1.,-1.)
(array ([1., 0., 1.1), 4)
>>> cubicEquation(l.,-3.,4.,-2.)
(array ([1., 1., 1.1), 4)

arraytools.renumberIndex (index)
Renumber an index sequentially.

Given a one-dimensional integer array with only non-negative values, and nval being the number of different
values in it, and you want to replace its elements with values in the range 0..nval, such that identical numbers are
always replaced with the same number and the new values at their first occurrence form an increasing sequence
0..nval. This function will give you the old numbers corresponding with each position 0..nval.

Parameters index (1-dim int array_like) — Array with non-negative integer values.

Returns int array — A 1-dim int array with length equal to nval, where nval is the number of different
values in index. The elements are the original values corresponding to the new values 0..nval.

See also:

inverseUniqueIndex () getthe inverse mapping.

Examples

>>> renumberIndex ([0,5,2,2,6,0])

array ([0, 5, 2, 61)

>>> inverseUniquelIndex (renumberIndex([(0,5,2,2,6,01))110,5,2,2,6,0]]
array ([0, 1, 2, 2, 3, 0])

arraytools.inverseUniqueIndex (index)
Inverse an index.

Given a 1-D integer array with unique non-negative values, and max being the highest value in it, this function
returns the position in the array of the values 0..max. Values not occurring in input index get a value -1 in the
inverse index.

Parameters index (1-dim int array_like) — Array with non-negative values, which all have to be
unique. It’s highest value is max = index.max().

Returns [-dim int array — Array with length max+ 1, with the position in index of each of the values
0..max, or -1 if the value does not occur in index.

Note: This is a low level function that does not check whether the input has indeed all unique values.

The inverse index translates the unique index numbers in a sequential index, so that
inverseUniqueIndex (index) [index] == np.arange (l+index.max()).

6.1. Autoloaded modules 233

pyFormex Documentation, Release 2.2

Examples

>>> inverseUniquelIndex ([0,5,2,6])

array([0, -1, 2, -1, -1, 1, 31)

>>> inverseUniquelIndex([0,5,2,6])[[0,5,2,6]1]
array ([0, 1, 2, 31)

arraytools.cumsumO (a)
Cumulative sum of a list of numbers preprended with a 0.

Parameters a (array_like, int) — List of integers to compute the cumulative sum for.

Returns array, int — Array with len (a) +1 integers holding the cumulative sum of the integers
from a with a O prepended.

Examples

>>> cumsumO ([2,4,3])
array ([0, 2, 6, 91)

A common use case is when concatenating some blocks of different length. If the list a holds the length of each
block, the cumsumO(a) holds the start and end of each block in the concatenation.

>> L = [[0,1], [2,3,4,51, (61, [7,8,9] 1
>>> n = cumsumO ([len(i) for i in LJ])
>>> print (n)
[0 2 6 7 10]
>>> C = np.concatenate (L)
>>> print (C)
[01 2 3456 78 9]
>>> for 1,3 in zip(n[:-1],n[1:]):
print (" : = "% (i,3,C[1i:31))

0:2 = [0 1]

2:6 = [2 3 4 5]
6:7 = [6]

7:10 = [7 8 9]

arraytools.multiplicity (a)
Return the multiplicity of the numbers in an array.

Parameters a (array_like, 1-dim) — The data array, will be flattened if it is not 1-dim.
Returns
* mult (/-dim int array) — The multiplicity of the unique values in a

* uniq (/-dim array) — Array of same type as a, with the sorted list of unique values in a.

Examples

>>> multiplicity([0,1,4,3,1,4,3,4,3,3])

(array ([1, 2, 4, 3]), array ([0, 1, 3, 41))

>>> multiplicity([[1.0, 0.0, 0.5],[0.2,0.5,1.011)
(array([1, 1, 2, 2]), array([0. , 0.2, 0.5, 1. 1))

234 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

arraytools.subsets (a)
Split an array of integers into subsets.

The subsets of an integer array are sets of elements with the same value.
Parameters a (int array_like, 1-dim) — Array with integer values to be split in subsets
Returns
* val (array of ints) — The unique values in a, sorted in increasing order.

e ind (varray. Varray)-The Varray has the same number of rows as the number of values
in ind. Each row contains the indices in a of the elements with the corresponding value in
val.

Examples

>>> A = [0,1,4,3,1,4,3,4,3,3]
>>> val,ind = subsets (A)
>>> print (val)
[0 1 3 4]
>>> print (ind)
Varray (4,4)
(0]
[1 4]
[3 6 8 9]
[2 5 7]
<BLANKLINE>

The inverse of ind can be used to restore A from val.

>>> inv = ind.inverse () .data
>>> print (inv)

[01 3213232 2]

>>> (val[inv] == A).all()
True

arraytools.sortSubsets (a, w=None)
Sort subsets of an integer array a.

Subsets of an array are the sets of elements with equal values. By default the subsets are sorted according to
decreasing number of elements in the set, or if a weight for each element is provided, according to decreasing
sum of weights in the set.

Parameters
* a (1-dim int array_like) — Input array containing non-negative integer sets to be sorted.

* w (1-dim int or float array_like, optional) — If provided, it should have the same length as
a. Each element of a will be attributed the corresponding weight. Specifying no weigth is
equivalent to giving all elements the same weight.

Returns int array — Array with same size as a, specifying for each element of a the index of its
subset in the sorted list of subsets.

6.1. Autoloaded modules 235

pyFormex Documentation, Release 2.2

Examples

>>> gsortSubsets ([0,1,3,2,1,3,2,3,2,21)

array([(3, 2, 1, 0, 2, 1, 0, 1, 0, 01)

>>> sortSubsets ([0,1,4,3,1,4,3,4,3,31])

array([3, 2, 1, 0, 2, 1, 0, 1, 0, 01)

>>> sortSubsets([(0,1,4,3,1,4,3,4,3,31,w=[9,8,7,6,5,4,3,2,1,0])
array([(3, 1, 0, 2, 1, 0, 2, 0, 2, 21)

arraytools.collectOnLength (items, return_index=False)
Separate items in a list according to their length.

The length of all items in the list are determined and the items are put in separate lists according to their length.
Parameters
* items (11st)— Alistof any items that can be accepted as parameter of the len() function.

* return_index (bool) — If True, also return an index with the positions of the equal
length items in the original iterable.

Returns

* col (dict) — A dict whose keys are the item lengths and values are lists of items with this
length.

* ind (dict, optional) — A dict with the same keys as col, and the values being a list of indices
in the list where the corresponding item of col appeared.

Examples

>>> collectOnLength(['a', 'bc', "defg', 'hi'", "3",'kl1l"'])

{1: ['a', '"3'"], 2: ['bc', 'hi', 'k1l'], 4: ['defg']l}

>>> collectOnLength(['a', 'bc', '"defg','hi', "j", 'kl'], return_index=True) [1]
{1: [0, 4], 2: [1, 3, 5], 4: [2]}

arraytools.binsum (val, vbin, nbins=None)
Sum values in separate bins

Parameters
e val (I-dim array_like (nval))- The values to sum over the bins

* vbin (1-dim int array_like (nval)) — The bin number to which each of the
values has to be added. Bin numbers should not be negative.

* nbins (int, optional) — The number of bins. If not specified, it is set to
vbin.max()+1.

Returns array (nbins) — The sums of the values dropped in the respective bins. The data type is the
same as the input values.

Examples

>>> val = [1,2,3,4,5,6,7,8,9]

>>> binsum(val, [0,1,2,3,4,3,2,1,01)
]

14
array([1l0, 10, 10, 10, 51)
>>> binsum(val, [0,1,0,3,4,3,0,1,0], nbins=6)

(continues on next page)

236 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

(continued from previous page)

array ([20, 10, 0, 10, 5, 01)
>>> binsum(np.arange(6)/3.,[0,0,0,1,1,11)
array ([1., 4.1)

arraytools.complement (index, n=-1)
Return the complement of an index in a range(0,n).

The complement is the list of numbers from the range(0,n) that are not included in the index.

Parameters

* index (1-dim int or bool array_like) — If integer, the array contains non-negative numbers
in the range(0,n) and the return value will be the numbers in range(0,n) not included in

index. If boolean, False value flag elements to be included (having a value True) in the
output.

* n (int) — Upper limit for the range of numbers. If index is of type integer and n is not
specified or is negative, it will be set equal to the largest number in index plus 1. If index

is of type boolean and n is larger than the length of index, index will be padded with False
values until length n.

Returns /-dim array, type int or bool. — The output array has the same dtype as the input. If index
is integer: it is an array with the numbers from range(0,n) that are not included in index. If index
is boolean, it is the negated input, padded to or cut at length n.

Examples

>>> print (complement ([0,5,2,6]))

[1 3 4]

>>> print (complement ([0,5,2,6],10))

[1 347 8 9]

>>> print (complement ([False, True, True, True], 6))
[True False False False True True]

arraytools.sortByColumns (a)
Sort an array on all its columns, from left to right.

The rows of a 2-dimensional array are sorted, first on the first column, then on the second to resolve ties, etc..

Parameters a (array_like, 2-dim) — The array to be sorted

Returns int array, 1-dim — Index specifying the order in which the rows have to be taken to obtain
an array sorted by columns.

Examples

>>> sortByColumns ([[1,2]1,[2,31,13,2]1,[1,31,102,311)
array ([0, 3, 1, 4, 21)

arraytools.minroll (a)
Roll a 1-D array to get the lowest values in front

If the lowest value occurs more than once, the one with the lowest next value is choosen, etcetera.

Parameters a (array, 1-dim)-—The array to roll

6.1. Autoloaded modules 237

https://docs.python.org/3/library/functions.html#int
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

Returns m (int) — The index of the element that should be put in front. This means that the np.
roll (a, -m) gives the rolled array with the lowest elements in front.

Examples

>>> minroll([1,3,5,1,2,61])
3
>>> minroll([0,0,2,0,0,1])
3
>>> minroll([0,0,0,0,0,0])
0

arraytools.isroll (a, b)
Check that two 1-dim arrays can be rolled into eachother

Parameters
* a(array, I1-dim)- The firstarray
* b(array, 1-dim)-The second array, same length and dtype as a to be non-trivial.

Returns m (int) — The number of positions (non-negative) that b has to be rolled to be equal to a, or
-2 if the two arrays have a different length, or -1 if their elements are not the same or not in the

same order.
Examples
>>> isroll (np.array([1l,2,3,4]1), np.array([2,3,4,11))
1
>>> isroll (np.array([1,2,3,4]), np.array([2,3,1,4]1))
-1
>>> isroll(np.array([1l,2,3,4]), np.array([3,2,1,41))
-1
>>> isroll (np.array([1,2,3,4]), np.array([1,2,31))
-2

arraytools. findEqualRows (a, permutations=", return_perm=False)
Find equal rows in a 2-dim array.

Parameters
* a (array_like, 2-dim) — The array in which to find the equal rows.

* permutations (str) — Defines which permutations of the row data are allowed while
still considering the rows equal. Possible values are:

— ’roll’: rolling is allowed. Rows that can be transformed into each other by rolling are
considered equal;

— ’all’: any permutation of the same data will be considered an equal row.

Any other value will not allow permutations: rows must match exactly, with the same data
at the same positions. This is the default.

* return_perm (also returns an index identifying the
permutation that)— was performed for each row.

Returns

238 Chapter 6. pyFormex reference manual

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

* ind (/-dim int array) — A row index sorting the rows in such order that equal rows are
grouped together.

* ok (/-dim bool array) — An array flagging the rows in the order of index with True if it is
the first row of a group of equal rows, or with False if the row is equal to the previous.

* perm (None, I-dim or 2-dim int array) — The permutations that were done on the rows
to obtain equal rows. For permutations="all’, this is a 2-dim array with for every row the
original positions of the elements of the sorted rows. For permutations="roll’ it is the number
of positions the array was rolled to be identical to the sorted row. If no permutations are
allowed, a None is returned.

Notes
This function provides the functionality for detecting equal rows, but is seldomly used directly. There are
wrapper functions providing more practical return values. See below.

See also:

equalRows () return the indices of the grouped equal rows
uniqueRows () return the indices of the unique rows

uniqueRowsIndex () like uniqueRows, but also returns index for all rows

Examples

>>> print (»findEqualRows ([[1,2]1,12,31,1[3,2]1,1[1,31,12,311))

[0 31 4 2] [True True True False True]

>>> print (xfindEqualRows ([[1,2],12,31,1[03,21,11,31,1[2,31],permutations="all'))
[0 31 2 4] [True True True False False]

>>> print (xfindEqualRows ([[1,2,3],1[3,2,11,102,3,11,101,2,311))

[0 3 2 1] [True False True True]

>>> print (»findEqualRows ([[1,2,3],13,2,11,12,3,11,1[1,2,3]1],permutations="all"))
[0 1 2 3] [True False False False]

>>> print (xfindEqualRows ([[1,2,3],I[3,2,11,12,3,11,1[1,2,3]],permutations="roll"))
[0 2 3 1] [True False False True]

arraytools.equalRows (a, permutations="none’)
Return equal rows in a 2-dim array.

Parameters: see findEqualRows ()

Returns V (varray.Varray)— A Varray where each row contains a list of the row numbers from
a that are considered equal. The entries in each row are sorted and the rows are sorted according
to their first element.

Notes

The return Varray holds a lot of information:
* V.col (0) gives the indices of the unique rows.
* complement (V.col (0), len (a)) gives the indices of duplicate rows.
* V.col(0) [V.lengths==1] gives the indices of rows without duplicate.

* Va.inverse () .data gives an index into the unique rows for each of the rows of a.

6.1. Autoloaded modules 239

pyFormex Documentation, Release 2.2

See also:

findEqualRows () sorts and detects equal rows
uniqueRows () return the indices of the unique rows

uniqueRowsIndex () like uniqueRows, but also returns index for all rows

Examples

>>> equalRows ([[1,2]1,12,31,[3,2]1,11,31,102,311)
Varray ([[0], [1, 4], [2], [31])
>>> equalRows ([[1,2],[2,31,(3,2]1,[11,31,[2,3]],permutations="all")
Varray ([[0], [1, 2 , [311)
([, [3,2,11,102,3,11,01,2,311)
211)

4]
31
[
1,13,2,11,12,3,11,[1,2,3]],permutations="all")
)
]
]

14 4
>>> equalRows ([[1,2
Varray ([[0, 31, [1]
>>> equalRows ([[1,2

3
2

[’
Varray ([[0, 1, 2, 3]
>>> equalRows ([[1,

3]

, [3,2,11,102,3,11,[1,2,31],permutations="roll")
Varray ([[0, 2, |

3
]
31,
111)

arraytools.uniqueRows (a, permutations="none’)
Find the unique rows of a 2-D array.

Parameters: see findEqualRows ()
Returns uniq (/-dim int array) — Contains the indices of the unique rows in a.

See also:

equalRows () return the indices of the grouped equal rows

uniqueRowsIndex () like uniqueRows, but also returns index for all rows

Examples

>>> uniqueRows ([[1,2],[2,31,1[3,2]1,[1,31,12,311)

array ([0, 1, 2, 31)

>>> uniqueRows ([[1,2]1,[2,3],1[3,2]1,11,31,[2,3]],permutations="'all’")
array ([0, 1, 3])

>>> uniqueRows ([[1,2,3],1[3,2,11,12,3,11,11,2,311])

array ([0, 1, 2])

>>> uniqueRows ([[1,2,3],13,2,11,12,3,11,11,2,3]],permutations="all")
array ([0])

>>> uniqueRows ([[1,2,3],13,2,11,12,3,11,11,2,3]1],permutations="roll")
array ([0, 11])

>>> uniqueRows ([[1,2,3]1,1[3,2,11,12,3,11,11,2,311])

array ([0, 1, 2])

arraytools.uniqueRowsIndex (a, permutations="none’)
Return the unique rows of a 2-D array and an index for all rows.

Parameters
* a (array_like, 2-dim) — Array from which to find the unique rows.

* permutations (bool) — If True, rows which are permutations of the same data are
considered equal. The default is to consider permutations as different.

240 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

e roll (bool) — If True, rows which can be rolled into the same contents are considered
equal.

Returns

* uniq (/-dim int array) — Contains the indices of the unique rows in a. The order of the
elements in uniq is determined by the sorting procedure: in the current implementation this
is sortByColumns (). If permutations==True, a is sorted along its last axis -1 before
calling this sorting function. If roll=True, the rows of a are rolled to put the lowest values
at the front.

e ind (I-dim int array) — For each row of a, holds the index in unig where the row with the
same data is found.

See also:

equalRows () return the indices of the grouped equal rows

uniqueRows () return the indices of the unique rows

Examples

>>> print (runiqueRowsIndex ([[1,2],12,31,103,21,(1,31,102,311))

[01 2 3] [01 2 3 1]

>>> print (»uniqueRowsIndex ([[1,2],[2,31,1[3,2]1,[1,31,102,3]],permutations="all'))
[001 3] [01 12 1]

>>> print (»uniqueRowsIndex ([[1,2,3],1[3,2,11,12,3,11,11,2,311))

[01 2] [0 1 2 0]

>>> print (»uniqueRowsIndex ([[1,2,3],(3,2,1]1,12,3,11,[11,2,3]1],permutations="all"))
[0] [0 O O O]

>>> print (»uniqueRowsIndex ([[1,2,3]1,1[3,2,11,12,3,11,1[1,2,3]],permutations="roll"))
[0 1] [0 1 0 0]

>>> print (»uniqueRowsIndex([[1,2,3],[3,2,11,12,3,11,11,2,311))

[01 2] [0 1 2 0]

arraytools.argNearestValue (values, target)
Return the index of the item nearest to target.

Find in a list of floats the position of the value nearest to the target value.
Parameters
e values (11ist)— List of float values.
* target (float) — Target value to look up in list.
Returns int — The index in values of the float value that is closest to target.
See also:

nearestValue ()

Examples

>>> argNearestValue([0.1,0.5,0.9]1,0.7)
1

6.1. Autoloaded modules 241

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

arraytools.nearestValue (values, target)

Return the float nearest to target.
Find in a list of floats the value that is closest to the target value.
Parameters
e values (11ist)— List of float values.
* target (float) — Target value to look up in list.
Returns float — The value from the list that is closest to target.
See also:

argNearestValue ()

Examples

>>> nearestValue([0.1,0.5,0.91,0.7)
0.5

arraytools.inverseIndex (a, sort=True)

Create the inverse of a 2D-index array.

A 2D-index array is a 2D integer array where only the nonnegative values. are relevant. Negative values are
flagging a non-existent element. This allows for rows with different number of entries. While in most practical
cases all (non-negative) values in a row are unique, this is not a requirement.

Parameters

* a (varray_like.) — The input index table. This can be anything that is acceptable as data for
the Varray constructor.

e sort (bool.) — If True, the values on each row of the returned index are sorted. The
default (False) will leave the values in the order obtained by the algorithm, which depends
on Python/numpy sorting.

Returns inv (numpy .ndarray) — The inverse index as an array. Each row i of the inverse index
contains the numbers of the rows of the input in which a value i appeared, and padded with -1
values to make all rows equal length. With sort=True, the values on each row are guaranteed
to be sorted.

See also:

Varray.inverse ()

Note: If the same value occurs multiple times on the same row of the input, the inverse index will also contain
repeated row numbers for that value.

Examples

>>> A = np.array([[0,1]1,00,2]1,11,21,100,311)
>>> print (4)

0 1]
0 2]
1 2]

(continues on next page)

242

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyFormex Documentation, Release 2.2

(continued from previous page)

[0 3]1]

>>> inv = inverselIndex (A)
>>> print (inv)

[0 1 3]

-1 0 2]

-1 1 2]

[-1 -1 311

The inverse of the inverse returns the original:

>>> (inverselIndex (inv) == A).all()
True

arraytools.findFirst (farget, values)
Find first position of values in target.

Find the first position in the array target of all the elements in the array values.
Parameters

* target (I-dim int array)- Integer array with all non-negative values. If not 1-dim,
it will be flattened.

* values (I-dim int array) - Array with values to look up in target. If not 1-dim, it
will be flattened.

Returns int array — Array with same size as values. For each element in values, the return array
contains the position of that value in the flattened farget, or -1 if that number does not occur
in target. If an element from values occurs more than once in target, it is currently undefined
which of those positions is returned.

Note: Afterm = findIndex (target,values) the equality target [m] == values holds for all
the non-negative positions of m.

Examples

>>> A = np.array([1,3,4,5,7,3,8,9])
>>> B = np.array([0,7,1,31)

>>> ind = findFirst (A, B)

>>> print (ind)

[-1 4 0 1]
>>> (A[ind[ind>=0]] == B[ind>=0]) .all()
True

arraytools.matchLine2 (edges, edgesl)
Match Line elems in a given Connectivity.

Find the rows in edges that have the same nodes as the rows of edges1.
Parameters
* edges (int array_like) — An int array (nedges,2), e.g. a Line2 Connectivity.

* edgesl (int array_like) — An int array (nedgesl1,2), e.g. a Line2 Connectivity.

6.1. Autoloaded modules 243

pyFormex Documentation, Release 2.2

Returns int array — An int array (nedgesl,) specifying for each row of edgesl which row of edges

contains the same two nodes (in any order). Rows that do not occur in edges get a value -1. If
multiple rows are matching, the first one is returned.

arraytools.findAll (rarget, values)
Find all locations of values in target.

Find the position in the array target of all occurrences of the elements in the array values.

Parameters

* target (I1-dim int array)- Integer array with all non-negative values. If not 1-dim,
it will be flattened.

* values (1-dim int array)— Array with values to look up in target. If not 1-dim, it
will be flattened.

Returns list of int arrays. — For each element in values, an array is returned with the indices in target
of the elements with the same value.

See also:

findFirst ()

Examples

>>> gid = np.array([2, 1, 1, 6, 6, 1 1)

>>> values = np.array([1, 2, 6 1)

>>> print (findAll (gid, values))

[array ([1, 2, 5]), array([0]), array([3, 41)]

arraytools.groupArgmin (val, gid)
Compute the group minimum.

Computes the minimum value per group of a set of values tagged with a group number.

Parameters

e val (I1-dim array) - Data values

* gid (1-dimint array_like) — Array with same length as val, containing the group identifiers.
Returns

* ugid (/-dim int array) — (ngrp,) shaped array with unique group identifiers.

* minpos (/-dim int array) — (ngrp,) shaped array giving the position in val of the minimum
of all values with the corresponding group identifier in ugid. The minimum values corre-
sponding to the groups in ugid can be obtained with val [minpos].

Examples

>>> val = np.array([0.0, 1.0, 2.0, 3.0, 4.0, -5.0 1)
>>> gid = np.array([2, 1, 1, 6, 6, 1 1)

>>> print (groupArgmin (val, gid))

(array ([1, 2, 6]), array([5, 0, 31))

arraytools.collectRowsByColumnValue (a, col)
Collects rows of a 2D array by common value in a specified column.

Parameters

244 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* a (2-dim array_like) — Any 2-dim array.
¢ col (int)— Column number on which values to collect the rows.

Returns dict — A dict where the keys are the unique values of the specified column of the array a.
The values are int arrays with the indices of the rows that have the key value in their col column.

Examples

>>> a = np.array([([0,0], [1,1], [1,01, [O,11, [4,011])
>>> print (a)

0]

1]
1
1
11

= collectRowsByColumnValue (a, 0)

>>> print (d)

{0: array ([0, 3]), 1: array([1l, 2]1), 4: array([4])}
>>> d = collectRowsByColumnValue(a, 1)

>>> print (d)

{0: array ([0, 2, 4]1), 1: array([1l, 31)}

0
1
0
d

arraytools.vectorPairAreaNormals (vecl, vec2)
Compute area of and normals on parallellograms formed by vecl and vec2.

Parameters
* vecl ((3,) or (n,3) shaped float array_like) — Array with 1 or n vectors in 3D space.
* vec2 ((3,) or (n,3) shaped float array_like) — Array with 1 or n vectors in 3D space.
Returns

e area ((n,) shaped float array) — The area of the parallellograms formed by the vectors vecl
and vec2.

* normal ((n,3) shaped float array) — The unit length vectors normal to each vector pair
(vecl,vec2).

Note: This first computes the cross product of vecl and vec2, which is a normal vector with length equal to the
area. Then normalize () produces the required results.

Note that where two vectors are parallel, an area zero results and an axis with components NaN.

See also:

vectorPairNormals () only returns the normal vectors

vectorPairArea () only returns the area

Examples

>>> a = np.array([[3.,4,01,([1,0,0],[1,-2,111)
>>> b = np.array([[1.,3.,01,[1,0,11,[-2,4,-211)
>>> 1,v = vectorPairAreaNormals (a,b)

(continues on next page)

6.1. Autoloaded modules 245

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> print (1)

[5. 1. 0.]

>>> print (v)

[[O. 0. 1.]
[0. ~-1. 0.]

[nan nan nan]]

arraytools.vectorPairNormals (vecl, vec2)
Create unit vectors normal to vecl and vec2.

Parameters
» vecl ((3,) or (n,3) shaped float array_like) — Array with 1 or n vectors in 3D space.
* vec2 ((3,) or (n,3) shaped float array_like) — Array with 1 or n vectors in 3D space.

Returns normal ((n,3) shaped float array) — The unit length vectors normal to each vector pair
(vecl,vec2).

See also:

vectorPairAreaNormals () returns the normals and the area between vectors

vectorPairArea () only returns the area between vectors

Examples

>>> a = np.array([[3.,4,01,([1,0,0],[1,-2,111)
>>> b = np.array([[1.,3.,01,[1,0,11,[-2,4,-211)

>>> v = vectorPairNormals (a,b)
>>> print (v)
[[O. 0. 1.]

[0. -1. 0.]

[nan nan nan]]

arraytools.vectorPairArea (vecl, vec2)
Compute area of the parallellogram formed by a vector pair vecl,vec2.

Parameters
* vecl ((3,) or (n,3) shaped float array_like) — Array with 1 or n vectors in 3D space.
* vec2 ((3,) or (n,3) shaped float array_like) — Array with 1 or n vectors in 3D space.

Returns area ((n,) shaped float array) — The area of the parallellograms formed by the vectors vecl
and vec?.

See also:

vectorPairAreaNormals () returns the normals and the area between vectors

vectorPairNormals () only returns the normal vectors

Examples

246 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

>>> a = np.array([[3.,4,01,([1,0,0]1,[1,-2,111)
>>> b = np.array([[1.,3.,01,[1,0,1]1,[-2,4,-211)
>>> 1 = vectorPairArea(a,b)

>>> print (1)

[5. 1. 0.]

arraytools.vectorTripleProduct (vecl, vec2, vec3)
Compute triple product vecl . (vec2 x vec3).

Parameters vec2, vec3) ((vecl,)— Three arrays with same shape holding 1 or n vectors in
3D space.

Returns (n,) shaped float array — The triple product of each set of corresponding vectors from vecl,
vec2, vec3.

Note: The triple product is the dot product of the first vector(s) and the normal(s) on the second and third
vector(s). This is also twice the volume of the parallellepid formed by the 3 vectors.

If vecl has a unit length, the result is also the area of the parallellogram (vec2,vec3) projected in the direction
vecl.

This is functionally equivalent with dotpr(vecl, np.cross(vec2, vec3)) but is implemented in a more efficient
way, using the determinant formula.

Examples

>>> vectorTripleProduct ([[1.,0.,0.],[2.,0.,0.11,
((1.,1.,0.1,12.,2.,0.11,

(f1.,1.,1.1,02.,2.,2.11)

array ([1., 8.])

arraytools.vectorPairCosAngle (v/, v2)
Return the cosinus of the angle between the vectors v1 and v2.

vecl and vec2 are (n,3) shaped arrays holding collections of vectors. The result is an (n) shaped array with the
cosinus of the angle between each pair of vectors (vecl,vec2).

arraytools.vectorPairAngle (v/,Vv2)
Return the angle (in radians) between the vectors v1 and v2.

vecl and vec2 are (n,3) shaped arrays holding collections of vectors. The result is an (n) shaped array with the
angle between each pair of vectors (vecl,vec2).

>>> vectorPairAngle([1,0,0],[0,1,0]) / DEG

90.0

>>> vectorPairAngle([[1,0,0],([0,1,011,([((1,1,01,([1,1,111) / DEG
array ([45. , 54.747)

arraytools.det2 (a)
Compute the determinant of 2x2 matrices.

Parameters a (int or float array_like (...,2,2)) — Array containing one or more (2,2) square matri-
ces.

Returns int or float number or array(...) — The determinant(s) of the matrices. The result has the
same type as the input array.

6.1. Autoloaded modules 247

pyFormex Documentation, Release 2.2

Note: This method is faster than the generic numpy.linalg.det.

See also:

det3 () determinant of (3,3) matrices
det4 () determinant of (4,4) matrices

numpy .linalg.det () determinant of any size matrix

Examples

>>> det2([[1,2],[2,11])

-3

>>> det2 ([[[1,2],[2,111,([04,2]1,11,3111])
array ([-3, 10])

arraytools.det3 (a)
Compute the determinant of 3x3 matrices.

Parameters a (int or float array_like (...,3,3)) — Array containing one or more (3,3) square matri-
ces.

Returns int or float number or array(...) — The determinant(s) of the matrices. The result has the
same type as the input array.

Note: This method is faster than the generic numpy.linalg.det.

See also:

det2 () determinant of (2,2) matrices
det4 () determinant of (4,4) matrices

numpy.linalg.det () determinant of any size matrix

Examples

>>> det3([[1,2,31,02,2,21,13,2,111)

0

>>> det3([[[1.,0.,0.],[1.,1.,0.],[1.,1.,1.1]
L. [([2.,0.,0.1,12.,2.,0.1,1[2.,2.,2
array ([1., 8.])

arraytools.det4 (a)
Compute the determinant of 4x4 matrices.

Parameters a (int or float array_like (... ,4,4)) — Array containing one or more (4,4) square matri-
ces.

Returns int or float number or array(...) — The determinant(s) of the matrices. The result has the
same type as the input array.

248 Chapter 6. pyFormex reference manual

https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det
https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det

pyFormex Documentation, Release 2.2

Note: This method is faster than the generic numpy.linalg.det.

See also:

det2 () determinant of (2,2) matrices
det3 () determinant of (3,3) matrices

numpy .linalg.det () determinant of any size matrix

Examples

>>> detd ([[[1.,0.,0.,
ca [[2.,0.,0.,
array ([1., 16.1])

arraytools.percentile (values, perc=[25.0, 50.0, 75.0], wts=None)
Return percentiles of a set of values.

A percentiles is the value such that at least a given percent of the values is lower or equal than the value.
Parameters

* values (1-dim int or float array_like) — The set of values for which to compute the per-
centiles.

» perc (1-dim int or float array_like) — One or multiple percentile values to compute. All
values should be in the range [0,100]. By default, the quartiles are computed.

* wts (I1-dim array) — Array with same shape as values and all positive values. These
are weights to be assigned to the values.

Returns [-dim float array — Array with the percentile value(s) that is/are greater or equal than perc
percent of values. If the result lies between two items of values, it is obtained by interpolation.

Examples

>>> percentile (np.arange(100), [10,50,901)
array ([9., 49., 89.1)

>>> percentile([1,1,1,1,1,2,2,2,3,5])
array ([1., 1., 2.1)

arraytools.histogram2 (a, bins, range=None)
Compute the histogram of a set of data.

This is similar to the numpy histogram function, but also returns the bin index for each individual entry in the

data set.
Parameters
* a (array_like) — Input data. The histogram is computed over the flattened array.

e bins (int or sequence of scalars.)-If binsis an int, it defines the number of
equal-width bins in the given range (nbins). If bins is a sequence, it defines the bin edges,
including the rightmost edge, allowing for non-uniform bin widths. The number of bins
(nbins) is then equal to len(bins) - 1. A value v will be sorted in bin i if bins[i] <= v <

6.1. Autoloaded modules

https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

bins[i+1], except for the last bin, which will also contain the values equal to the right bin
edge.

* range" ((float, float), optional.) - The lower and upper range of the bins.
If not provided, range is simply (a.min(), a.max()). Values outside the range are ignored.
This parameter is ignored if bins is a sequence.

Returns
* hist (int array) — The number of elements from a sorted in each of the bins.

* ind (list of nbins int arrays) — Each array holds the indices the elements sorted in the
corresponding bin.

* bin_edges (float array) — The array contains the 1en (hist) +1 bin edges.

Example

>>> hist,ind,bins = histogram2([1,2,3,4,2,3,1]1,1[1,2,3,4,5])
>>> print (hist)

[2 2 2 1]

>>> for 1 in ind: print (i)

[0 6]

[1 4]

[2 5]

[3]

>>> print (bins)

[1 2 3 4 5]

>>> hist,bins = np.histogram([1,2,3,4,2,3,1]1,5)
>>> print (hist)

[2 20 2 1]

>>> hist,ind,bins = histogram2([1,2,3,4,2,3,1]1,5)
>>> print (hist)

[2 20 2 1]

>>> for 1 in ind: print (i)

arraytools.movingView (a, size)
Create a moving view along the first axis of an array.

A moving view of an array is a view stacking a sequence of subarrays with fixed size along the 0 axis of the
array, where each next subarray shifts one position down along the 0 axis.

Parameters
* a (array_like) — Array for which to create a moving view.
* size (int)- Size of the moving view: this is the number of rows to include in the subarray.

Returns view of the array a — The view of the original array has an extra first axis with length 1

+ a.shape[0] - size, asecond axis with length size, and the remaining axes have the
same length as those in a.

Note: While this function limits the moving view to the direction of the 0 axis, using swapaxes(0,axis) allows

250 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

to create moving views over any axis.

See also:

movingAverage () compute moving average values along axis 0

Examples

>>> x=np.arange (10) .reshape ((5,2))
>>> print (x)

Calculate rolling sum of first axis:

>>> print (movingView(x, 3).sum(axis=0))
[[6 9]
[12 15]
[18 2171

arraytools.movingAverage (a, n, n0=None, mI=None)
Compute the moving average along the first axis of an array.

Parameters
* a (array_like) — The array to be averaged.
* n (int)— Sample length along axis O over which to compute the average.

* m0 (int, optional) - If provided, the first data row of a will be prepended to a this
number of times.

* ml (int, optional) — If provided, the last data row of a will be appended to a this
number of times.

Returns float array — Array containing the moving average over data sets of length n along the first
axis of a. The array has a shape like a except for its first axis, which may have a different length.
If neither m0 nor m1 are set, the first axis will have a length of 1 + a.shape[0] - n. If both mO and
ml are given, the first axis will have a length of 1 + a.shape[0] - n + m0O + m1. If either m0 or
ml are set and the other not, the missing value mO or m1 will be computed thus that the return
array has a first axis with length a.shape[0].

6.1. Autoloaded modules

251

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> x=np.arange (10) .reshape ((5,2))
>>> print (x)
0 1]
2 3]
4 5]
6 7]
[8 91]
>>> print (movingAverage (x,3))
[[2. 3.1
[4. 5.]
[6. 7.]1]
>>> print (movingAverage (x,3,2))
[l 1.]

.67 1.67

o BN O O

[1]
(3.1
[5. 1
[7]

]

arraytools.randomNoise (shape, min=0.0, max=1.0)

Create an array with random float values between min and max
Parameters
* shape (tuple of ints)- Shape of the array to create.
e min (fl1oat)— Minimum value of the random numbers.
e max (float)— Maximum value of the random numbers.

Returns float array — An array of the requested shape filled with random numbers in the specified

range.

Examples

>>> x = randomNoise ((3,4))
>>> x.shape == (3,4)

True

>>> (x >= 0.0).all()

True

>>> (x <= 1.0).all()

True

arraytools.stuur (x, xval, yval, exp=2.5)

Returns a (non)linear response on the input x.

xval and yval should be lists of 3 values: [xmin, x0,xmax], [ymin,y0,ymax]. Together with the expo-
nent exp, they define the response curve as function of x. With an exponent > 0, the variation will be slow in the
neighbourhood of (x0,y0). For values x < xmin or X > xmax, the limit value ymin or ymax is returned.

Examples
>>> x = unitDivisor (4)
>>> X

array([0. , 0.25, 0.5, 0.75, 1. 1)

(continues on next page)

252

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> np.array([stuur(xi, (0.,0.5,1.0), (0.,0.5,1.0)) for xi in x])
array ([0. , 0.41, 0.5, 0.59, 1. 1)

arraytools.unitDivisor (div)
Divide a unit interval in equal parts.

This function is intended to be used by interpolation functions that accept an input as either an int or a list of
floats.

Parameters div (int, or list of floats in the range [0.0, 1.0])-Ifitisan
integer, it specifies the number of equal sized parts in which the interval [0.0, 1.0] is to be divided.
If a list of floats, its values should be monotonuously increasing from 0.0 to 1.0. The values are
returned unchanged.

Returns

* [-dim float array — The float values that border the parts of the interval. If div is a an integer,
returns the floating point values

* dividing the unit interval in div equal parts. If div is a list,

* just returns div as a 1D array.

Examples

>>> unitDivisor (4)

array ([0. , 0.25, 0.5, 0.75, 1. 1)
>>> unitDivisor ([0., 0.3, 0.7, 1.0])
array ([0. , 0.3, 0.7, 1. 1)

arraytools.uniformParamValues (n, umin=0.0, umax=1.0)
Create a set of uniformly distributed parameter values in a range.

Parameters

* n (int)— Number of intervals in which the range should be divided. The number of values
returned is n+1.

e umin (float) — Starting value of the interval.
* umax (float)— Ending value of the interval.

Returns [-dim float array — The array contains n+1 equidistant values in the range [umin, umax].
For n > 0, both of the endpoints are included. For n=0, a single value at the center of the interval
will be returned. For n<0, an empty array is returned.

Examples

>>> uniformParamValues (4) .tolist ()

[0.0, 0.25, 0.5, 0.75, 1.0]

>>> uniformParamValues (0) .tolist ()

[0.5]

>>> uniformParamValues (—-1) .tolist ()

[]

>>> uniformParamValues (2,1.5,2.5) .tolist ()
[1.5, 2.0, 2.5]

6.1. Autoloaded modules 253

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

arraytools.unitAttractor (x, e0=0.0, el=0.0)
Moves values in the range 0..1 closer to or away from the limits.

Parameters
* x (float array_like) — Values in the range 0.0 to 1.0, to be pulled to/pushed from ends.

* e0 (float) — Attractor force to the start of the interval (0.0). A negative value will push
the values away from this point.

* el (float)— Attractor force to the end of the interval (1.0). A negative value will push the
values away from this point.

Note: This function is usually called from the seed () function, passing an initially uniformly distributed set

of points.

Examples

>>> np.set_printoptions (precision=4)

>>> print (unitAttractor([0.,0.25,0.5,0.75,1.0]1, 2.))
[O. 0.0039 0.0625 0.3164 1.]

>>> np.set_printoptions (precision=2)

>>> unitAttractor([0.,0.25,0.5,0.75,1.0])

array([0. , 0.25, 0.5, 0.75, 1. 1)

arraytools.seed (n, e0=0.0, e1=0.0)
Create a list of seed values.

A seed list is a list of float values in the range 0.0 to 1.0. It can be used to subdivide a line segment or to seed

nodes along lines for meshing purposes.

This function divides the unit interval in n parts, resulting in n+1 seed values. While the intervals are by default

of equal length, the 0 and el can be used to create unevenly spaced seed values.
Parameters
* n (int) - Positive integer: the number of elements (yielding n+ 1 parameter values).

* e0 (float)— Attractor force at the start of the interval. A value larger than zero will attract
the points closer to 0.0, while a negative value will repulse them.

* el (float)— Attractor force at the end of the interval. A value larger than zero will attract
the points closer to 1.0, while a negative value will repulse them.

Returns
* float arraya list of n+/ float values in the range 0.0 to 1.0.
* The values are in ascending order, starting with 0.0 and ending with 1.0.

See also:

seedl () attractor at one end and equidistant points at the other.

smartSeed () similar function accepting a variety of input.

254 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples

>>> np.set_printoptions (precision=4)

>>> print (seed(5,2.,2.))

[O. 0.0639 0.3362 0.6638 0.9361 1.]
>>> np.set_printoptions (precision=2)

>>> for e0 in [0., 0.1, 0.2, 0.5, 1.0]: print(seed(5,e0))
[0. 0.2 0.4 0.6 0.8 1. 1]

[0. 0.18 0.37 0.58 0.79 1. 1

[O. 0.16 0.35 0.56 0.77 1.]

[0. 0.1 0.27 0.49 0.73 1]

[O. 0.04 0.16 0.36 0.64 1]

arraytools.seedl (n, nuni=0, e0=0.0)
Create a list of seed values.

A seed list is a list of float values in the range 0.0 to 1.0. It can be used to subdivide a line segment or to seed
nodes along lines for meshing purposes.

This function divides the unit interval in n parts, resulting in n+1 seed values. While the intervals are by default
of equal length, the nuni and e0 can be used to create unevenly spaced seed values.

Parameters

* n (int) - The number of intervals in which to divide the range. This will yield n+1 param-
eter values.

* nuni (0..n-1) — The number of intervals at the end of the range that will have equal
length. If n < 2, this function is equivalent with seed(n,e0,0.0).

* e0 (float) — Attractor for the start of the range. A value larger than zero will attract the
points closer to the startpoint, while a negative value will repulse them.

Returns float array — A list of n+1 float values in the range 0.0 to 1.0. The values are in ascending
order, starting with 0.0 and ending with 1.0.

See also:

seed: an analogue function with attractors at both ends of the range.

Examples

>>> np.set_printoptions (precision=4)
>>> S seedl (5,0,1.)

>>> print (S)

[0 0.04 0.16 0.36 0.64 1.]

>>> print (S[1:]-S[:-1])

[0.04 0.12 0.2 0.28 0.36]

>>> S seedl (5,2,1.)

>>> print (S)

[0 0.0435 0.1739 0.3913 0.6957 1.]
>>> print (S[1:]-S[:-1])

[0.0435 0.1304 0.2174 0.3043 0.3043]
>>> np.set_printoptions (precision=2)

arraytools.smartSeed (n)
Create a list of seed values.

6.1. Autoloaded modules 255

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Like the seed () function, this function creates a list of float values in the range 0.0 to 1.0. It accepts however
a variety of inputs, making it the prefered choice when it is not known in advance how the user wants to control
the seeds: automatically created or self specified.

Parameters n (int, tuple or float seed) — Action depends on the argument:
e if an int, returns seed (n),
* if a tuple (n,), (n,e0) or (n,e0,el): returns seed (*n),

* if a float array-like, it is normally a sorted list of float values in the range 0.0 to 1.0: the
values are returned unchanged in an array.

Returns float array — The values created depending on the input argument.

Examples

>>> np.set_printoptions (precision=4)

>>> print (smartSeed(5))

[0. 0.2 0.4 0.6 0.8 1.]

>>> print (smartSeed((5,2.,1.)))

[O. 0.01 0.1092 0.3701 0.7504 1.]
>>> print (smartSeed([0.0,0.2,0.3,0.4,0.8,1.01))
[0. 0.2 0.3 0.4 0.8 1.]

>>> np.set_printoptions (precision=2)

arraytools.gridpoints (seed0, seedl=None, seed2=None)
Create weights for 1D, 2D or 3D element coordinates.

Parameters
* seed0 (int or list of floats)- Subdivisions along the first parametric direction

* seedl (int or list of floats)- Subdivisions along the second parametric direc-
tion

* seed2 (int or list of floats)— Subdivisions along the third parametric direc-
tion

* these parameters are integer values the divisions will be
equally (If)-—

* between 0 and 1. (spaced)—

Examples

>>> gridpoints (4)

array ([0. , 0.25, 0.5, 0.75, 1. 1)

>>> gridpoints (4, 2)

array ([[1. , 0. , 0. , 0. 1,
[0.75, 0.25, 0. , 0. 1,
[o., 0.5, 0. , 0. 1,
[0.25, 0.75, 0. , 0. 1,
ro. , 1. , 0. , 0. 1,
[o.>, 0. , 0. , 0.517,
[0.38, 0.12, 0.12, 0.38],
[0.25, 0.25, 0.25, 0.25],
[0.12, 0.38, 0.38, 0.127],

(continues on next page)

256 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

(continued from previous page)

[0 , 0.5, 0.5, 0. 1,
[O , 0. , 0. , 1. 1,
[0 , 0. , 0.25, 0.757,
[0 , 0. , 0.5, 0.51,
[O , 0. , 0.75, 0.25],
[0 , 0. , 1 , 0. 10

arraytools.nodalSum (val, elems, nnod=-1)
Compute the nodal sum of values defined on element nodes.

Parameters

* val (float array (nelems,nplex,nval))— Array with nval values at nplex
nodes of nelems elements.

* elems (int array (nelems,nplex))— The node indices of the elements.

* nnod (int, optional) - If provided, the length of the output arrays will be set to this
value. It should be higher than the highest node number appering in elems. The default will
set it automatically to elems .max () + 1.

Returns
* sum (float array (nnod, nval)) — The sum of all the values at the same node.
* cnt (int array (nnod)) — The number of values summed at each node.

See also:
nodalAvg () compute the nodal average of values defined on element nodes
arraytools.nodalAvg (val, elems, nnod=-1)
Compute the nodal average of values defined on element nodes.
Parameters

* val (float array (nelems,nplex,nval))— Array with nval values at nplex
nodes of nelems elements.

e elems (int array (nelems,nplex))— The node indices of the elements.

* nnod (int, optional) - If provided, the length of the output arrays will be set to this
value. It should be higher than the highest node number appering in elems. The default will
set it automatically to elems .max () + 1.

Returns avg (float array (nnod, nval)) — The average of all the values at the same node.

See also:

nodalSum () compute the nodal sum of values defined on element nodes
arraytools.fmtDatald (data, npl=8, sep=", ’, linesep="\n’, fmt=<class ’'str’>)

Format data in lines with maximum npl items.

Formats a list or array of data items in groups containing a maximum number of items. The data items are
converted to strings using the fint function, concatenated in groups of npl items using sep as a separator between
them. Finally, the groups are concatenated with a linesep separator.

Parameters

*» data(list or array.)- Listor array with data. If an array, if will be flattened.

6.1. Autoloaded modules 257

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

pyFormex Documentation, Release 2.2

* npl (int)— Maximum number of items per group. Items will be concatenated groups of
this number of items. The last group may contain less items.

* sep (str)— Separator to add between individual items in a group.

* linesep (str) — Separator to add between groups. The default (newline) will put each
group of npl items on a separate line.

e fmt (callable)— Used to convert a single item to a string. Default is the Python built-in
string converter.

Returns str — Multiline string with the formatted data.

Examples

>>> print (fmtDatald(np.arange (10)))

o, 1, 2, 3, 4, 5, 6, 7

8, 9

>>> print (fmtDatald([1.25, 3, 'no', 2.50, 4, 'yves'],npl=3))
1.25, 3, no

2.5, 4, yes

>>> myformat = lambda x: " " % str(x)

>>> print (fmtDatald([1.25, 3, 'no', 2.50, 4, 'ves'],npl=3,fmt=myformat))
1.25, 3, no
2.5, 4, yes

6.1.5 script — Basic pyFormex script functions

The script module provides the basic functions available in all pyFormex scripts. These functions are available in
GUI and NONGUI applications, without the need to explicitely importing the script module.

Functions defined in module script
script.Globals ()
Return the globals that are passed to the scripts on execution.

When running pyformex with the —nogui option, this contains all the globals defined in the module formex
(which include those from coords, arraytools and numpy.

When running with the GUI, this also includes the globals from gui.draw (including those from gui.color).

Furthermore, the global variable __name__ will be set to either ‘draw’ or ‘script’ depending on whether the
script was executed with the GUI or not.

script.export (dic)
Export the variables in the given dictionary.

script .export2 (names, values)
Export a list of names and values.

script.forget (names)
Remove the global variables specified in list.

script.forgetAll ()
Delete all the global variables.

script .rename (oldnames, newnames)
Rename the global variables in oldnames to newnames.

258 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

script.listAll (clas=None, like=None, filtr=None, dic=None, sort=False)
Return a list of all objects in dictionary that match criteria.

* clas: a class or list of classes: if specified, only instances of this/these class(es) will be returned
e like: a string: if given, only object names starting with this string will be returned

* filtr: a function taking an object name as parameter and returning True or False. If specified, only objects
passing the test will be returned.

* dic: a dictionary object with strings as keys, defaults to pyformex.PF.
e sort: bool: if True, the returned list will be sorted.
The return value is a list of keys from dic.

script .named (name)
Returns the global object named name.

script.getcfqg (name, default=None)
Return a value from the configuration or None if nonexistent.

script .ask (question, choices=None, default="")
Ask a question and present possible answers.

If no choices are presented, anything will be accepted. Else, the question is repeated until one of the choices is
selected. If a default is given and the value entered is empty, the default is substituted. Case is not significant,
but choices are presented unchanged. If no choices are presented, the string typed by the user is returned.
Else the return value is the lowest matching index of the users answer in the choices list. Thus, ask(‘Do you
agree’,[“Y’,’n’]) will return O on either ‘y’ or ‘Y’ and 1 on either ‘n’ or ‘N’.

script.ack (question)

Show a Yes/No question and return True/False depending on answer.

script.error (message)
Show an error message and wait for user acknowlegement.

script.autoExport (g)
Autoexport globals from script/app globals.

g: dict holding the globals dict from a script/app run enviroment.

This exports some objects from the script/app runtime globals to the pf.PF session globals directory. The default
is to export all instances of class Geometry.

This can be customized in the script/app by setting the global variable autoglobals. If set to a value that eval-
uates to False, no autoexport will be done. If set to True, the default autoexport will be done: all instances of
geometry. If set to a list of names, only the specified names will be exported. Furthermore, a global variable
autoclasses may be set to a list of class names. All global instances of the specified classes will be exported.

Remember that the variables need to be globals in your script/app in order to be autoexported, and that auto-
globals feature needs to be enabled in your configuration.

script.playScript (scr, name=None, filename=None, argv=[], encoding=None)
Play a pyformex script scr. scr should be a valid Python text.

There is a lock to prevent multiple scripts from being executed at the same time. This implies that pyFormex
scripts can currently not be recurrent. If name is specified, set the global variable pyformex.scriptName to it
when the script is started. If filename is specified, set the global variable __file__ toit.

script .breakpt (msg=None)
Set a breakpoint where the script can be halted on a signal.

If an argument is specified, it will be written to the message board.

6.1. Autoloaded modules 259

pyFormex Documentation, Release 2.2

The exitrequested signal is usually emitted by pressing a button in the GUIL

script.stopatbreakpt ()
Set the exitrequested flag.

script.runScript (fn, argv=/[])
Play a formex script from file fn.

fn is the name of a file holding a pyFormex script. A list of arguments can be passed. They will be available
under the name argv. This variable can be changed by the script and the resulting argv is returned to the caller.

script.runApp (appname, argv=[], refresh=False, lock=True, check=True, wait=False)
Run a pyFormex application.

A pyFormex application is a Python module that can be loaded in pyFormex and that contains a function ‘run()’.
Running the application is equivalent to executing this function.

Parameters:

* appname: name of the module in Python dot notation. The module should live in a path included the the a
file holding a pyFormex script.

 argv: list of arguments. This variable can be changed by the app and the resulting argv will be returned to
the caller.

Returns the exit value of the run function. A zero value is supposed to mean a normal exit.

script.runAny (appname=None, argv=[], step=False, refresh=False, remember=True, wait=False)
Run the current pyFormex application or script file.

Parameters:

* appname: either the name of a pyFormex application (app) or a file containing a pyFormex script. An
app name is specified in Python module syntax (package.subpackage.module) and the path to the package
should be in the configured app paths.

This function does nothing if no appname/filename is passed or no current script/app was set. If arguments are
given, they are passed to the script. If step is True, the script is executed in step mode. The ‘refresh’ parameter
will reload the app.

script.exit (all=False)
Exit from the current script or from pyformex if no script running.

script.quit ()
Quit the pyFormex program

This is a hard exit from pyFormex. It is normally not called directly, but results from an exit(True) call.

script.processArgs (args)
Run the application without gui.

Arguments are interpreted as names of script files, possibly interspersed with arguments for the scripts. Each
running script should pop the required arguments from the list.

script.setPrefs (res, save=False)
Update the current settings (store) with the values in res.

res is a dictionary with configuration values. The current settings will be update with the values in res.
If save is True, the changes will be stored to the user’s configuration file.

script.chdir (path, create=False)
Change the current working directory.

260 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

If path exists and it is a directory name, make it the current directory. If path exists and it is a file name, make
the containing directory the current directory. If path does not exist and create is True, create the path and make
it the current directory. If create is False, raise an Error.

Parameters:

e path: pathname of the directory or file. If it is a file, the name of the directory holding the file is used.
The path can be an absolute or a relative pathname. A ‘~’ character at the start of the pathname will be
expanded to the user’s home directory.

e create: bool. If True and the specified path does not exist, it will be created. The default is to do nothing
if the specified path does not exist.

The changed to current directory is stored in the user’s preferences for persistence between pyFormex invoca-
tions.

script.pwdir ()
Print the current working directory.

script .mkdir (path, clear=False, new=False)
Create a directory.

Create a directory, including any needed parent directories. Any part of the path may already exist.

* path: pathname of the directory to create, either an absolute or relative path. A ‘~’ character at the start of
the pathname will be expanded to the user’s home directory.

e clear: bool. If True, and the directory already exists, its contents will be deleted.
* new: bool. If True, requires the directory to be a new one. An error will be raised if the path already exists.

The following table gives an overview of the actions for different combinations of the parameters:

clear | new | path does not exist | path exists

F F kept as is newly created
T F emptied newly created
T/F T raise newly created

If successful, returns the tilde-expanded path of the directory. Raises an exception in the following cases:
¢ the directory could not be created,
¢ clear is True, and the existing directory could not be cleared,
* new is False, clear is False, and the existing path is not a directory,
* new is True, and the path exists.

script.runtime ()
Return the time elapsed since start of execution of the script.

script.startGui (args=[])
Start the gui

6.1.6 gui.draw — Create 3D graphical representations.

The draw module provides the basic user interface to the OpenGL rendering capabilities of pyFormex. The full
contents of this module is available to scripts running in the pyFormex GUI without the need to import it.

6.1. Autoloaded modules 261

pyFormex Documentation, Release 2.2

Functions defined in module gui.draw

gui.

gui.

gui.

gui.

gui.

gui.

gui

gui.

gui.

gui.

draw.exitGui (res=0)
Terminate the GUI with a given status.

draw.closeGui ()
Close the GUI.

Calling this function from a script closes the GUI and terminates pyFormex.

draw.closeDialog (name)
Close the named dialog.

Closes the Dialog with the given name. If multiple dialogs are open with the same name, all these dialogs are
closed.

This only works for dialogs owned by the pyFormex GUI.

draw.showMessage (fext, actions=["OK’], level="info’, modal=True, align="00’, **kargs)
Show a short message widget and wait for user acknowledgement.

There are three levels of messages: ‘info’, ‘warning’ and ‘error’. They differ only in the icon that is shown next
to the test. By default, the message widget has a single button with the text ‘OK’. The dialog is closed if the
user clicks a button. The return value is the button text.

draw.showInfo (text, actions=[’OK’], modal=True)
Show an informational message and wait for user acknowledgement.

draw.warning (fext, actions=["OK’])
Show a warning message and wait for user acknowledgement.

.draw.error (text, actions=["OK’])

Show an error message and wait for user acknowledgement.

draw.ask (question, choices=None, **kargs)
Ask a question and present possible answers.

Return answer if accepted or default if rejected. The remaining arguments are passed to showMessage ().

draw.ack (question, **kargs)
Show a Yes/No question and return True/False depending on answer.

draw.showText (fext, itemtype="text’, actions=[(’OK’,)], modal=True, mono=False)
Display a text in a dialog window.

Creates a dialog window displaying some text. The dialog can be modal (blocking user input to the main
window) or modeless. Scrollbars are added if the text is too large to display at once. By default, the dialog has
a single button to close the dialog.

Parameters:
* text: a multiline text to be displayed. It can be plain text or html or reStructuredText (starts with “..”).
e itemtype: an Inputltem type that can be used for text display. This should be either ‘text’ of ‘info’.
* actions: a list of action button definitions.
* modal: bool: if True, a modal dialog is constructed. Else, the dialog is modeless.

* mono: if True, a monospace font will be used. This is only useful for plain text, e.g. to show the output of
an external command.

Returns:

262

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Modal dialog the result of the dialog after closing. The result is a dictionary with a single key: ‘text’
having the displayed text as a value. If an itemtype ‘text’ was used, this may be a changed text.

Modeless dialog the open dialog window itself.

gui.draw.showFile (filename, mono=None, **kargs)
Display a text file.

This will use the showText () function to display a text read from a file. By default this uses a monospaced
font. Other arguments may also be passed to ShowText.

gui.draw.showURL (url)
Show an URL in the browser.

Parameters url (URL) — The URL to be shown in the browser. The URL is checked with
utils.okURL (). If this returns True, it is passed as parameter to the command configured
in pf.cfg[‘browser’], which is executed as an external command without waiting for its result.
Else, nothing is done.

Returns bool — True if url was actually passed to the browser command, False if not.

gui.draw.showHTML (fn=None)
Show a local .html file in the browser.

Parameters fn (filename)— The name of the file to be displayed. If not specified, a dialog will
pop up to select a .html file.

gui.draw.showDoc (obj=None, rst=True, modal=False)
Show the docstring of an object.

Parameters:

* obj: any object (module, class, method, function) that has a __doc___ attribute. If None is specified, the
docstring of the current application is shown.

e rst: bool. If True (default) the docstring is treated as being reStructuredText and will be nicely formatted
accordingly. If False, the docstring is shown as plain text.

gui.draw.editFile (fn, exist=False)
Load a file into the editor.

Parameters:
e fn: filename. The corresponding file is loaded into the editor.
e exist: bool. If True, only existing filenames will be accepted.

Loading a file in the editor is done by executing an external command with the filename as argument. The
command to be used can be set in the configuration. If none is set, pyFormex will try to lok at the EDITOR and
VISUAL environment settings.

The main author of pyFormex uses ‘emacsclient’ as editor command, to load the files in a running copy of
Emacs.

gui.draw.askItems (items, *, timeout=None, modal=True, **kargs)
Ask the value of some items to the user.

Create an interactive widget to let the user set the value of some items. The items are specified as a list of
dictionaries. Each dictionary contains the input arguments for a widgets.Inputltem. It is often convenient to
use one of the _I, _G, ot _T functions to create these dictionaries. These will respectively create the input for a
simpleInputltem, a groupInputltem or a tabInputltem.

For convenience, simple items can also be specified as a tuple. A tuple (key,value) will be transformed to a dict
{ ‘key’:key, ‘value’:value}.

6.1. Autoloaded modules 263

pyFormex Documentation, Release 2.2

See the widgets.Dialog class for complete description of the available input items.

A timeout (in seconds) can be specified to have the input dialog interrupted automatically and return the default
values.

The remaining arguments are keyword arguments that are passed to the widgets.Dialog.getResult method.

Returns a dictionary with the results: for each input item there is a (key,value) pair. Returns an empty dictionary
if the dialog was canceled. Sets the dialog timeout and accepted status in global variables.

gul.draw.currentDialog ()

Returns the current dialog widget.

This returns the dialog widget created by the askltems() function, while the dialog is still active. If no askItems()
has been called or if the user already closed the dialog, None is returned.

gul.draw.selectItems (choices, caption="Select from list’, default=[], single=False, check=False,

sort=False, **kargs)
Ask the user to select one or more items from a list.

This is a convenience function presenting a dialog with a single input item: an InputList. It allows the user to
select one or more items from a list.

Returns /ist — A list with the selected items

gui.draw.askFile (cur=None, filter="all’, exist=True, multi=False, compr=False, change=True, time-

out=None, caption=None, sidebar=None, **kargs)
Ask for one or more files using a customized file dialog.

This is like askFileName () but returns a Dict with the full dialog results instead of the filename(s) them-
selves. This is especially intended for file types that add custom fields to the FileDialog.

Returns Dict | None — A Dict with the results of the file dialog. If the user accepted the selection,
the Dict has at least a key ‘fn” holding the selected filename(s): a single file name is if multi is
False, or a list of file names if multi is True. If the user canceled the selection process, the Dict
is empty.

gui.draw.askFilename (*args, **kargs)

Ask for a file name or multiple file names using a file dialog.
Parameters

* cur (path_like) — Path of the starting point of the selection dialog. It can be a directory or a
file. All the files in the provided directory (or the file’s parent) that match the filter will
be initially presented to the user. If cur is a file, it will be set as the initial selection.

e filter (str or list of str) - Specifies a (set of) filter(s) to be applied on the
files in the selected directory. This allows to narrow down the selection possibilities. The
filter argument is passed through the utils. fileDescription () function to cre-
ate the actual filter set. If multiple filters are included, the user can switch between them in
the dialog.

e exist (bool) - If True, the filename must exist. The default (False) will allow a new file
to be created or an existing to be used.

* multi (bool)—If True, allows the user to pick multiple file names in a single operation.

* compr (bool)-If True, the specified filter pattern will be extended with the corresponding
compressed file types. For example, a filter for “.pgf’ files will also allow to pick ‘.pgf.gz’
or ‘.pgf.bz2’ files.

* change (boo1l) — If True (default), the current working directory will be changed to the
parent directory of the selection.

264

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

gui.

gui.

gui

gui

gui.

gui.

gui

* caption (str)— A string to be displayed as the dialog title instead of the default one.

* timeout (float) — If provided, the dialog will timeout after the specified number of
seconds.

* sidebar (list of path_like.)-If provided, these will be added to the sidebar (in
addition to the configured paths).

* kargs (keyword arguments)— More arguments to be passed to the FileDialog.

Returns Path | list of Paths | None — The selected file Path(s) if the user accepted the dialog, or None
if the user canceled the dialog.

draw.askNewFilename (cur=None, filter="All files (*.*)’, compr=False, timeout=None, cap-

tion=None, sidebar=None, **kargs)
Ask a single new filename.

This is a convenience function for calling askFilename with the argument exist=False.

draw.askDirname (path=None, change=True, byfile=False, caption=None)
Interactively select a directory and change the current workdir.

The user is asked to select a directory through the standard file dialog. Initially, the dialog shows all the subdi-
rectories in the specified path, or by default in the current working directory.

The selected directory becomes the new working directory, unless the user canceled the operation, or the change
parameter was set to False.

.draw.checkWorkdir ()

Ask the user to change the current workdir if it is not writable.

Returns True if the current workdir is writable.

.draw.printMessage (s, **kargs)

Print a message on the message board.
Parameters:
e s: string to print
* kargs: more keyword arguments are passed to meth:MessageBpard.write.

This function forces an update of the GUI, so that the output message is guaranteed to be visible. If a logfile
was opened, the message is also written to the log file.

draw.delay (s=None)
Get/Set the draw delay time.

Returns the current setting of the draw wait time (in seconds). This drawing delay is obeyed by drawing and
viewing operations.

A parameter may be given to set the delay time to a new value. It should be convertable to a float. The function
still returns the old setting. This may be practical to save that value to restore it later.

draw.wait (relock=True)
Wait until the drawing lock is released.

This uses the drawing lock mechanism to pause. The drawing lock ensures that subsequent draws are retarded to
give the user the time to view. The use of this function is prefered over that of pause () or sleep (), because
it allows your script to continue the numerical computations while waiting to draw the next screen.

This function can be used to retard other functions than draw and view.

.draw.play (refresh=False)

Start the current script or if already running, continue it.

6.1. Autoloaded modules 265

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

gui.draw.replay ()
Replay the current app.
This works pretty much like the play() function, but will reload the current application prior to running it. This
function is especially interesting during development of an application. If the current application is a script, then
it is equivalent with play().
gui.draw.fforward()
Releases the drawing lock mechanism indefinely.
Releasing the drawing lock indefinely means that the lock will not be set again and your script will execute till
the end.
gui.draw.pause (timeout=None, msg=None)
Pause the execution until an external event occurs or timeout.
When the pause statement is executed, execution of the pyformex script is suspended until some external event
forces it to proceed again. Clicking the PLAY, STEP or CONTINUE button will produce such an event.
* timeout: float: if specified, the pause will only last for this many seconds. It can still be interrupted by the
STEP buttons.
* msg: string: a message to write to the board to explain the user about the pause
gui.draw.sleep (duration, granularity=0.01, func=None)
Hold execution for some duration
This holds the execution of the thread where the function is called for the specified time (in seconds).
See also:
delay
Notes
Because of the setup of the operation, in case of very small duration times the actual duration may be consid-
erably longer than the specified value. If the sleep is intended to slow down drawing instructions, you may
consider the use of delay (). Even if you do not have a draw function in the block you want to delay, a
view () function could be added to apply the delay. Normally you should set granularity < duration.
gui.draw.do_after (sec, func)
Call a function in another thread after a specified elapsed time.
Parameters
* sec (float)— Time in seconds to wait before starting the execution. As the function will
be executed in a separate thread, the calling thread will immediately continue.
* func (callable) - The function (or bound method) to be called.
gui.draw.zoomRectangle ()
Zoom a rectangle selected by the user.
guil.draw.getRectangle ()
Zoom a rectangle selected by the user.
gui.draw.zoomBbox (bb)
Zoom thus that the specified bbox becomes visible.
gui.draw.zoomObj (object)
Zoom thus that the specified object becomes visible.
object can be anything having a bbox() method or a list thereof.
266 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

gui.

gui.

gui

gui.

gui.

gui

gui.

gui.

gui.

gui.

gui.

gui.

draw.zoomAll ()
Zoom thus that all actors become visible.

draw.zoom (f)
Zoom with a factor f

A factor > 1.0 zooms out, a factor < 1.0 zooms in.

.draw. focus (point)

Move the camera focus to the specified point.
Parameters:
* point: float(3,) or alike

The camera focus is set to the specified point, while keeping a parallel camera direction and same zoom factor.
The specified point becomes the center of the screen and the center of camera rotations.

draw. £1lyAlong (path, upvector=[0.0, 1.0, 0.0], sleeptime=None)
Fly through the current scene along the specified path.

* path: a plex-2 or plex-3 Formex (or convertibel to such Formex) specifying the paths of camera eye and
center (and upvector).

* upvector: the direction of the vertical axis of the camera, in case of a 2-plex camera path.
* sleeptime: a delay between subsequent images, to slow down the camera movement.

This function moves the camera through the subsequent elements of the Formex. For each element the first point
is used as the center of the camera and the second point as the eye (the center of the scene looked at). For a
3-plex Formex, the third point is used to define the upvector (i.e. the vertical axis of the image) of the camera.
For a 2-plex Formex, the upvector is constant as specified in the arguments.

draw.viewport (n=None)
Select the current viewport.

n is an integer number in the range of the number of viewports, or is one of the viewport objects in py-
formex.GUI.viewports

if n is None, selects the current GUI viewport for drawing

.draw.nViewports ()

Return the number of viewports.

draw.layout (nvps=None, ncols=None, nrows=None, pos=None, rstretch=None, cstretch=None)
Set the viewports layout.

draw.addViewport ()
Add a new viewport.

draw.removeViewport ()
Remove the last viewport.

draw.linkViewport (vp, fovp)
Link viewport vp to viewport tovp.

Both vp and tovp should be numbers of viewports.

draw.updateGUI ()
Update the GUI.

draw.highlightActor (actor)
Highlight an actor in the scene.

6.1. Autoloaded modules 267

pyFormex Documentation, Release 2.2

gui.draw.removeHighlight ()

Remove the highlights from the current viewport

gui.draw.pick (mode="actor’, filter=None, oneshot=False, func=None, pickable=None, prompt=None,

gui.

gui

gui.

gui.

) __rect=None))
Enter interactive picking mode and return selection.

See canvas.Canvas.pick () for more details. This function differs in that it provides default highlighting
during the picking operation and OK/Cancel buttons to stop the picking operation.

Parameters

* mode (str) — Defines what to pick : one of ‘actor’, ‘element’, ‘face’, ‘edge’, ‘point’ or
‘prop’. ‘actor’ picks complete actors. ‘element’ picks elements from one or more actor(s).
‘face’ and ‘edge’ pick faces, resp. edges of elements (only available for Mesh objects).
‘point’ picks points of Formices or nodes of Meshes. ‘prop’ is like ‘element’, but returns
the property numbers of the picked elements instead of the element numbers.

» filter (str)— The picking filter that is activated on entering the pick mode. It should
be one of the Canvas.selection_filters: ‘none’, ‘single’, ‘closest’, ‘connected’, ‘closest-
connected’ The active filter can be changed from a combobox in the statusbar.

* oneshot (bool.) - If True, the function returns as soon as the user ends a picking oper-
ation. The default is to let the user modify his selection and to return only after an explicit
cancel (ESC or right mouse button).

* func (callable, optional) — If specified, this function will be called after each
atomic pick operation. The Collection with the currently selected objects is passed as an
argument. This can e.g. be used to highlight the selected objects during picking.

* pickable (list of Actors, optional) — List of Actors from which can be
picked. The default is to use a list with all Actors having the pickable=True attribute (which
is the default for newly constructed Actors).

* prompt (str) — The text printed to prompt the user to start picking. If None, a default
prompt is printed. Specify an empty string to avoid printing a prompt.

Returns Collection — A (possibly empty) Collection with the picked items. After return, the value
of the pf.canvas.selection_accepted variable can be tested to find how the picking operation
was exited: True means accepted (right mouse click, ENTER key, or OK button), False means
canceled (ESC key, or Cancel button). In the latter case, the returned Collection is always empty.

draw.pickProps (filter=None, oneshot=False, func=None, pickable=None, prompt=None)
Pick property numbers

This is like pick(‘element’), but returns the (unique) property numbers of the picked elements of the actors
instead.

.draw.pickNumbers (marks=None)

Pick drawn numbers

draw.pickFocus ()
Enter interactive focus setting.

This enters interactive point picking mode and sets the focus to the center of the picked points.

draw.drawLinesInter (mode="line’, single=False, func=None)
Enter interactive drawing mode and return the line drawing.

See viewport.py for more details. This function differs in that it provides default displaying during the drawing
operation and a button to stop the drawing operation.

The drawing can be edited using the methods ‘undo’, ‘clear’ and ‘close’, which are presented in a combobox.

268

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

gui.

gui.

gui.

gui.

gui.

gui.

gui

draw.showLineDrawing (L)
Show a line drawing.

L is usually the return value of an interactive draw operation, but might also be set by the user.

draw.exportWebGL (fi, createdby=50, **kargs)
Export the current scene to WebGL.

Parameters:

e fn: string: the (relative or absolute) filename of the .html, .js and .pgf files comprising the WebGL model.
It can contain a directory path and an any extension. The latter is dropped and not used.

* createdby: int: width in pixels of the ‘Created by pyFormex’ logo appearing on the page. If < 0, the logo
is displayed at its natural width. If 0, the logo is suppressed.

* **kargs: any other keyword parameteris passed to the WebGL initialization. The name can not be specified:
it is derived from the fn parameter.

Returns the absolute pathname of the generated .html file.

draw.multiWebGL (name=None, fn=None, title=None, description=None, keywords=None, au-

thor=None, createdby=50)
Export the current scene to WebGL.

fn is the (relative or absolute) pathname of the .html and .js files to be created.
When the export is finished, returns the absolute pathname of the generated .html file. Else, returns None.

draw.resetGUI ()
Reset the GUI to its default operating mode.

When an exception is raised during the execution of a script, the GUI may be left in a non-consistent state. This
function may be called to reset most of the GUI components to their default operating mode.

draw. flatten (objects, recurse=True)
Flatten a list of objects.

Each item in the list should be either:
¢ adrawable object,
* a string with the name of such an object,
* alist of any of these three.

This function will flatten the lists and replace the string items with the object they point to. The result is a single
list of drawable objects. This function does not enforce the objects to be drawable. That should be done by the
caller.

draw.drawn_as (object)
Check how an object can be drawn.

An object can be drawn (using draw ()) if it has a method ‘actor’, ‘toFormex’ or ‘toMesh’. In the first case, it
has a native Actor, else, it is first transformed to Formex or Mesh.

Parameters object (any object, though usually a Geomet ry instance) — An object to check for
a drawing method.

Returns object (drawabable object or None) — If the object is drawable (directly or after conver-
sion), returns a directly drawable object, else None.

.draw.drawable (objects)

Filters the drawable objects from a list of objects.

6.1. Autoloaded modules 269

pyFormex Documentation, Release 2.2

Parameters objects (1ist or sequence of objects.)—The list of objects to filter for
drawable objects.

Returns list of objects — The list of objects that can be drawn.

gui.draw.draw (F, clear=None, **kargs)

Draw geometrical object(s) with specified drawing options and settings.

This is the generic drawing function in pyFormex. The function requires a single positional parameter specifying
the geometry to be drawn. There are also a whole lot of optional keyword parameters, divided in two groups.

The first are the drawing options, which modify the way the draw function operates. If not specified, or a value
None is specified, they are filled in from the current viewport drawing options, which can be changed using the
setDrawOptions () function. The initial defaults are: clear=False, view="last’, bbox="auto’, shrink=False,
shrinkfactor=0.8, wait=True, silent=True, single=False.

The second group are rendering attributes that define the way the geometrical objects should be rendered. These
have default values in canvas.Canvas.settings, and can be overridden per object by the object’s attrib()
settings. These options are listed below under Notes.

Parameters

* F (object or list of objects) — The object(s) to be drawn. It can be a single
item or a (possibly nested) list of items. The list will be flattened. Strings are looked up in
the pyFormex global project dictionary and replaced with their value. Nondrawable objects
are filtered out from the list (see also option silent). The resulting list of drawable objects
is processed with the same drawing options and default rendering atributes.

* clear (bool, optional)-IfTrue, the scene is cleared before drawing. The default is
to add to the existing scene.

e view (st r)— Either the name of a defined view or ‘last’. This defines the orientation of the
camera looking at the drawn objects. Predefined views are ‘front’, ‘back’, ‘top’, ‘bottom’,
‘left’, ‘right’, ‘iso’ and a whole list of other ones. * TODO: we should expand this * On
creation of a viewport, the initial default view is ‘front’ (looking in the -z direction). With
view="last’, the camera angles will be set to the same camera angles as in the last draw
operation, undoing any interactive changes. With view=None the camera settings remain
unchanged (but still may be changed interactively through the user interface). This may
make the drawn object out of view. See also bbox.

* bbox (array_like or str) — Specifies the 3D volume at which the camera will be aimed (using
the angles set by view). The camera position will be set thus that the volume comes in view
using the current lens (default 45 degrees). bbox is a list of two points or compatible (array
with shape (2,3)). Setting the bbox to a volume not enclosing the object may make the
object invisible on the canvas. The special value bbox="auto’ will use the bounding box of
the objects getting drawn (object.bbox()), thus ensuring that the camera will focus on these
objects. This is the default when creating a new viewport. A value bbox=None will use
the bounding box of the previous drawing operation, thus ensuring that the camera’s target
volume is unchanged.

* shrink (bool) — If specified, each object will be transformed by the Coords.
shrink () transformation (with the default or specified shrink_factor as a parameter), thus
showing all the elements of the object separately (sometimes called an ‘exploded’ view).

* shrink_factor (float)— Overrides the default shrink_factor for the current draw op-
eration. If provided, it forces shrink=True.

* wait (boo1l) - If True (initial default), the draw action activates a locking mechanism for
the next draw action, which will only be allowed after drawdelay seconds have elapsed. This
makes it easier to see subsequent renderings and is far more efficient than adding an explicit

270

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

sleep() operation, because the script processing can continue up to the next drawing instruc-
tion. The value of drawdelay can be changed in the user settings or using the delay ()
function. Setting this value to O will disable the waiting mechanism for all subsequent draw
statements (until set > 0 again). But often the user wants to specifically disable the waiting
lock for some draw operation(s). This can be done without changing the drawdelay setting,
by specifying wait=False. This means that the next draw operation does not have to wait.

* silent (bool)—If True (initial default), non-drawable objects are silently ignored. If set
False, an error is raised if F contains an object that is not drawable.

* single (bool, optional) — If True, the return value will be a single Actor, corre-
sponding with the first drawable object in the flattened list of F. The remainder of the draw-
able objects in F are then set as children of the main return value. The default is to return a
single Actor if F is a single drawable object, or a list of Actors if F is a list.

* kargs (keyword parameters) — The remaining keyword parameters are the default
rendering attributes to be used for all the objects in F. They will apply unless overridden
by attributes set in the object itself (see geometry.Geometry.attrib ()). Thereis a
long list of possible settings. The important ones are listed below (see Notes).

Returns Actor or list of Actors — If F is a single object or single==True was provided, returns
a single Actor instance. If Fis a list and single==True was not set, a list a Actors is returned.

Notes
 This section is incomplete and needs an update *

Here is an (incomplete) list of rendering attributes that can be provided to the draw function and will be used as
defaults for drawing the objects that do not have the needed values set as attributes on the object itself. While the
list is long, in most cases only a few are used, and the remainder are taken from the canvas rendering defaults.

These arguments will be passed to the corresponding Actor for the object. The Actor is the graphical repre-
sentation of the geometry. Not all Actors use all of the settings that can be specified here. But they all accept
specifying any setting even if unused. The settings hereafter are thus a superset of the settings used by the dif-
ferent Actors. Settings have a default value per viewport, and if unspecified, most Actors will use the viewport
default for that value.

e color, colormap: specify the color of the object (see below)

* alpha: float (0.0..1.0): alpha value to use in transparent mode. 0.0 means fully transparent (invisible),
while 1.0 means opaque.

* bkcolor, bkcolormap: color for the backside of surface type geometry, if it is to be different from the front
side. Specifications are as for front color and colormap.

e bkalpha: float (0.0..1.0): transparency alphe value for the back side.
e linewidth: float, thickness of line drawing

e linestipple: stipple pattern for line drawing

» marksize: float: point size for dot drawing

* nolight: bool: render object as unlighted in modes with lights on

* ontop: bool: render object as if it is on top. This will make the object fully visible, even when it is hidden
by other objects. If more than one objects is drawn with onfop=True the visibility of the object will depend
on the order of drawing.

Specitying color: Color specification can take many different forms. Some Actors recognize up to six different
color modes and the draw function adds even another mode (property color)

6.1. Autoloaded modules 271

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

* no color: color=None. The object will be drawn in the current viewport foreground color.
* single color: the whole object is drawn with the specified color.

* element color: each element of the object has its own color. The specified color will normally contain
precisely nelems colors, but will be resized to the required size if not.

* vertex color: each vertex of each element of the object has its color. In smooth shading modes intermediate
points will get an interpolated color.

* element index color: like element color, but the color values are not specified directly, but as indices in a
color table (the colormap argument).

* vertex index color: like vertex color, but the colors are indices in a color table (the colormap argument).

e property color: as an extra mode in the draw function, if color="prop’ is specified, and the object has an
attribute ‘prop’, that attribute will be used as a color index and the object will be drawn in element index
color mode. If the object has no such attribute, the object is drawn in no color mode.

Element and vertex color modes are usually only used with a single object in the F' parameter, because they
require a matching set of colors. Though the color set will be automatically resized if not matching, the result
will seldomly be what the user expects. If single colors are specified as a tuple of three float values (see below),
the correct size of a color array for an object with nelems elements of plexitude nplex would be: (nelems,3) in
element color mode, and (nelems,nplex,3) in vertex color mode. In the index modes, color would then be an
integer array with shape respectively (nelems,) and (nelems,nplex). Their values are indices in the colormap
array, which could then have shape (ncolors,3), where ncolors would be larger than the highest used value in the
index. If the colormap is insufficiently large, it will again be wrapped around. If no colormap is specified, the
current viewport colormap is used. The default contains eight colors: black=0, red=1, green=2, blue=3, cyan=4,
magenta=5, yellow=6, white=7.

A color value can be specified in multiple ways, but should be convertible to a normalized OpenGL color using
the colors.GLcolor () function. The normalized color value is a tuple of three values in the range 0.0..1.0.
The values are the contributions of the red, green and blue components.

gui.draw.setDrawOptions (kargsO={}, **kargs)
Set default values for the draw options.
Draw options are a set of options that hold default values for the draw() function arguments and for some canvas
settings. The draw options can be specified either as a dictionary, or as keyword arguments.
gui.draw.reset ()
reset the canvas
gui.draw.setShrink (shrink=None, factor=None)
Set shrink mode on or off, and optionally the shrink factor.
In shrink mode, all elements are drawn shrinked around their centroid. This results in an exploded view showing
individual elements and permitting look through the inter-element gaps to what is behind.
Parameters
e shrink (float | bool | None) - If a float, switches shrink mode on and sets the
shrink factor to the provided value. If True, switches on shrink mode with the current shrink
factor (pf.canvas.drawoptions[‘shrink_factor’]). If False, switches off shrink mode.
» factor (float, optional, deprecated) — If provided, sets the default shrink factor to this
value.
272 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

gui.

gui.

gui

gui

gui.

gui.

Notes
Useful values for the shrink factor are in the range 0.0 to 1.0. The initial value is 0.8. The current shrink status
and factor are stored in pf.canvas.drawoptions.

draw.drawVectors (P, v, size=None, nolight=True, **drawOptions)
Draw a set of vectors.

If size is None, draws the vectors v at the points P. If size is specified, draws the vectors size*normalize(v) P, v
and size are single points or sets of points. If sets, they should be of the same size.

Other drawoptions can be specified and will be passed to the draw function.

draw.drawMarks (X, M, color="black’, prefix=", ontop=True, **kargs)
Draw a list of marks at points X.

Parameters:
e X: Coords.

* M: list of length X.ncoords(). The string representation of the items in the list are drawn at the correspond-
ing 3D coordinate of X.

e prefix: string. If specified, it is prepended to all drawn strings.

e ontop: bool. If True, the marks are drawn on top, meaning they will all be visible, even those drawn at
points hidden by the geometry. If False, hidden marks can be hidden by the drawn geometry.

Other parameters can be passed to the actors.TextArray class.

.draw.drawFreeEdges (M, color="black’)

Draw the feature edges of a Mesh

.draw.drawNumbers (G, numbers=None, color="black’, trl=None, offset=0, prefix=", ontop=None,

**kargs)
Draw numbers on all elements of a Geometry G.

Parameters:
¢ G: Geometry like (Coords, Formex, Mesh)
* numbers: int array of length F.nelems(). If not specified, the range from O to F.nelems()-1 is used.
* color: color to be used in drawing the numbers.

* trl: If unspecified, the numbers are drawn at the centroids of the elements. A translation (X,y,z) may be
given to put the numbers out of the centroids, e.g. to put them in front of the objects to make them visible,
or to allow to view a mark at the centroids.

* offset: int. If specified, this value is added to the numbers. This is an easy ways to compare the drawing
with systems using base 1 numbering.

* prefix: string. If specified, it is added before every drawn number.
Other parameters are passed to the drawMarks () function.

draw.drawPropNumbers (F, **kargs)
Draw property numbers on all elements of F.

This calls drawNumbers to draw the property numbers on the elements. All arguments of drawNumbers except
numbers may be passed. If the object F thus not have property numbers, -1 values are drawn.

draw.drawVertexNumbers (F, color="black’, trl=None, ontop=False)
Draw (local) numbers on all vertices of F.

6.1.

Autoloaded modules 273

pyFormex Documentation, Release 2.2

gui.

gui

gui.

gui.

gui.

gui.

gui.

Normally, the numbers are drawn at the location of the vertices. A translation may be given to put the numbers
out of the location, e.g. to put them in front of the objects to make them visible, or to allow to view a mark at
the vertices.

draw.drawBbox (F, color="black’, **kargs)
Draw the bounding box of the geometric object F.

F is any object that has a bbox method. Returns the drawn Annotation.

.draw.drawText (fext, pos, **kargs)

Show a text at position pos.

Draws a text at a given position. The position can be either a 2D canvas position, specified in pixel coordinates
(int), or a 3D position, specified in global world coordinates (float). In the latter case the text will be displayed
on the canvas at the projected world point, and will move with that projection, while keeping the text unscaled
and oriented to the viewer. The 3D mode is especially useful to annotate parts of the geometry with a label.

Parameters:
* text: string to be displayed.
e pos: (2,) int or (3,) float: canvas or world position.
* any other parameters are passed to opengl. textext. Text.

draw.drawText 3D (fext, pos, **kargs)
Show a text at position pos.

Draws a text at a given position. The position can be either a 2D canvas position, specified in pixel coordinates
(int), or a 3D position, specified in global world coordinates (float). In the latter case the text will be displayed
on the canvas at the projected world point, and will move with that projection, while keeping the text unscaled
and oriented to the viewer. The 3D mode is especially useful to annotate parts of the geometry with a label.

Parameters:
e text: string to be displayed.
* pos: (2,) int or (3,) float: canvas or world position.
* any other parameters are passed to opengl.textext. Text.

draw.drawViewportAxes3D (pos, color=None)
Draw two viewport axes at a 3D position.

draw.drawAxes (cs=None, **kargs)
Draw the axes of a coordinate system.

Parameters:
* cs:a coordsys.CoordSys If not specified, the global coordinate system is used.
Other arguments can be added just like in the candy . Axes class.
By default this draws the positive parts of the axes in the colors R,G,B and the negative parts in C,M,Y.

draw.drawPrincipal (F, weight=None, **kargs)
Draw the principal axes of the geometric object F.

F is Coords or Geometry. If weight is specified, it is an array of weights attributed to the points of F. It should
have the same length as F.coords. Other parameter are drawing attributes passed to drawAxes ().

draw.drawImage3D (image, nx=0, ny=0, pixel="dot’)
Draw an image as a colored Formex

274

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

gui

gui

Draws a raster image as a colored Formex. While there are other and better ways to display an image in
pyFormex (such as using the imageView widget), this function allows for interactive handling the image using
the OpenGL infrastructure.

Parameters:
* image: a QIlmage or any data that can be converted to a QIlmage, e.g. the name of a raster image file.

e nx,‘ny‘: width and height (in cells) of the Formex grid. If the supplied image has a different size, it will be
rescaled. Values <= 0 will be replaced with the corresponding actual size of the image.

* pixel: the Formex representing a single pixel. It should be either a single element Formex, or one of the
strings ‘dot’ or ‘quad’. If ‘dot’ a single point will be used, if ‘quad’ a unit square. The difference will be
important when zooming in. The default is ‘dot’.

Returns the drawn Actor.

See also drawImage ().

.draw.drawImage (image, w=0, h=0, x=-1, y=-1, color=(1.0, 1.0, 1.0), ontop=False)

Draws an image as a viewport decoration.
Parameters:

* image: a QImage or any data that can be converted to a QImage, e.g. the name of a raster image file. See
also the 1oadImage () function.

* w,‘h*: width and height (in pixels) of the displayed image. If the supplied image has a different size, it will
be rescaled. A value <=0 will be replaced with the corresponding actual size of the image.

* x,‘y‘: position of the lower left corner of the image. If negative, the image will be centered on the current
viewport.

* color: the color to mix in (AND) with the image. The default (white) will make all pixels appear as in the
image.

* ontop: determines whether the image will appear as a background (default) or at the front of the 3D scene
(as on the camera glass).

Returns the Decoration drawn.

Note that the Decoration has a fixed size (and position) on the canvas and will not scale when the viewport size
is changed. The bgcolor () function can be used to draw an image that completely fills the background.

.draw.drawField (fld, comp=0, scale="RAINBOW’, symmetric_scale=False, cvalues=None, cla-

geom=None, **kargs)
Draw intensity of a scalar field over a Mesh.

Parameters
* £1d (Field) — A Field, specifying some value over a Geometry.

* comp (int, optional)— Required if fld is a vectorial Field: specifies the component
that is to be drawn.

* scale (str)— One of the color palettes defined in colorscale. If an empty string is
specified, the scale is not drawn.

e symmetric_scale (bool) — If True the mid value of the color scale will be set to the
value corresponding to the middle value of the fld data range. If False the mid value of the
color scale will be set to 0.0 if the range extends over negative and positive values.

* cvalues (1ist, optional)— Specifies the min, max and mid values between which
to span the color palette. It can be a list of 2 values (min, max) or 3 values (min, mid, max).
If not provided, the values are taken from the field data.

6.1. Autoloaded modules 275

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

pyFormex Documentation, Release 2.2

* clageom(list of int, optional)-Ifprovided, itis alist of four integers (X, y, w,
h) specifying the position and size (in pixels) of the colorscale. The default size is a height
of 200 (adjusted down if the canvas is not high enough) and positioned near the lower left
corner of the canvas.

* xxkargs — Other keyword arguments are passed to the draw function to draw the Geome-
try.

* the Field's Geometry with the Field data converted to
colors. (Draws) —

* color legend is added to convert colors to values. (4)-

* data are converted to numerical values using numpy.
nan_to_num. (NAN) —

gui.draw.drawActor (A)
Draw an actor and update the screen.

gui.draw.drawAny (A)
Draw an Actor/Annotation/Decoration and update the screen.

gui.draw.undraw (items)
Remove an item or a number of items from the canvas.

Use the return value from one of the draw... functions to remove the item that was drawn from the canvas. A
single item or a list of items may be specified.

guil.draw.view (v, wait=True)
Show a named view, either a builtin or a user defined.

This shows the current scene from another viewing angle. Switching views of a scene is much faster than
redrawing a scene. Therefore this function is prefered over draw () when the actors in the scene remain
unchanged and only the camera viewpoint changes.

Just like draw (), this function obeys the drawing lock mechanism, and by default it will restart the lock to
retard the next draing operation.

gui.draw.createView (name, angles, addtogui=False)
Create a new named view (or redefine an old).

The angles are (longitude, latitude, twist). The named view is global to all viewports. If addtogui is True, a view
button to set this view is added to the GUI.

gui.draw.setView (name, angles=None)
Set the default view for future drawing operations.

If no angles are specified, the name should be an existing view, or the predefined value ‘last’. If angles are
specified, this is equivalent to create View(name,angles) followed by setView(name).

gui.draw.setTriade (on=None, pos="Ib’, siz=50, triade=None)
Toggle the display of the global axes on or off.

This is a convenient feature to display the global axes directions with rotating actor at fixed viewport size and
position.

Parameters:

* on: boolean. If True, the global axes triade is displayed. If False, it is removed. The default (None) toggles
between on and off. The remaining parameters are only used on enabling the triade.

* pos: string of two characters. The characters define the horizontal (one of ‘I’, ‘c’, or ‘r’) and vertical (one
of ‘t’, ‘c’, ‘b’) position on the camera’s viewport. Default is left-bottom.

276 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* siz: size (in pixels) of the triade.
e triade: None, Geometry or str: defines the Geometry to be used for representing the global axes.
If None: use the previously set triade, or set a default if no previous.

If Geometry: use this to represent the axes. To be useful and properly displayed, the Geometry’s bbox
should be around [(-1,-1,-1),(1,1,1)]. Drawing attributes may be set on the Geometry to influence the
appearance. This allows to fully customize the Triade.

If str: use one of the predefined Triade Geometries. Currently, the following are available:
— ‘axes’: axes and coordinate planes as in candy.Axes
— ‘man’: a model of a man as in data file ‘man.pgf’

gui.draw.setGrid (on=None, d=None, s=None, **kargs)
Toggle the display of the canvas grid on or off.

Parameters

* on (bool.) — If True, the grid is displayed. If False, it is removed. The default (None)
toggles between on and off.

e d (None, int or (int,int), optional)— Only used when on==True. Dis-
tance in pixels between the grid lines. A tuple of two values specifies the distance in X,y
direction. If not specified, the previous grid is used, or a default grid with d=100 is created.

* s (None, int or (int,int), optional)— Only used when on==True. The
grid size in pixels. A tuple of two values specifies size in X,y direction. If not specified
the size is set equal to the desktop screen size. This allows resizing the window while still
seeing the grid on the full canvas.

* kargs (optional)— Extra drawing parameters that influence the appearance of the grid.
Example:

setGrid (d=200, linewidth=3, color=red, ontop=True)

Notes
This is a convenient function to display a grid on the canvas. The grid may someday become an integral part of
the Canvas.

gui.draw.annotate (annot)
Draw an annotation.

gui.draw.decorate (decor)
Draw a decoration.

gui.draw.bgecolor (color=None, image=None)
Change the background color and image.

Parameters:

* color: a single color or a list of 4 colors. A single color sets a solid background color. A list of four colors
specifies a gradient. These 4 colors are those of the Bottom Left, Bottom Right, Top Right and Top Left
corners respectively.

* image: the name of an image file. If specified, the image will be overlayed on the background colors.
Specify a solid white background color to sea the image unaltered.

gui.draw.fgecolor (color)
Set the default foreground color.

6.1. Autoloaded modules 277

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

gui

gui.

gui

gui

gui.

gui.

gui.

gui.

gui

gui

gui.

gui.

gui.

gui

.draw.hicolor (color)
Set the highlight color.

draw.colormap (color=None)
Gets/Sets the current canvas color map

.draw.colorindex (color)
Return the index of a color in the current colormap

.draw.renderModes ()
Return a list of predefined render profiles.

draw.renderMode (mode, light=None)
Change the rendering profile to a predefined mode.

Currently the following modes are defined:
¢ wireframe
¢ smooth
e smoothwire
o flat
 flatwire
e smooth_avg

draw.wireMode (mode)
Change the wire rendering mode.

Currently the following modes are defined: ‘none’, ‘border’, ‘feature’, all’

draw.lights (state=True)
Set the lights on or off

draw.transparent (state=True)
Set the transparency mode on or off.

.draw.set_material_value (typ, val)

Set the value of one of the material lighting parameters

typ is one of ‘ambient’,’specular’,’emission’,’shininess’ val is a value between 0.0 and 1.0

.draw.linewidth (wid)

Set the linewidth to be used in line drawings.

draw.linestipple (factor, pattern)
Set the linewidth to be used in line drawings.

draw.pointsize (siz)
Set the size to be used in point drawings.

draw.canvasSize (width, height)
Resize the canvas to (width x height).

If a negative value is given for either width or height, the corresponding size is set equal to the maximum visible
size (the size of the central widget of the main window).

Note that changing the canvas size when multiple viewports are active is not approved.

.draw.clear (sticky=False)

Clear the canvas.

Removes everything from the current scene and displays an empty background.

278

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

This function waits for the drawing lock to be released, but will not reset it.

6.1.7 opengl.colors — Playing with colors.

This module defines some colors and color conversion functions. It also defines a default palette of colors.

The following table shows the colors of the default palette, with their name, RGB values in 0..1 range and luminance.

>>> for k,v in palette.items():

print (" = -> " % (k,v,luminance (v)))
darkgrey = (0.4, 0.4, 0.4) -> 0.133
red = (1.0, 0.0, 0.0) -> 0.213
green = (0.0, 1.0, 0.0) —-> 0.715
blue = (0.0, 0.0, 1.0) -> 0.072
cyan = (0.0, 1.0, 1.0) -> 0.787
magenta = (1.0, 0.0, 1.0) -> 0.285
yellow = (1.0, 1.0, 0.0) —-> 0.928
white = (1.0, 1.0, 1.0) -> 1.000
black = (0.0, 0.0, 0.0) -> 0.000
darkred = (0.5, 0.0, 0.0) -> 0.046
darkgreen = (0.0, 0.5, 0.0) -> 0.153
darkblue = (0.0, 0.0, 0.5) -> 0.015
darkcyan = (0.0, 0.5, 0.5) -> 0.169
darkmagenta = (0.5, 0.0, 0.5) -> 0.061
darkyellow = (0.5, 0.5, 0.0) -> 0.199
lightgrey = (0.8, 0.8, 0.8) —-> 0.604

Functions defined in module opengl.colors
opengl.colors.GLecolor (color)
Convert a color to an OpenGL RGB color.
Parameters color (color_like) — Data specifying an RGB color. THis can be any of the following:
* a QColor
* astring specifying the X11 name of the color
* ahex string ‘#RGB’ with 1 to 4 hexadecimal digits per color
* atuple or list of 3 integer values in the range 0..255
* atuple or list of 3 float values in the range 0.0..1.0
* asingle float value in the range 0.0..1.0: this will be converted to a grey value
Returns ruple — A tuple of three RGB float values in the range 0.0..1.0.

Raises ValueError: If the input is not one of the accepted data.

Examples

>>> GLcolor ('red')

(1.0, 0.0, 0.0)

>>> GLcolor ('indianred') # doctest: +ELLIPSIS
(0.8039..., 0.3607..., 0.3607...)

>>> GLcolor ('grey90') # doctest: +ELLIPSIS

(continues on next page)

6.1. Autoloaded modules 279

pyFormex Documentation, Release 2.2

(continued from previous page)

(0.8980..., 0.8980..., 0.8980...)
>>> print (GLcolor ("#££0000"))

(1.0, 0.0, 0.0)

>>> GLcolor (red)

(1.0, 0.0, 0.0)

>>> GLcolor ([200,200,255])
(0.7843137254901961, 0.7843137254901961, 1.0)
>>> GLcolor([1.,1.,1.1)

(1.0, 1.0, 1.0)

>>> GLcolor (0.6)

(0.6, 0.6, 0.6)

opengl.colors.GLecolorA (color)

Convert a color to an OpenGL RGB color.
The output is a tuple of three RGB float values ranging from 0.0 to 1.0. The input can be any of the following:
¢ a QColor
* astring specifying the Xwindow name of the color
¢ ahex string ‘#RGB’ with 1 to 4 hexadecimal digits per color
* atuple or list of 3 integer values in the range 0..255
* atuple or list of 3 float values in the range 0.0..1.0

Any other input may give unpredictable results.

Example

>>> GLcolorA('indianred")
array ([0.8 , 0.36, 0.36])
>>> print (GLcolorA('#££0000"))
[1. 0. 0.]

>>> GLcolorA (red)

array ([1., 0., 0.1)

>>> GLcolorA([200,200,255])
array ([0.78, 0.78, 1. 1)
>>> GLcolorA([1.,1.,1.1)
array ([1., 1., 1.1)

>>> GLcolorA (0.6)

array ([0.6, 0.6, 0.61)

>>> print (GLcolorA(['black', 'red', "green', 'blue']))
[[0. 0.]

o O O

[0. 0.]
[1. 0.]
[0. 1.7]

opengl.colors.RGBecolor (color)

Return an RGB (0-255) tuple for a color
color can be anything that is accepted by GLcolor.

Returns the corresponding RGB colors as a numpy array of type uint8 and shape (..,3).

280

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Example

>>> RGBcolor (red)
array ([255, 0, 0], dtype=uint8)

opengl.colors.RGBAcolor (color, alpha)
Return an RGBA (0-255) tuple for a color and alpha value.

color can be anything that is accepted by GLcolor.
Returns the corresponding RGBA colors as a numpy array of type uint8 and shape (..,4).

opengl.colors.WEBcolor (color)
Return an RGB hex string for a color

color can be anything that is accepted by GLcolor. Returns the corresponding WEB color, which is a hexadeci-
mal string representation of the RGB components.

Example

>>> WEBcolor (red)
'$#££0000"

opengl.colors.colorName (color)
Return a string designation for the color.

color can be anything that is accepted by GLcolor. In the current implementation, the returned color name is the
WEBcolor (hexadecimal string).

Example

>>> colorName ('red")
"#££0000"

>>> colorName ('#ffddff")
'$ffddff!’

>>> colorName ([1.,0.,0.5])
'#££0080"

opengl.colors.luminance (color, gamma=True)
Compute the luminance of a color.

Returns a floating point value in the range 0..1 representing the luminance of the color. The higher the value,
the brighter the color appears to the human eye.

This can be for example be used to derive a good contrasting foreground color to display text on a colored
background. Values lower than 0.5 contrast well with white, larger value contrast better with black.

Example

>>> print ([" " % luminance(c) for c in ['black','red',6 'green', 'blue']l])
[*o.oo0', 'o.21', 'o0.72', '0.07']

>>> print (luminance (['black', 'red', 'green', 'blue']))

[O. 0.21 0.72 0.07]

6.1. Autoloaded modules 281

pyFormex Documentation, Release 2.2

opengl.colors.closestColorName (color)
Return the closest color name.

opengl.colors.RGBA (rgh, alpha=1.0)
Adds an alpha channel to an RGB color

opengl.colors.GREY (val, alpha=1.0)
Returns a grey OpenGL color of given intensity (0..1)

6.2 Other pyFormex core modules

Together with the autoloaded modules, the following modules located under the main pyformex path are considered
to belong to the pyformex core functionality.

6.2.1 adjacency — A class for storing and handling adjacency tables.

This module defines a specialized array class for representing adjacency of items of a single type. This is e.g. used in
mesh models, to store the adjacent elements.

class adjacency.Adjacency (data=[], dtyp=None, copy=False, normalize=True)
A class for storing and handling adjacency tables.

An adjacency table defines a neighbouring relation between elements of a single collection. The nature of the
relation is not important, but should be a binary relation: two elements are either related or they are not.

Typical applications in pyFormex are the adjacency tables for storing elements connected by a node, or by an
edge, or by a node but not by an edge, etcetera.

Conceptually the adjacency table corresponds with a graph. In graph theory however the data are usually stored
as a set of tuples (a,b) indicating a connection between the elements a and b. In pyFormex elements are num-
bered consecutively from 0 to nelems-1, where nelems is the number of elements. If the user wants another
numbering, he can always keep an array with the actual numbers himself. Connections between elements are
stored in an efficient two-dimensional array, holding a row for each element. This row contains the numbers
of the connected elements. Because the number of connections can be different for each element, the rows are
padded with an invalid elements number (-1).

A normalized Adjacency is one where all rows do not contain duplicate nonnegative entries and are sorted in
ascending order and where no column contains only -1 values. Also, since the adjacency is defined within a
single collection, no row should contain a value higher than the maximum row index.

Parameters

* data (int array_like) — Data to initialize the Connectivity. The data should be 2-dim with
shape (nelems, ncon), where nelems is the number of elements and ncon is the max-
imum number of connections per element.

* dtyp (float datatype, optional) - Can be provided to force a specific int data
type. If not, the datatype of data is used.

* copy (bool, optional) — If True, the data are copied. The default setting will try
to use the original data if possible, e.g. if data is a correctly shaped and typed numpy .
ndarray.

* normalize (bool, optional)— If True (default) the Adjacency will be normalized
at creation time.

* allow_self (bool, optional) — If True, connections of elements with itself are
allowed. The default (False) will remove self-connections when the table is normalized.

282 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Warning: The allow_self parameter is currently inactive.

Examples

>>> A = Adjacency([[1,2,-11,

[3,2,01,

[1, - 1 31,

[1,2,-11,

[-1,-1,-111)

>>> print (A)

[[-1 1
[0 2
[-1 1
[-1 1
(-1 -1 -17]]

>>> A.nelems ()

5

>>> A.maxcon ()

3

>>> Adjacency ([[]])

Adjacency ([], shape=(1, 0))

]
3]
3]

]

nelems ()
Return the number of elements in the Adjacency table.

maxcon ()
Return the maximum number of connections for any element.

This returns the row width of the Adjacency.

sortRows ()
Sort an adjacency table.

This sorts the entries in each row of the adjacency table in ascending order and removes all columns
containing only -1 values.

Returns Adjacency — An Adjacency with the same non-negative data but each row sorted in
ascending order, and no column with only negative values. The number of rows is the same
as the input, the number of columns may be lower.

See also:

normalize () alsoremoves self and duplicate entries

Examples
>>> a = Adjacency([[0, 2, 1, -17,
(-1, 3, 1, -11,
[3, -1, r 11,
(-1, -1, -1, -111)
>>> a.sortRows ()
Adjacency([[-1, 1, 21,
[-1, -1, 31,
ro, 1, 31,
[-1, -1, -111)

(continues on next page)

6.2. Other pyFormex core modules 283

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> a = Adjacency ([

>>> a.sortRows ()

Adjacency ([[O, 1,
[_l/ lr
[0, 1,
[711 71/

,normalize=False)

normalize ()

Normalize an adjacency table.

A normalized adjacency table is one where each row:
¢ does not contain the row index itself,

* does not contain duplicates,

* is sorted in ascending order,

and that has no columns with all -1 values.

By default, an Adjacency gets normalized when it is constructed. Performing operations on an Adjacency
may however leave it in a non-normalized state. Calling this method will normalize it again. Obviously

this can also be obtained by creating a new Adjacency with self as data.

Returns Adjacency — An Adjacency object with shape (self.shape[0],maxc), with maxc <=

adj.shape[l].

A row i of the Adjacency contains the unique non-negative numbers

except the value i of the same row i in the original, and is possibly padded with -1 values.

Examples

>>> a = Adjacency ([

>>> a.normalize ()

~

~

~

O P O O
~

5]1,normalize=False)

Adjacency ([[1, 2, 57,
[-1, 0, 31,
[-1, -1, 0],
[-1, -1, 17,
[-1, -1, -11,
[-1, -1, 0]1)

>>> Adjacency (a)

Adjacency ([[1, 2, 57,
[-1, 0, 31,
[-1, -1, 07,
[-1, -1, 11,
[-1, -1, -11,
[-1, -1, 0]])

pairs ()

Return all pairs of adjacent element.

284

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Returns int array — An int array with two columns, where each row contains a pair of adjacent
elements. The element number in the first column is always the smaller of the two element
numbers.

Examples

>>> Adjacency ([[-1,1],[0,2],[-1,0]]) .pairs()
array ([[0, 117,
(1, 211)

symdiff (adj)
Return the symmetric difference of two adjacency tables.

Parameters adj (Adjacency)— An Adjacency with the same number of rows as self.

Returns Adjacency — An adjacency table of the same length, where each row contains all the
(nonnegative) numbers of the corresponding rows of self and adj, except those that occur

in both.
Examples
>>> A = Adjacency ([[1, 2,-11,
[3, 2, 01,
[1,-1, 31,
[, 2,-11,
[-1,-1,-111)
>>> B = Adjacency ([[1, 2, 31,
[3, 4, 11,
[0,-1, 21,
[0, 3, 41,
[-1, 0,-111)
>>> A.symdiff (B)
Adjacency([[-1, -1, -1, 31,
[-1, 0, 2, 471,
(-1, o, 1, 31,
o, 1, 2, 41,
[-1, -1, -1, 011)

frontGenerator (startat=0, frontinc=1, partinc=1)
Generator function returning the frontal elements.

This is a generator function and is normally not used directly, but via the frontwalk () method.
Parameters: see frontiwalk ().

Returns int array — Int array with a value for each element. On the initial call, all values are -1,
except for the elements in the initial front, which get a value 0. At each call a new front is
created with all the elements that are connected to any of the current front and which have
not yet been visited. The new front elements get a value equal to the last front’s value plus
the frontinc. If the front becomes empty and a new starting front is created, the front
value is extra incremented with partinc.

. Other pyFormex core modules 285

pyFormex Documentation, Release 2.2

Examples

>>> A = Adjacency ([’
4

’

1)
() : print (p)

ce [-1,-1,-1
>>> for p in A.frontGenerato
[0 -1 -1 -1 -1]

[0 1 1 -1 -1]

[0 1 1 2 -1]

(0011 2 4]

]
]
]
’ 2171]
]
r

frontWalk (startat=0, frontinc=1, partinc=1, maxval=-1)
Walks through the elements by their node front.

A frontal walk is executed starting from the given element(s). A number of steps is executed, each step
advancing the front over a given number of single pass increments. The step number at which an element
is reached is recorded and returned.

Parameters
e startat (int or list of ints)- Initial element number(s) in the front.
e frontinc (int) - Increment for the front number on each frontal step.

* partinc (int) — Increment for the front number when the front gets empty and a new
part is started.

* maxval (int) — Maximum frontal value. If negative (default) the walk will continue
until all elements have been reached. If non-negative, walking will stop as soon as the
frontal value reaches this maximum.

Returns int array — An array of ints specifying for each element in which step the element was

reached by the walker.
Examples
>>> A = Adjacency ([
[711 1/ 2/ 3]/
[_lr OI 2! 3]!
[o, 1, 4, 5],
[711 71/ OI 1]/
[717 71/ 2! 5]!
[711 71/ 2/ 4]])
>>> print (A.frontWalk())
[01 112 2]

front (startat=0, add=False)
Returns the elements of the first node front.

Parameters

e startat (int or list od ints)— Element number(s) or a list of element num-
bers. The list of elements to find the next front for.

¢ add (bool, optional) — If True, the startat elements wil be included in the return
value. The default (False) will only return the elements in the next front line.

286 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Returns int array — A list of the elements that are connected to any of the nodes that are part of
the startat elements.

Notes
This is equivalent to the first step of a frontwalk () with the same startat elements, and could thus also
be obtained from where (self.frontWalk (startat,maxval=1) == 1) [0].

Here however another implementation is used, which is more efficient for very large models: it avoids the
creation of the large array as returned by frontWalk.

Examples

>>> a = Adjacency([([O, ©O0, 0, 1, 2, 51,
[-1, 0, 1, -1, 1, 371,
[-1, -1, o, -1, -1, 21,
[-1, -1, i, -1, -1, 31,
-+, -1, -1, -1, -1, -17,
[-1, -1, 0, -1, -1, 511

>>> print (a.front())

[1 2 5]

>>> print (a.front ([0,1]))

[2 3 5]

>>> print(a.front ([0,1],add=True))

[01 2 3 5]

6.2.2 apps — pyFormex application loading.

This module contains the functions used to detect and load the pyFormex applications. pyFormex applications (‘apps’)
are loaded as a Python module. They contain a dedicated function ‘run’ that is executed when the application is started.
The application stays in memory, unless it is explicitely unloaded.

This module contains functions to find, handle, list and (un)load applications and manage application directories.

Classes defined in module apps
class apps.AppDir (path, name=None, create=True)
Application directory

An AppDir is a directory containing pyFormex applications. When creating an AppDir, its path is added to
sys.path

Functions defined in module apps
apps.guessDir (n,s)
Guess the appdir from the name
n: app name s: app path
This works for dirs having a matching cfg[‘NAMEdir’] entry

apps.setAppDirs ()
Set the configured application directories

6.2. Other pyFormex core modules 287

pyFormex Documentation, Release 2.2

apps .checkAppdir (d)
Check that a directory d can be used as a pyFormex application path.

If the path does not exist, it is created. If no __init .py exists, it is created. If __init__.py exists, it is not
checked.

If successful, returns the path, else None

apps . £indAppDir (path)
Return the AppDir for a given path

apps . load (appname, refresh=False, strict=False)
Load the named app

If refresh is True, the module will be reloaded if it was already loaded before. On succes, returns the loaded
module, else returns None. In the latter case, if the config variable apptraceback is True, the traceback is store
in a module variable _traceback.

apps . findAppSource (app)
Find the source file of an application.

app is either an imported application module (like: pkg.mod) or the corresponding application module
name(like: ‘pkg.mod’). In the first case the name is extracted from the loaded module. In the second case
an attempt is made to find the path that the module would be loaded from, without actually loading the module.
This can be used to load the source file when the application can not be loaded.

apps .unload (appname)
Try to unload an application

apps.listLoaded (appsdir="appsdir’)
List the currently loaded apps

Parameters appsdir (str)— The base name of a directory registered as an application directory.

Returns list of str — A list with the currently loaded applications from the specified application
directory.

apps .detect (appdir)
Detect the apps present in the specified appdir.

Parameters appdir (path_like) —Path to an appdir (i.e. a directory containing a file ‘__init__.py’).

Returns list of str — A list with all the pyFormex apps in the specified appdir. If a file ‘.apps.dir’
exists in the appdir, the returned list is the contents of that file. Otherwise the list contains all
“.py’ files in the directory, without the ‘.py’ extension and sorted.

Examples

>>> 'RunAll' in detect (pf.cfg.appsdir)
True

6.2.3 candy — Predefined geometries for a special purpose.

This module contains some predefined special purpose geometries functions. You need to import this module in your
scripts/apps to have access to its contents.

288 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Contents

Axes A geometrical representation of a coordinate system.

Horse () A surface model of a horse.

Classes defined in module candy

class candy.Axes (cs=None, size=1.0, psize=0.5, reverse=True, color=[’red’, ’green’, ’blue’, ’cyan’,
‘magenta’, ’yellow’], linewidth=2, alpha=0.5, **kargs)
A geometry representing the three axes of a coordinate system.

This class is a subclass of Li st and contains two Mesh instances: the lines along the axes and the triangles in
the coordinate planes.

The default geometry consists of three colored lines of unit length along the positive directions of the axes of
the coordinate system, and three colored triangles representing the coordinate planes. The triangles extend from
the origin to half the length of the unit vectors. Default colors for the axes is red, green, blue.

Parameters

* ¢s (coordsys.CoordSys) — If provided, the Axes will represent the specified Co-
ordSys. Else, The axes are aligned along the global axes.

* size (float)— A scale factor for the unit vectors.

* psize (float)— Relative scale factor for the coordinate plane triangles. If 0, no triangles
will be drawn.

* reverse (bool)—If True, also the negative unit axes are included, with colors 4..6.

* color (3 or 6 colors)— A setof three or six colors to use for x,y,z axes. If reverse
is True or psize > 0.0, the color set should have 6 colors, else 3 will suffice.

* xxkargs (keyword arguments) — Any extra keyword arguments will be added as
attributes to the geometry.

Functions defined in module candy

candy .Horse ()
A surface model of a horse.

Returns TriSurface — A surface model of a horse. The model is loaded from a file.

6.2.4 cmdtools — pyFormex command line tools

This module contains some command line tools that are run through the pyformex command, but do not start a full
pyFormex program: just execute some small task and exit.

Furthermore it contains some functions for handling the user preferences.
Functions defined in module cmdtools

cmdtools.remove_pyFormex (pyformexdir, executable)
Remove the pyFormex installation.

6.2. Other pyFormex core modules 289

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

This will remove a pyFormex installation that was done using the ‘python setup.py install’ command from a
source distribution in ‘tar’gz’ format. The procedure is interactive and will ask for confirmation.

Parameters
» pyformexdir (Path)— Absolute Path to the pyFormex installation directory.

* executable (Path) — Path to the pyformex executable.

Notes

This implements the pyformex —remove functionality.

cmdtools.list_modules (pkgs=[’all’])
Return the list of pure Python modules in a pyFormex subpackage.

Parameters pkgs (1ist of str) — A list of pyFormex subpackage names. The subpackage
name is a subdirectory of the main pyformex package directory. Two special package names are
recognized:

 ’core’: returns the modules in the top level pyformex package
* ’all’: returns all pyFormex modules
An empty list is interpreted as [‘all’].

Returns list of str — A list of all modules in the specified packages.

Notes

This implements the pyformex —--listmodules functionality.

cmdtools.run_pytest (modules)
Run the pytests for the specified pyFormex modules.

Parameters modules (1ist of str)— A list of pyFormex modules in dotted Python notation,
relative to the pyFormex package. If an empty list is supplied, all available pytests will be run.

Notes

Test modules are stored under the path pf.cfg[‘testdir’], with the same hierarchy as the pyFormex source mod-
ules, and are named test MODULE.py, where MODULE is the corresponding source module.

This implements the pyformex —pytest functionality.

cmdtools.run_doctest (modules)
Run the doctests for the specified pyFormex modules.

Parameters modules (1ist of str)-— A list of pyFormex modules in dotted Python notation,
relative to the pyFormex package. If an empty list is supplied, all doctests in all pyFormex
modules will be run.

Notes

Doctests are tests embedded in the docstrings of the Python source.

To allow consistent output of floats independent of machine precision, numpy’s floating point print precision is
set to two decimals.

290 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

This implements the pyformex —doctest functionality.

cmdtools.doctest_module (module)
Run the doctests in a single module’s docstrings.

All the doctests in the docstrings of the specified module will be run.

Parameters module (st r)— A pyFormex module in dotted path notation. The leading ‘pyformex.’
can be omitted.

cmdtools.migrateUserConfig ()
Migrate the user preferences in SHOME/.config

Conversion of old style has been abandoned. Currently this does nothing.

cmdtools.apply _config_changes (cfg)
Apply incompatible changes in the configuration

cfg is the user configuration that is to be saved.

cmdtools.savePreferences ()
Save the preferences.

The name of the preferences file is determined at startup from the configuration files, and saved in pyformex.
preffile. If a local preferences file was read, it will be saved there. Otherwise, it will be saved as the user
preferences, possibly creating that file. If pyformex .preffile is None, preferences are not saved.

cmdtools.activateWarningFilters ()
Activate the warning filters

First time activation of the warning filters and customized warning formatting.

6.2.5 connectivity — A class and functions for handling nodal connectivity.

This module defines a specialized array class for representing nodal connectivity. This is e.g. used in mesh models,
where geometry is represented by a set of numbered points (nodes) and the geometric elements are described by
refering to the node numbers. In a mesh model, points common to adjacent elements are unique, and adjacency of
elements can easily be detected from common node numbers.

class connectivity.Connectivity (data=[], dtyp=None, copy=False, nplex=0, eltype=None)
A class for handling element to node connectivity.

A connectivity object is a 2-dimensional integer array with all non-negative values. Each row of the array defines
an element by listing the numbers of its lower entity types. A typical use is a Mesh object, where each element
is defined in function of its nodes. While in a Mesh the word ‘node’ will normally refer to a geometrical point,
here we will use ‘node’ for the lower entity whatever its nature is. It doesn’t even have to be a geometrical entity.

Note: The current implementation limits a Connectivity object to numbers that are smaller than 2**31. That is
however largely sufficient for all practical cases.

In a row (element), the same node number may occur more than once, though usually all numbers in a row are
different. Rows containing duplicate numbers are called degenerate elements. Rows containing the same node
sets, albeit different permutations thereof, are called duplicates.

Parameters

* data (int array_like) — Data to initialize the Connectivity. The data should be 2-dim with
shape (nelems, nplex), where nelems is the number of elements and nplex is the
plexitude of the elements.

6.2. Other pyFormex core modules 291

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

* dtyp(float datatype, optional)-Itnotprovided, the datatype of data is used.

* copy (bool, optional) - If True, the data are copied. The default setting will try
to use the original data if possible, e.g. if data is a correctly shaped and typed numpy .
ndarray.

* nplex (int, optional) - The plexitude of the data. This can be specified to force a
check on the plexitude of the data, or to set the plexitude for an empty Connectivity. If an
eltype is specified, the plexitude of the element type will override this value.

* eltype (str or elements.Element Type subclass, optional) — The element type as-
sociated with the Connectivity. It can be either a subclass of:class:elements. ElementType
or the name of such a subclass. If not provided, a non-typed Connectivity will result. If
that is used to create a Mesh, the proper element type will have to be specified at Mesh
creation time. If the Connectivity will be used for other purposes, the element type may not
be needed or not be important.

Raises ValueError — If nplex is provided and the specified data do not match the specified
plexitude.

Notes

Empty Connectivities with nelems==0 and nplex > O can be useful, but a Connectivity with nplex==
generally is not.

Examples
>>> COHneCtiVity([[O, 1/2]/ [Olll 3] ’ [Or BIZJ ’ [ol 5/ 311)
Connectivity ([[0, 1, 21,

[OI 1’ 3]!

[0, 3, 21,

[0, 5, 311
>>> Connectivity (np.array([],dtype=at.Int) .reshape(0,3))
Connectivity ([], shape=(0, 3))
nelems ()

Return the number of elements in the Connectivity table.

Returns int — The number of rows in the table.

Examples

>>> Connectivity([[0,1,2],10,1,3],10,3,21,10,5,3]]) .nelems()
4

maxnodes ()
Return an upper limit for number of nodes in the Connectivity.

Returns int — The highest node number plus one.

See also:

nnodes () the actual number of nodes in the table

292

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

Examples

>>> Connectivity([([0,1,2],(0,1,31,10,3,2]1,10,5,3]1]) .maxnodes ()
6

nnodes ()
Return the actual number of nodes in the Connectivity.

This returns the count of the unique node numbers.

See also:

maxnodes () the highest node number + 1

Examples

>>> Connectivity([([0,1,2],(0,1,3]1,10,3,2]1,10,5,31]) .nnodes ()
5

nplex ()
Return the plexitude of the elements in the Connectivity table.

Examples

>>> Connectivity([[O,1,2],(0,1,3],10,3,2],10,5,3]]) .nplex()
3

report ()
Format a Connectivity table

testDegenerate ()
Flag the degenerate elements (rows).

A degenerate element is a row which contains at least two equal values.

Returns bool array — A 1-dim bool array with length self.nelems (), holding True values
for the degenerate rows.

Examples

>>> Connectivity([[0,1,2],(0,1,11,[0,3,2]]).testDegenerate ()
array ([False, True, False])

listDegenerate ()
Return a list with the numbers of the degenerate elements.

Returns int array — A 1-dim int array holding the row indices of the degenerate elements.

Examples

>>> Connectivity([[0,1,2],[0,1,1],[0,3,21]1).1listDegenerate()
array ([1])

6.2.

Other pyFormex core modules 293

pyFormex Documentation, Release 2.2

listNonDegenerate ()
Return a list with the numbers of the non-degenerate elements.

Returns int array — A 1-dim int array holding the row indices of the non-degenerate elements.

Examples

>>> Connectivity([[0,1,2],[0,1,1]1,10,3,2]11).1listNonDegenerate ()
array ([0, 2])

removeDegenerate ()
Remove the degenerate elements from a Connectivity table.

Returns Connectivity — A Connectivity object with the degenerate elements removed.

Examples
>>> Connectivity([([0,1,2],([0,1,11,10,3,2]]).removeDegenerate ()
Connectivity ([[0, 1, 21,

[0, 3, 211)

findDuplicate (permutations=’all’)
Find duplicate rows in the Connectivity.

Parameters permutations (st r)— Defines which permutations of the row data are allowed
while still considering the rows equal. Possible values are:

* ’none’: no permutations are allowed: rows must match the same date at the same positions.

* ’roll’: rolling is allowed. Rows that can be transformed into each other by rolling are
considered equal;

* ’all’: any permutation of the same data will be considered an equal row. This is the default.

Returns V (Varray)— A Varray where each row contains a list of the row numbers from a that
are considered equal. The entries in each row are sorted and the rows are sorted according to
their first element.

Notes

This is like arraytools.equalRows () but has a different default value for permutations.

Examples

>>> C = Connectivity([[0,1,2],[0,1,3]1,10,1,21,102,0,11,12,1,011)
>>> C.findDuplicate ()

Varray ([[0, 2, 3, 41, [111])

>>> C.findDuplicate (permutations="roll")

Varray ([[0, 2, 3], [1], [4]11])

>>> C.findDuplicate (permutations="none')

Varray ([[0, 2], [11, [31, [411)

listDuplicate (permutations="all’)
Return a list with the numbers of the duplicate elements.

294 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Returns /-dim int array — The indices of the unique rows in the Connectivity array.

Examples

>>> C = Connectivity([[0,1,2],[0,1,31,10,1,21,(2,0,11,102,1,011)
>>> C.listDuplicate()

array ([2, 3, 41])

>>> C.listDuplicate (permutations="roll")

array ([2, 3])

>>> C.listDuplicate (permutations='none')

array ([2])

listUnique (permutations="all’)
Return a list with the numbers of the unique elements.

Returns [-dim int array — The indices of the unique rows in the Connectivity array.

See also:

findDuplicate () find duplicate rows
listDuplicate () list duplicate rows

removeDuplicate () remove duplicate rows

Examples

>>> C = Connectivity([[0,1,21,10,1,31,10,1,21,12,0,11,12,1,011)
>>> C.listUnique ()

array ([0, 17)

>>> C.listUnique (permutations="'roll")

array ([0, 1, 4])

>>> C.listUnique (permutations="'none')

array ([0, 1, 3, 41)

removeDuplicate (permutations="all’)
Remove duplicate elements from a Connectivity list.

By default, duplicates are elements that consist of the same set of nodes, in any particular order. Set-
ting permutations to ‘none’ will only remove the duplicate rows that have matching values at matching
positions.

Returns Connectivity — A new Connectivity with the duplicate elements removed.

Examples

>>> C = Connectivity(
>>> C.removeDuplicate
Connectivity ([[0, 1,
[0, 1,
>>> C.removeDuplicate

rio,1,21,10,1,31,10,1,21,102,0,11,(2,1,011)
(
2
3
(
Connectivity ([[0, 1, 2
3
0
(

)
1,
11)
permutations="'roll")
]
[0, 1, 3]
]

(2, 1,
>>> C.removeDuplicate (permutations="'none')

(continues on next page)

6.2. Other pyFormex core modules 295

pyFormex Documentation, Release 2.2

(continued from previous page)

Connectivity ([

~

~

NN O o
~

R o
N

o W N

~

reorder (order="nodes’)
Reorder the elements of a Connectivity in a specified order.

This does not actually reorder the elements itself, but returns an index with the order of the rows (elements)
in the Connectivity table that meets the specified ordering requirements.

Parameters order (str or list of ints)— Specifies how to reorder the elements. It
is either one of the special string values defined below, or else it is an index with length
equal to the number of elements. The index should be a permutation of the numbers in
range (self.nelems (). Each value gives the number of the old element that should be
placed at this position. Thus, the order values are the old element numbers on the position of
the new element number.

order can also take one of the following predefined values, resulting in the corresponding
renumbering scheme being generated:

* ’nodes’: the elements are renumbered in order of their appearance in the inverse index, i.e.
first are the elements connected to node 0, then the as yet unlisted elements connected to
node 1, etc.

* ’random’: the elements are randomly renumbered.
e ’reverse’: the elements are renumbered in reverse order.

Returns [-dim int array — Int array with a permutation of arange (self.nelems (), such
that taking the elements in this order will produce a Connectivity reordered as requested. In
case an explicit order was specified as input, this order is returned after checking that it is
indeed a permutation of range (self.nelems ().

Examples
>>> A = Connectivity([[1,2]1,12,31,[3,0],10,111)
>>> A[A.reorder ('reverse')]
Connectivity ([[0, 17,

[3, 01,

[2, 31,

[1, 211)
>>> A[A.reorder ('nodes')]
Connectivity ([[0, 17,

[3, 01,

[1, 21,

[2, 311
>>> A[A.reorder([2,3,0,11)]
Connectivity ([[3, 0],

[0, 11,

[1, 21,

[2, 311)

renumber (start=0)
Renumber the nodes to a consecutive integer range.

296 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

The node numbers in the table are changed thus that they form a consecutive integer range starting from
the specified value.

Parameters start (int) - Lowest node number to be used in the renumbered Connectivity.
Returns
* elems (Connectivity) — The renumbered Connectivity

e oldnrs (/-dim int array) — The sorted list of unique (old) node numbers. The new node
numbers are assigned in order of increasing old node numbers, thus the old node number
for new node number i can be found at position 1 - start.

Examples

>>> e,n = Connectivity ([[0,2]1,[1,4],[4,2]]).renumber (7)
>>> print (e)
(L7 9l
[8 10]
[10 9]]
>>> print (n)
[0 1 2 4]

Find the old node number of new node 10 >>>n[10-7] 4

inverse (expand=None)
Return the inverse index of a Connectivity table.

Returns int array — The inverse index of the Connectivity, as computed by arraytools.
inverseIndex ().

Examples
>>> Connectivity([[0,1,2],[0,1,41,10,4,2]1]1).inverse (expand=True)
array ([[0, 1, 21,
(-1, o0, 17,
[-1, 0, 21,
[-1, -1, -11,
(-1, 1, 211)
>>> Connectivity([[0,1,2],[0,1,41,10,4,2]1]).inverse (expand=False)
varray([[O, 1, 2], [0, 1], [0, 2], [1, [1, 211)
>>> Connectivity () .inverse ()
Varray ([1)

nParents ()
Return the number of elements connected to each node.

Returns /-dim int array — The number of elements connected to each node. The length of the
array is equal to the highest node number + 1. Unused node numbers will have a count of
Zero.

Examples

>>> Connectivity([[0,1,2],[0,1,4]1,[0,4,2]1]1) .nParents|()
array ([3, 2, 2, 0, 21)

6.2.

Other pyFormex core modules 297

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

connectedTo (nodes, return_ncon=>False)
Check if the elements are connected to the specified nodes.

Parameters

* nodes (int or int array_like) — One or more node numbers to check for connections in the
table.

e return_ncon (bool, optional) - If True, also return the number of connections
for each element.

Returns

e connections (int array) — The numbers of the elements that contain at least one of the
specified nodes.

* ncon (int array, optional) — The number of connections for each connected element. This
is only provided if return_ncon is True.

Examples

>>> A = Connectivity([[0,1,2],10,1,31,10,3,21,11,2,311)
>>> print (A.connectedTo(2))

[0 2 3]

>>> A.connectedTo ([0,1,3], True)

(array ([0, 1, 2, 31), array([2, 3, 2, 2]))

hits (nodes)
Count the nodes from a list connected to the elements.

Parameters nodes (int or list of ints)- One or more node numbers.

Returns int array (nelems,) — An int array holding the number of nodes from the specified input
that are contained in each of the elements.

Notes

This information can also be got from meth:connectedTo. This method however expands the results to the
full element set, making it apt for use in selector expressions like self[self.hits (nodes) >= 2].

Examples

>>> A = Connectivity([[0,1,2],[0,1,31,10,3,21,11,2,311)
>>> A.hits (2)

array([1, 0, 1,
>>> A.hits ([0,1,
array ([2, 3, 2,

17)
31)
21)

adjacency (kind="e¢’, mask=None)
Create a table of adjacent items.

This creates an element adjacency table or node adjacency table An element i is said to be adjacent to
element j, if the two elements have at least one common node. A node i is said to be adjacent to node j, if
there is at least one element containing both nodes.

Parameters

298 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

e kind ('e' or
element adjacency.

'n') — Select element (‘e’) or node (n’) adjacency table. Default is

* mask (bool array or int index, optional) — Node selector. If provided
(with kind=="e") this defines by a bool flag array or int index numbers the list of nodes
that are to be considered connectors between elements. The default is to consider all nodes
as connectors.

This option is only useful in the case kind == ‘e’. If you want to use an element mask
for the ‘n’ case, just apply the (element) mask beforehand by using self [mask].
adjacency('n').

Returns Adjacency object — An Adjacency array with shape (nr,nc), where row i holds a
sorted list of all the items that are adjacent to item i, padded with -1 values to create an equal
list length for all items.

Examples
>>> Connectivity ([[0,11,[0,2]1,[1,31,10,5]]1).adjacency('e")
Adjacency ([[1, 2, 31,

[-1, 0, 31,

[-1, -1, 0],

-1, 0o, 111
>>> Connectivity([[0,1]1,10,2],[1,31,10,5]]).adjacency('e’',mask=[1,2,3,5])
Adjacency ([[27,

[-1],

[01,

[-111)
>>> Connectivity([[0,1]1,10,2],[1,31,10,5]]).adjacency('n")
Adjacency ([[1, 2, 51,

-1, 0, 31,

(-1, -1, 01,

[-1, -1, 11,

[-1, -1, -11,

-1, -1, 011
>>> Connectivity([[0,1,2],[0,1,3],[2,4,5]]) .adjacency('n")
Adjacency ([[-1, 1, 2, 31,

[-1, 0, 2, 31,

[0, 1, 4, 5],

(-1, -1, o0, 11,

[-1, -1, 2, 51,

[-1, -1, 2, 4171)
>>> Connectivity([[0,1,2],([0,1,3],[2,4,5]11)[[0,2]].adjacency('n")
Adjacency ([[-1, -1, 1, 2],

[-1, -1, 0, 21,

[0, 1, 4, 5],

(-1, -1, -1, -17,

[-1, -1, 2, 571,

[-1, -1, 2, 411)
>>> Connectivity ([[0,1,],[2,3]]).adjacency('e")
Adjacency ([], shape=(2, 0))

adjacentElements (els, mask=None)
Compute adjacent elements.

This creates an element adjacency table or node adjacency table. An element i is said to be adjacent to
element j, if the two elements have at least one common node. A node i is said to be adjacent to node j, if

there is at least one element containing both nodes.

6.2.

Other pyFormex core modules

299

pyFormex Documentation, Release 2.2

Parameters

* else (int or list of ints) - The element number(s) for which to compute the
adjacent elements

* mask (bool array or int index, optional) — Node selector. If provided
(with kind=="e") this defines by a bool flag array or int index numbers the list of nodes
that are to be considered connectors between elements. The default is to consider all nodes
as connectors.

This option is only useful in the case kind == ‘e’. If you want to use an element mask
for the ‘n’ case, just apply the (element) mask beforehand by using self [mask].
adjacency ('n'").

Returns Adjacency object — An Adjacency array with shape (nr,nc), where row i holds a
sorted list of all the items that are adjacent to item i, padded with -1 values to create an equal
list length for all items.

Examples
>>> Connectivity([[0,1],[0,21,[1,3]1,[0,511).adjacentElements([0,1,2,3])
array ([[1, 2, 3],

[-1, O, 31,

[-1, -1, 01,

(-1, 0, 111)
>>> Connectivity([[0,1],[0,21,[1,3],[0,5]11).adjacentElements ([0,1,2])
array ([[1, 2, 3],

[-1, O, 31,

(-1, -1, 011)
>>> Connectivity([[0,1],10,21,[1,3]1,[0,5]11).adjacentElements([1,2,31)
array ([[0, 31,

(-1, 0],

[0, 111)
>>> Connectivity([[0,1],[0,21,11,31,[0,5]1]).adjacentElements([0,2])
array ([[1, 2, 3],

(-1, -1, 011
>>> Connectivity([[0,1],([0,21,11,31,[0,5]]).adjacentElements([2])
array ([[0]])
>>> Connectivity([[0,1],[0,2],[11,31,[0,5]]).adjacentElements (1)
array ([[0, 311)

frontGenerator (startat=0, frontinc=1, partinc=1)
Generator function returning the frontal elements.

This is a generator function and is normally not used directly, but via the frontwalk () method.
Parameters: see frontiwalk ().

Returns int array — Int array with a value for each element. On the initial call, all values are -1,
except for the elements in the initial front, which get a value 0. At each call a new front is
created with all the elements that are connected to any of the current front and which have
not yet been visited. The new front elements get a value equal to the last front’s value plus
the frontinc. If the front becomes empty and a new starting front is created, the front
value is extra incremented with partinc.

300 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> C = Connectivity([I[2,8,7]1,12,3,81,13,9,81,1(04,10,91,105,6,111,
Ce [6,12,111])

>>> C.adjacentElements ([0])

array ([[1, 211)

>>> for p in C.frontGenerator(): print (p)
[0 -1 -1 -1 -1 -1]

[0 1 1 -1 -1 -1]

[0 1 1 2 -1 -1]

[0 1 1 2 4 -1]

(00112 4 5]

>>> A = C.adjacency ()

>>> for p in A.frontGenerator(): print (p)
[0 -1 -1 -1 -1 -1]

[0 1 1 -1 -1 -1]

[0 1 1 2 -1 -1]

[0 1 1 2 4 -1]

[01 1 2 4 5]

frontWalk (startat=0, frontinc=1, partinc=1, maxval=-1)
Walks through the elements by their node front.

A frontal walk is executed starting from the given element(s). A number of steps is executed, each step
advancing the front over a given number of single pass increments. The step number at which an element
is reached is recorded and returned.

Parameters
e startat (int or list of ints)-— Initial element number(s) in the front.
e frontinc (int) - Increment for the front number on each frontal step.

* partinc (int) — Increment for the front number when the front gets empty and a new
part is started.

* maxval (int) — Maximum frontal value. If negative (default) the walk will continue
until all elements have been reached. If non-negative, walking will stop as soon as the
frontal value reaches this maximum.

Returns int array — An array of ints specifying for each element in which step the element was
reached by the walker.

Examples

>>> C = Connectivity([([2,8,7],[2,3,81,[3,9,81,(4,10,91,[5,6,11],
R [6,12,11]1)

>>> print (C.frontWalk())
(01124 5]

front (startat=0, add=False)
Returns the elements of the first node front.

Parameters

e startat (int or list od ints)— Element number(s) or a list of element num-
bers. The list of elements to find the next front for.

6.2.

Other pyFormex core modules 301

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

e add (bool, optional) - If True, the startat elements wil be included in the return
value. The default (False) will only return the elements in the next front line.

Returns int array — A list of the elements that are connected to any of the nodes that are part of
the startat elements.

Notes

This is equivalent to the first step of a frontiWalk () with the same startat elements, and could thus also
be obtained from where (self.frontWalk (startat,maxval=1) == 1) [0].

Here however another implementation is used, which is more efficient for very large models: it avoids the
creation of the large array as returned by frontWalk.

Examples

>>> C = Connectivity([I[2,8,7],12,3,81,13,9,8],[4,10,91,[5,6,11],
[6,12,11]])

>>> print (C.front ([2]))
[0 1 3]

selectNodes (selector)
Return a Connectivity containing subsets of the nodes.

Parameters selector (int array_like) — An object that can be converted to a 1-dim or 2-dim
int array. Examples are a tuple of local node numbers, or a list of such tuples all having
the same length. Each row of selector holds a list of the local node numbers that should
be retained in the new Connectivity table. As an example, if the Connectivity is plex-3
representing triangles, a selector [[0,1],[1,2],[2,0]] would extract the edges of the triangle.

Returns Connectivity — A new Connectivity object with shape (self.
nelems*selector.nelems, selector.nplex). Duplicate elements created
by the selector are retained. If the selector has an eltype (for example if it is a Connectivity
itself), the returned Connectivity will have the same eltype.

Examples
>>> Connectivity([[0,1,2],[0,2,1]1,10,3,2]1]1) .selectNodes([[0,1]1,[0,211)
Connectivity ([[0, 1],

[0, 21,

[0, 21,

[0, 171,

[0, 31,

[0, 211)

insertLevel (selector, permutations="all’)
Insert an extra hierarchical level in a Connectivity table.

A Connectivity table identifies higher hierarchical entities in function of lower ones. This method inserts an
extra level in the hierarchy. For example, if you have volumes defined in function of points, you can insert
an intermediate level of edges, or faces. Each element may generate multiple instances of the intermediate
level.

Parameters

302 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

* selector (int array_like) — An object that can be converted to a 1-dim or 2-dim int
array. Examples are a tuple of local node numbers, or a list of such tuples all having the
same length. Each row of selector holds a list of the local node numbers that should be
retained in the new Connectivity table.

e permutations (str or None) — Defines which permutations of the row data are
allowed while still considering the rows equal. Equal rows in the intermediate level are
collapsed into single items. Possible values are:

— ’none’: no permutations are allowed: rows must match the same date at the same posi-
tions.

— ’roll’: rolling is allowed. Rows that can be transformed into each other by rolling are
considered equal;

— ’all’: any permutation of the same data will be considered an equal row. This is the
default.

Returns

e hi (Connectivity)— A Connecivity defining the original elements in function of the
intermediate level ones.

e lo (Connectivity)— A Connectivity defining the intermediate level items in function
of the lowest level ones (the original nodes). If the selector has an eltype attribute,
then 1o will inherit the same eltype value.

* The resulting node numbering of the created intermediate entities

* (the lo return value) respects the numbering order of the original

e elements and the applied selector, but in case of collapsing

* duplicate rows, it is undefined which of the collapsed sequences is

* returned.

e Because the precise order of the data in the collapsed rows is lost,

* itis in general not possible to restore the exact original table

* from the two resulting tables.

* See however mesh.Mesh.getBorder () for an application where an
* inverse operation is possible, because the border only contains

* unique rows.

* See alsomesh.Mesh.combine (), which is an almost inverse operation
e for the general case, if the selector is complete.

o The resulting rows may however be permutations of the original.

Examples

>>> Connectivity([[0,1,2]1,10,2,1]1,10,3,2]1). insertLevel ([[0,1],[1,2],
—[2,011)

(Connectivity o, 1, 27,

~
=

~
(@]

([l

(2 '

[3, 4, 2]]1), Connectivity([[O, 1],
[1

~
o~
~

(continues on next page)

6.2. Other pyFormex core modules

303

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

pyFormex Documentation, Release 2.2

(continued from previous page)

14

0
;3
2
[

’

1

]V
, 211))
0,1,2,311). insertLevel([[0,1,21,11,2,31,[0,1,11, [0,
—0,11,[1,0,0]
(Connectivity([[0, 1, 2, 2, 2]]), Connectivity([[O0, 1, 2],
;r 2, 3]

[2
[0
[3
>>> Connectivity ([
1)
[l
[1 ’
[0, 1, 111))

combine (/o)
Combine two hierarchical Connectivity levels to a single one.

self and lo are two hierarchical Connectivity tables, representing higher and lower level respectively. This
means that the elements of self hold numbers which point into lo to obtain the lowest level items.

In the current implementation, the plexitude of lo should be 2!

As an example, in a structure of triangles, hi could represent triangles defined by 3 edges and lo could
represent edges defined by 2 vertices. This method will then result in a table with plexitude 3 defining the
triangles in function of the vertices.

This is the inverse operation of insertLevel () with a selector which is complete. The algorithm only
works if all node numbers of an element are unique.

Examples

>>> hi,lo = Connectivity([[0,1,2],([0,2,11,[0,3,211). insertLevel ([[0,
—11,01,2]1,12,011)

>>> hi.combine (lo)

Connectivity([[0, 1, 2],

[0, 2, 11,

[0, 3, 211)

resolve ()
Resolve the connectivity into plex-2 connections.

Creates a Connectivity table with a plex-2 (edge) connection between any two nodes that are connected to
a common element.

There is no point in resolving a plexitude 2 structure. Plexitudes lower than 2 can not be resolved.

Returns a plex-2 Connectivity with all connections between node pairs. In each element the nodes are

sorted.
Examples
>>> print ([1 for i in combinations(range(3),2) 1)
(¢, 1), (0, 2), (1, 2)]
>>> Connectivity([[0,1,2],[0,2,11,10,3,211) .resolve()
Connectivity ([[0, 17,

[0, 21,

[0, 31,

[1, 21,

[2, 311)

14

304 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

sharedNodes (elist=None)
Return the list of nodes shared by all elements in elist

Parameters elist (int array_like) — List of element numbers. If not specified, all elements are
considered.

Returns int array — A 1-dim int array with the list of nodes that are common to all elements in
the specified list. This array may be empty.

Examples

>>> a = Connectivity([[0,1,2]1,1[0,2,1]1,10,3,211)
>>> a.sharedNodes ()

array ([0, 21])

>>> a.sharedNodes ([0,1])

array ([0, 1, 2])

replic (n, inc)
Repeat a Connectivity with increasing node numbers.

Parameters
e n (int)— Number of copies to make.
e inc (int)— Increment in node numbers for each copy.

Returns Connectivity — A Connectivity with the concatenation of n replicas of self, where the
first replica is identical to self and each next one has its node numbers increased by inc.

Examples
>>> Connectivity ([[0,1,2],[0,2,3]1]) .replic(2,4)
Connectivity([[0, 1, 2],

[o, 2, 31,

[4, 5, 61,

[4, 6, 711)

chain (disconnect=None, return_conn=False)
Reorder the elements into simply connected chains.

Chaining the elements involves reordering them such that the first node of the next element is equal to
the last node of the previous. This is especially useful in converting line elements to continuous curves or
polylines. It will work with any plexitude though, and only look at the first and last node of the elements
in the chaining process.

Parameters

* disconnect (int array_like | str, optional) — List of node numbers where the result-
ing chains should be split. None of the resulting chains will have any of the listed node
numbers as an interior node. A chain may start and end at such a node. A special value
‘branch’ will set the disconnect array to all the nodes owned by more than two elements.
This will split all chains at branching points.

* return_conn (bool) — If True, also return the list of Connectivities corresponding
with the chains.

Returns

6.2.

Other pyFormex core modules 305

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

* chains (/ist of int arrays) — A list of tables with the same column length as those in conn,
and having two columns. The first column contains the original element numbers of a
chain, and the second column a value +1 or -1 depending on whether the element traversal
in the connected segment is in the original direction (+1) or the reverse (-1). The list of
chains is sorted in order of decreasing length.

* conn (list of Connectivity instances, optional) — Only returned if return_conn is
True: a list a Connectivity tables of plexitude nplex corresponding to each chain. The
elements in each Connectivity are ordered to form a continuous connected segment, i.e.
the last node of each element in the table is equal to the first node of the following element
(if any).

See also:

chained () return only the chained Connectivities

Examples

>>> Connectivity ([[0,1],[1,21,10,4]1,[4,2]11) .chain()
[array ([[O, 17,
[1, 11,
[3, -11,
[2, -111)1
>>> Connectivity([[0,1],[1,2],[0,41]).chain()
l[array ([[1, -11,
[0, -11,
[2, 111)]
>>> Connectivity ([[0,1],[0,21,10,3]1,[5,411) .chain()
[array ([[O, -17,
L1, 111),
array ([[3, 111),
array ([[2, 1]1)]
>>> Connectivity ([[0,1],[0,21,10,3],[5,41]1).chain(disconnect="branch")
larray ([[3, 111), array([[2, 111), array([[l, 11]), array([[0, 1]])]
>>> Connectivity ([[0,1],[0,2]1,10,31,[5,4]1]).chain(return_conn=True)
([array ([[O, -17,
L1, 111),
array ([[3, 111),
array ([[2, 111)1,
[Connectivity ([[1, O
[0, 2
Connectivity ([[5, 4]
Connectivity ([[0, 3]
>>> Connectivity ([[0
[array ([[1, -1],
[0, -11,
[2, 111),
array ([[3, 1]1)]
>>> Connectivity([[0,1,2],[2,0,3]1,10,3,11,104,5,2]]1) .chain(
.. disconnect=[0])
[array ([[0, 17,
(1, 111), array([[3, 111), array([[2, 11])]

)
,21,02,0,31,10,3,1],14,5,2]]) .chain()

chained (disconnect=None)
Return the Connectivities of the chained elements.

306 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

This is a convenience method calling chain () with the return_conn=True parameter and only
returning the second return value. It is equivalent with:

self.chain (disconnect, return_conn=True) [1]

Examples
>>> Connectivity ([[0,1],[1,2],[0,4]1,[4,2]]).chained()
[Connectivity ([[0, 17,

(1, 21,

[2, 41,

[4, 011)]
>>> Connectivity ([[0,1],([1,2]1,10,41]1).chained()
[Connectivity ([[4, 0],

[0, 11,

[1, 211)]

>>> Connectivity([[0,1],[0,21,10,31,[4,5]]).chained()

Or
[Connectivity ([[1, 0],

[0, 2]11), Connectivity ([[4, 5]]), Connectivity ([[0, 3]1]1)]
>>> Connectivity ([[0,1],[0,21,10,3]1,[5,41]1).chained(disconnect="branch")
[Connectivity ([[5, 4]1]1), Connectivity ([[0, 311),

Connectivity ([[0, 2]1]), Connectivity ([[0, 1]11)]
>>> Connectivity([[0,1,2],[2,0,31,10,3,11,104,5,2]]) .chained()
[Connectivity ([[1, 3, 0],
(o, 1, 21,
(2, 0, 311),
Connectivity ([[4, 5, 211)]
>>> Connectivity([[0,1,2],([2,0,31,100,3,11,14,5,211,) .chained(
]

’ ’

disconnect=[01])
[Connectivity ([[0, 1, 2
[2, 0, 3]
—Connectivity ([[0, 3,

Connectivity ([[4, 5, 211),.

static connect (clist, nodid=None, bias=None, loop=False)

Connect nodes from multiple Connectivity objects.
Parameters
* clist (1ist of Connectivity objects) - The Connectivities to connect.

* nodid (int array_like, optional) — List of node indices, same length as clist. This
specifies which node of the elements will be used in the connect operation.

* bias (int array_like, optional) — List of element bias values, same length as clist. If
provided, then element looping will start at this number instead of at zero.

* loop (bool)—If False (default), new element generation will stop as soon as the shortest
Connectivity runs out of elements. If set to True, the shorter lists will wrap around until
all elements of all Connectivities have been used.

Returns Connectivity — A Connectivity with plexitude equal to the number of Connectivities in
clist. Each element of the new Connectivity consist of a node from the corresponding
element of each of the Connectivities in c1ist. By default this will be the first node of
that element, but a nodid list may be given to specify the node index to be used for each of

6.2.

Other pyFormex core modules 307

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

the Connectivities. Finally, a list of bias values may be given to specify an offset in element
number for the subsequent Connectivities. If loop==False, the length of the Connectivity
will be the minimum length of the Connectivities in c1ist, each minus its respective bias.
If loop=True, the length will be the maximum length in of the Connectivities in c1ist.

Examples

>>> a = Connectivity ([[0,11,[2,31,14,511)
>>> b = Connectivity([[10,11,12],[13,14,15]11)
>>> ¢ = Connectivity ([[20,21]1,1([22,23]])
>>> print (Connectivity.connect ([a,b,c]))
[[O 10 20]
[2 13 22]]
>>> print (Connectivity.connect ([a,b,c],nodid=[1,0,11))
[[1 10 21]
[3 13 23]]
>>> print (Connectivity.connect ([a,b,c],bias=[1,0,11))
[[2 10 22711
>>> print (Connectivity.connect ([a,b,c],bias=[1,0,1],loop=True))
[[2 10 22]
[4 13 20]
]

[0 10 221]

6.2.6 coordsys — Coordinate Systems.

class coordsys.CoordSys (oab=None, points=None, rot=None, trl=None)
A Cartesian coordinate system in 3D space.

The coordinate system is stored as a rotation matrix and a translation vector, which transform the global coor-
dinate axes into the axes of the CoordSys. Clearly, the translation vector is the origin of the CoordSys, and the
rows of the rotation matrix are the unit vectors along the three axes.

The CoordSys can be initialized in different ways and has only optional parameters to achieve this. If none are
specified at all, the global coordinate axis results.

Parameters

* oab (float array_like (3,3), optional) — Three non-collinear points O, A and B, that define
the CoordSys in the following way: O is the origin of the coordinate system, A is a point
along the positive first axis and B is a point B in the plane of the first two axes.

» points (float array_like (4,3), optional) — The CoordSys is specified by four points:
the first three are points on the three coordinate axes, at distance +1 from the origin; the
fourth point is the origin. The use of this parameter is deprecated. It can be replaced with
oab=points[3,0,1].

* rot (float array_like (3,3), optional) — Rotation matrix that transforms the global global
axes to be parallel to the constructed CoordSys. The user is responsible to make sure that
rot is a proper orthonormal rotation matrix.

* trl (float array_like (3,)) — Translation vector that moves the global origin to the origin of
the CoordSys, in other words, this is the origin of the new CoordSys in global coordinates.

308 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Notes

If oab is provided, it takes precedence and the other parameters are ignored. If not, and points is provided, this
takes precedence and the remaining are ignored. If neither oab nor points are provided, rot and trl are used and
have default values equal to the rotation matrix and translation vector of the global coordinatee axes.

A Coords object has a number of attributes that provide quick acces to its internal data. Of these, ¢rl and rot can
be used to set the data of the CoordSys and thus change the CoordSys in-place.

trl
The origin of the CoordSys

Type float array (3,)

rot
The rotation matrix of the CoordSys

Type float array (3,3)

u
The unit vector along the first axis (0).
Type float array (3,)
v
The unit vector along the second axis (1).
Type float array (3,)
w
The unit vector along the third axis (2).
Type float array (3,)
o
The origin of the CoordSys.
Type float array (3,)
Examples

Three points O,A,B in the xy-plane, first two parallel to x-axis, third at higher y-value. The resulting CoordSys
is global axes translated to point O.

>>> OAB = Coords([[2.,1.,0.],[5.,1.,0.1,[0.,3.,0.11)
>>> print (CoordSys (0ab=0AB))
CoordSys: trl=[2. 1. 0.]; rot=[[1 0
[0. 1. 0.]
[O 1

Now translate the points so that O is on the z-axis, and rotate the points 30 degrees around z-axis.

>>> OAB = OAB.trl([-2.,-1.,5.1).rot(30)
>>> print (OAB)
[[0. 0. 5.]
[2.6 1.5 5.]
[-2.73 0.73 5. 11
>>> C = CoordSys (oab=0AB)
>>> print (C)
CoordSys: trl=[0. 0. 5.]; rot=[[0.87 0.5 0.]

(continues on next page)

6.2. Other pyFormex core modules 309

pyFormex Documentation, Release 2.2

(continued from previous page)

0.5 0.87 0.]
[O. -0. 1. 11

Reverse axes x and y. The resulting CoordSys is still righthanded. This is equivalent to a rotation over 180
degrees around z-axis.

>>> print (C.reverse (0,1))

CoordSys: trl=[0. 0. 5.]; rot=[[-0.87 -0.5 -0.]
[0.5 -0.87 -0.]
[0. -0. 1. 1]

Now rotate C over 150 degrees around z-axis to become parallel with the global axes.

>>> print (C.rotate (150,2))

CoordSys: trl=[O. 0. 5.]; rot=[[1 0
[-0. 1. 0.]
[O 1

>>> C = CoordSys(trl=[0., 0., 5.1,
. . rot=[[-0.87,-0.5,-0.], [0.5,-0.87,-0.], [0., -0., 1.11)
>>> print (C)

CoordSys: trl=[0. 0. 5.]; rot=[[-0.87 -0.5 -0.]
[0.5 -0.87 -0.]
[0. -0. 1. 11

trl
Return the origin as a (3,) vector

rot
Return the (3,3) rotation matrix

u

Return unit vector along axis 0 (x)
v

Return unit vector along axis 1 (y)
w

Return unit vector along axis 2 (z)
o

Return the origin
origin

Return the origin
axes

Return the (3,3) rotation matrix
axis (i)

Return the unit vector along an axis.
Parameters i (int (0, 1,2))- The axis number.
Returns float array (3,) — A unit vector along axis i.

Notes

If the axis is known in advance, it is more appropriate to use one of the u, v or w attributes

310

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> CoordSys () .rotate(30) .axis (1)
array ([-0.5 , 0.87, 0. 1)

points ()
Return origin and endpoints of unit vectors along axes.

Returns Coords (4,3) — A Coords object with four points: the endpoints of the unit vectors along
the three axes of the CoordSys, and the origin of the CoordSys.

Examples
>>> CoordSys () .rotate (30) .points ()
Coords ([[0.87, 0.5, 1,

)
0
[-0.5 , 0.87, O ,
ro. , 0. , 1
[0. 0 0

14

-
-]
-]

14

1)

translate (*args, **kargs)
Translate the CoordSys like a Coords object.

Parameters are like Coords.translate ().

Returns A new CoordSys obtained by giving self a translation.

Examples

>>> print (CoordSys () .translate([-2.,-1.,5.1))

CoordSys: trl=[-2. -1. 5.]; rot=[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.7]

rotate (*args, **kargs)
Rotate the CoordSys like a Coords object.

Parameters are like Coords.rotate ().

Returns A new CoordSys obtained by giving self a rotation.

Examples

>>> print (CoordSys () .rotate (30))

CoordSys: trl=[0. 0. 0.]; rot=[[0.87 0.5 0]
[-0.5 0.87 0.]
[O. 0 1. 11

reverse (*axes)
Reverse some axes of the CoordSys.

Parameters axes (int (0,1,2) or tuple of ints)- The axes to be reversed.

Note: The reversing a single axis (or all three axes) will change a right-hand-sided CoordSys into a
left-hand-sided one. Therefore, this method is normally used only with two axes.

. Other pyFormex core modules 311

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> print (CoordSys () .reverse(0,1))

CoordSys: trl=[0. 0. 0.]; rot=[[-1. -0. 0.]
[-0. -1. -0.]
[O 0. 1.]]

6.2.7 elements — Definition of elements for the Mesh model

This modules provides local numbering schemes of element connectivities for Mesh models. It allows a consistent
numbering throughout pyFormex. When interfacing with other programs, one should be aware that conversions may
be necessary. Conversions to/from external programs are done by the interface modules.

The module defines the E1ement Type class and a whole slew of its instances, which are the element types used in
pyFormex. Here is also the definition of the E1ems class, which is a specialisation of the Connectivity using an
ElementType instance as the eltype. The Elems class is one of the basic data holders in the Me sh model.

Classes defined in module elements
class elements.ElementType (name, doc, ndim, vertices, edges=None, faces=None, **kargs)
Element types for Me sh models.

ElementType instances store all data that define a particular geometrical entity type and that can not be derived
from the plexitude. The class is mostly a storage of provided (and sanitized) data. All successfully created
elements are stored in the class-owned register, from where they can be looked up by their name.

Parameters

* name (str)— The name of the element. Case is ignored. It is stored in the ElementType
instance in capitalized form. The key in the register is the name in all lower case. Usually
the name has a numeric last part equal to the plexitude of the element, but this is not a
requirement.

* doc (str)— A short description of the element.

* ndim (int)— The dimensionality (/evel) of the element (0..3):

0: point
— 1: line

2: surface

— 3: volume

* vertices (float array_like) — The natural coordinates of the nodes (nplex,3). This also
defines the plexitude (the number of nodes) of the element and the local node numbering:
range(nplex). The vertices of the elements are usually defined in a unit space [0,1] in each
axis direction.

* edges (Elems) — A connectivity table listing the edges of the element with local node
numbers. The eltype of the Elems should be an ElementType instance of level 1. This
parameter should be provided if and only if the element is of level 2 or 3. The edges should
be the conceptually correct edges of the element. If the element contains edges of different
plexitudes, they should be specified with the highest plexitude and degenerate elements
should be used for the lower plexitude edges.

312 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* faces (Elems) — A connectivity table listing the faces of the element with local node
numbers. The eltype of the Elems should be an ElementType instance of level 2. This
parameter should be provided if and only iff the element is of level 3. The faces should
be the conceptually correct faces of the element. If the element contains faces of different
plexitudes, they should be specified with the highest plexitude and degenerate elements
should be used for the lower plexitude faces.

* xxkargs (keyword arguments) — Other keyword arguments are stored in the Ele-
mentType as is. These can also be set after initialization by direct assignment to the in-
stance’s attribute. Below are some predefined values used by pyFormex.

reversed (int array_like) — The order of the nodes for the reversed element. Reversing
a line element reverses its parametric direction. Reversing a surface element reverses the
direction of the positive normal. Reversing a volume element turns the element inside out
(which could possibly be used to represent holes in space).

drawgl2faces (Elems)— A connectivity defining the entities to be used in rendering the
element. This should only be provided if it the rendered geometry should be different from
the element itself or from the element faces. This is used to draw approximate renderings
of elements for which there is no correct functionality available: linear approximations for
higher order elements, triangular subdivisions for quadrilaterals. Note that although the
name suggests faces, this connectivity can be of any level.

* drawgl2edges (Elems)— A connectivity defining the entities to be used in wire render-
ing of the element. This is like drawgl2faces but defines the edges to be rendered in the
wireframe and smoothwire and flatwire rendering modes.

* conversions (dict) — A dict holding the possible strategies for conversion of the ele-
ment to other element types. The key is the target element name, possibly extended with
an extra string to discriminate between multiple strategies leading to the same element. The
value is a list of actions to undertake to get from the initial element type to the target element
type. See more details in the section Element type conversion below.

extruded (dict) — A dict with data for how to extrude an element to a higher level
element. Extrusion increases the level of the element with one, by creating 1 or 2 new
planes of nodes in a new direction. The key in the dict is the degree of the extrusion: 1 or
2. The value is a tuple (eltype, nodes), where eltype is the target element type (an existing
ElementType instance) and nodes is a list of nodes numbers as they will appear in the new
node planes. If nodes is left out of the tuple, they will be ordered exactly like in the original
element.

* degenerate (dict) — A dict with data for how to replace a degenerate element with a
reduced element. A degenerate element has one or more coinciding nodes. The reduced
elements replaces coinciding nodes with a single node yielding an element with lower plex-
itude. The keys in the dict are reduced element types. The values are lists of coinciding node
conditions and matching reduction schemes: see the section Degenerate element reduction
below for more details.

Notes

The ordering of the vertices defines a fixed local numbering scheme of the nodes in the element. The
ordering of the items in edges and faces attributes specify the local numbering of the edges and faces.
For solid elements, it is guaranteed that the vertices of all faces are numbered in a consecutive order spinning
positively around the outward normal on the face.

Some of the parameters of an ElementType are instances of E1ems, but Elems instances contain themselves
an Element Type instance. Therefore care should be taken not to define circular dependencies. If the Ele-

6.2. Other pyFormex core modules 313

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyFormex Documentation, Release 2.2

mentType instances are created in order of increasing level, there is no problem with the edges and faces
parameters, as these are of a lower level than the element itself, and will have been defined before. For other
attributes however this might not always be the case. These attributes can then be defined by direct assignment,
after the needed ElementTypes have been initialized.

List of elements

The list of available element types can be found from:

>>> ElementType.listall()
Available Element Types:

0O-dimensional elements: ['point']

l1-dimensional elements: ['line2', 'line3', 'line4d']

2-dimensional elements: ['tri3', 'tri6', 'quad4', 'quad6', 'quad8',
—'quad9', 'quadl2']

3-dimensional elements: ['tetd4', 'tetlO0', 'tetld', 'tetld5', 'wedgeb',
—'hex8', 'hexl6', 'hex20', 'hex27', 'octa', 'icosa']

Element type conversion

Element type conversion in pyFormex is a powerful feature to transform Mesh type objects. While mostly used
to change the element type, there are also conversion types that refine the Mesh.

Available conversion methods are defined in an attribute conversion of the input element type. This attribute
should be a dictionary, where the keys are the name of the conversion method and the values describe what steps
need be taken to achieve this conversion. The method name should be the name of the target element, optionally
followed by a suffix to discriminate between different methods yielding the same target element type. The suffix
should always start with a ‘-°. The part starting at the *-* will be stripped of to set the final target element name.

E.g., a ‘line3’ element type is a quadratic line element through three points. There are two available methods to
convert it to ‘line2’ (straight line segments betwee two points), named named ‘line2’, resp. ‘line2-2’. The first
will transform a ‘line3’ element in a single ‘line2’ between the two endpoints (i.e. the chord of the quadratic
element); the second will replace each ‘line3’ with two straight segments: from first to central node, and from
central node to end node.

The values in the dictionary are a list of execution steps to be performed in the conversion. Each step is a tuple of
a single character defining the type of the step, and the data needed by this type of step. The steps are executed
one by one to go from the source element type to the target.

Currently, the following step types are defined:

Type Data

‘s’ (select) connectivity list of selected nodes

‘a’ (average) | list of tuples of nodes to be averaged

v’ (via) string with name of intermediate element type
‘x’ (execute) | the name of a proper conversion function

‘r’ (random) | list of conversion method names

The operation of these methods is as follows:

e ‘s’ (select): This is the most common conversion type. It selects a set of nodes of the input element,
and creates one or more new elements with these nodes. The data field is a list of tuples defining for each
created element which node numbers from the source element should be included. This method is typically
used to reduce the plexitude of the element.

* ‘a’ (average): Creates new nodes, the position of which is computed as an average of existing nodes. The
data field is a list of tuples with the numbers of the nodes that should be averaged for each new node. The
resulting new nodes are added in order at the end of the existing nodes. If this order is not the proper local

314

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

node numbering, an ‘s’ step should follow to put the (old and new) nodes in the proper order. This method
will usually increase the plexitude of the elements.

* ‘v’ (via): The conversion is made via an intermediate element type. The initial element type is first
converted to this intermediate type and the result is then transformed to the target type.

* ‘x’ (execute): Calls a function to do the conversion. The function takes the input Mesh as argument and
returns the converted Mesh. Currently this function should be a global function in the mesh module. Its
name is specified as data in the conversion rule.

¢ ‘1’ (random): Chooses a random method between a list of alternatives. The data field is a list of conversion
method names defined for the same element (and thus inside the same dictionary). While this could be
considered an amusement (e.g. used in the Carpetry example), there are serious applications for this, e.g.
when transforming a Mesh of squares or rectangles into a Mesh of triangles, by adding one diagonal in
each element. Results with such a Mesh may however be different dependent on the choice of diagonal.
The converted Mesh has directional preferences, not present in the original. The Quad4 to Tri3 conversion
therefore has the choice to use either ‘up’ or ‘down’ diagonals. But a better choice is often the ‘random’
method, which will put the diagonals in a random direction, thus reducing the effect.

Degenerate element reduction

Each element can have an attribute degenerate, defining some rules of how the element can be reduced to
a lower plexitude element in case it becomes degenerate. An element is said to be degenerate if the same node
number is used more than once in the connectivity of a single element. Reduction of degenerate elements is
usually only done if the element can be reduced to another element of the same level. For example, if two node
of a quadrilateral element are coinciding, it could be replaced with a triangle. Both are level 2 elements. When
the triangle has two coinciding nodes however, the element is normally not reduced to a line (level 1), but rather
completely removed from the (level 2) model. However, nothing prohibits cross-level reductions.

The degenerate attribute of an element is a dict where the key is a target element and the corresponding
value is a list of reduction rules. Each rule is a tuple of two items: a set of conditions and a node selector to
reduce the element. The conditions items is itself a tuple of any number of conditions, where each condition is
a tuple of two node indices. If these nodes are equal, the condition is met. If all conditions in a rule are met, the
reduction rule is applied. The second item in a rule, the node selector, is an index specifying the indices of the
nodes that should be retained in the new (reduced) elements.

As an example, take the Line3 element, which has 3 nodes defining a curved line element. Node 1 is the middle
node, and nodes 0 and 2 are the end nodes. The element has four ways of being degenerate: nodes 0 and 1 are
the same, nodes 1 and 2 are the same, nodes 0 and 2 are the same, and all three nodes are the same. For the first
two of them, a reduction scheme is defined, reducing the element to a straight line segment (Line2) between the
two end points:

Line3.degenerate =
Line2: [(((O,

{
), (0, 2)),
(L, 2)

r) (0, 2)), T,

In this case each of the reduction rules contains only a single condition, but there exist cases where multiple
conditions have to be net at the same time, which is why the condition (0, 1) is itself enclosed in a tuple. But
what about the other degenerate cases. If both end points coincide, it is not clear what to do: reduce to a line
segment between the coincident end points, or between an end point and the middle. Here pyFormex made the
choice to not reduce such case and leave the degenerate Line3 element. But the user could add a rule to e.g.
reduce the case to a line segment between end point and middle point:

Line3.degenerate[Line2] .append ((((0, 2),), (0, 1)))

Also the case of three coinciding points is left unhandled. But the user could reduce such cases to a Point:

6.2. Other pyFormex core modules 315

pyFormex Documentation, Release 2.2

’LineB.degenerate[Point] = [(((0, 1), (1, 2)), (0,)1

Here we need two conditions to check that nodes 0, 1 and 2 are equal. However, in this case the user probably
also wants the third degenerate case (nodes 0 and 2 are equal) to be reduced to a Point. So he could just use:

’Line3.degenerate[Point] = [((0, 2),), (0,)]

register
This is a class attribute collecting all the created ElementType instances with their name in lower case as
key.
Type dict

default
A class attribute providing the default ElementType for a given plexitude.

Type dict

Examples

>>> print (list (ElementType.register.keys()))

['"point', 'line2', 'line3', 'line4', 'tri3', 'trié6', 'quad4', 'quadé6',
'quad8', 'quad9', 'quadl2', 'tet4d', 'tetl0', 'tetld', 'tetl5', 'wedgeb',
'hex8', 'hexl6', 'hex20', 'hex27', 'octa', 'icosa']

>>> print (ElementType.default)

{l1: Point, 2: Line2, 3: Tri3, 4: Quad4, 6: Wedgeb, 8: Hex8}

nplex ()
Return the plexitude of the element

nvertices ()
Return the plexitude of the element

nnodes ()
Return the plexitude of the element

nedges ()
Return the number of edges of the element

nfaces ()
Return the number of faces of the element

getEntities (level)
Return the type and connectivity table of some element entities.

Parameters level (int)— The level of the entities to return. If negative, it is a value relative
to the level of the caller. If non-negative, it specifies the absolute level. Thus, for an Element-
Type of level 3, getEntities(-1) returns the faces, while for a level 2 ElementType, it returns
the edges. In both cases however, getEntities(1) returns the edges.

Returns Elems|Connectivity — The connectivity table and element type of the entities of
the specified level. The type is normally Elems. If the requested entity level is outside the
range 0..ndim, an empty Connectivity is returned.

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

Examples

>>> Tri3.getEntities (0)
Elems ([[O0],

(11,

[2]], eltype=Point)
>>> Tri3.getEntities (1)
Elems ([[0, 1],

(1, 21,

[2, 0]], eltype=Line2)
>>> Tri3.getEntities(2)
Elems ([[0, 1, 2]], eltype=Tri3)
>>> Tri3.getEntities (3)
Connectivity ([], shape=(0, 1))

getPoints ()
Return the level O entities

getEdges ()
Return the level 1 entities

getFaces ()
Return the level 2 entities

getCells ()
Return the level 3 entities

getElement ()
Return the element connectivity: the entity of level self.ndim

getDrawFaces (quadratic=False)
Return the local connectivity for drawing the element’s faces

getDrawEdges (quadratic=False)
Return the local connectivity for drawing the element’s edges

toMesh ()
Convert the element type to a Mesh.

Returns a Mesh with a single element of natural size.

toFormex ()
Convert the element type to a Formex.

Returns a Formex with a single element of natural size.

name ()
Return the lowercase name of the element.

For compatibility, name() returns the lower case version of the ElementType’s name. To get the real name,
use the attribute _name or format the ElementType as a string.

family ()
Return the element family name.

The element family name is the first part of the name that consists only of lower case letter.

classmethod list (ndim=None, types=False)
Return a list of available ElementTypes.

Parameters

e ndim (int, optional)-If provided, only return the elements of the specified level.

6.2. Other pyFormex core modules 317

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* types (bool, optional) - If True, return ElementType instances. The default is to
return element names.

Returns list — A list of ElementType names (default) or instances.

Examples

>>> ElementType.list ()

['point', 'line2', 'line3', 'lined', 'tri3', 'trie', 'quad4', 'quado',
— 'quad8', 'quad9', 'quadl2', 'tet4', 'tetlO', 'tetld', 'tetl5',
—'wedgeb6', 'hex8', 'hexl6', 'hex20', 'hex27', 'octa', 'icosa'l]

>>> ElementType.list (ndim=1)

["line2', 'line3', 'lined']

>>> ElementType.list (ndim=1, types=True)

[Line2, Line3, Line4]

classmethod listall (lower=False)
Print all available element types.

Prints a list of the names of all available element types, grouped by their dimensionality.

static get (eltype=None, nplex=None)
Find the ElementType matching an element name and/or plexitude.

Parameters

e eltype (ElementType | str | None) — The element type or name. If not provided
and nplex is provided, the default element type for that plexitude will be used, if it
exists. If a name, it should be the name of one of the existing ElementType instances (case
insensitive).

* nplex (int) — The plexitude of the element. If provided and an eltype was provided, it
should match the eltype plexitude. If no eltype was provided, the default element type for
this plexitude is returned.

Returns Element Type — The ElementType matching the provided eltype and/or nplex

Raises ValueError —If neither name nor nplex can resolve into an element type.

Examples

>>> ElementType.get ('tri3")

Tri3

>>> ElementType.get (nplex=2) .name ()
'line2’

>>> ElementType.get ('QUAD4")

Quad4

class elements.Elems
A Connectivity where the eltype is an ElementType subclass.

This is used to store the connectivity of a Mesh instance. It is also used to store some subitems in the
ElementType.

>>> C = Elems([[0,1,2],(0,1,3],([0,5,3]1,'tri3")
>>> C
Elems ([[0, 1, 21,

(continues on next page)

318 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> hi, 1lo

>>> hi
Connectivit
>>> 1o
Elems ([[0,
[ll
[2!
(1,
[3I
[O!
[5,
>>> hi, lo
>>> hi
Connectivit
>>> lo
Connectivit

[o, 1, 31,

[0, 5, 3]], eltype=Tri3)
>>> gsel = C.levelSelector(1l)
>>> sel
Elems ([[0, 1],

[1, 21,

[2, 011, eltype=Line2)
>>> C.selectNodes (sel)

Elems ([[0, 11,
(1, 21,
(2, 01,
[0, 11,
(1, 31,
(3, 01,
[0, 51,
[5, 31,
[3, 0]], eltype=Line2)

>>> C.selectN

Elems ([[0, 1],

[0, 21,

[0, 11,

[0, 31,

[0, 51,

[0, 311, eltype=Line2)
>>> C.selectNodes ([[0,1]1,[0,211])
Connectivity ([[0, 171,

[0, 21,
[0, 171,
[0, 31,
[0, 51,
[0, 311)

= C.insertLevel (1)

y (L[O,
(o,
[57
17,
21,
O]I
31,
01,
51,
311
= C
y(L[0,
[OV
[57
y ([0,
[17
(2,
[17
[37
(o,
[5

’

, eltype=Line2)
.insertLevel ([[0,11,1[1,2],12,011)

1, 21,
3, 41,
6, 411)

~ 0~

~

~

w U1 O w o N
~

o~

odes (Elems ([[0,1],[0,2]],eltype=Line2))

(continues on next page)

6.2. Other pyFormex core modules

319

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> C = Elems ([[0,1,2,3]]1, 'quad4")
>>> hi, lo = C.insertlevel([[O0,1,21,[1,2,3],[0,1,1],10,0,1],[1,0,011)
>>> hi
Connectivity ([[0, 1, 2, 2, 211)
>>> lo
Connectivity([[O0, 1, 2],
1, 2, 31,
[0, 1, 111)

levelSelector (level)
Return a selector for lower level entities.

Parameters level (int) — An specifying one of the hierarchical levels of element entities.
See Element .getEntities ().

Returns Elems — A new Elems object with shape (self.nelems*selector.nelemns,
selector.nplex).

selectNodes (selector)
Return a Connectivity with subsets of the nodes.

Parameters selector (intlint array_like) — A single int specifies a relative or absolute hier-
archical level of element entities (See the Element class). A 2-dim int array selector is then
constructed automatically from self.eltype.getEntities (selector).

Else, it is a 2-dim int array like (often a Connectivity or another E1ems. Each row of
selector holds a list of the local node numbers that should be retained in the new Connectivity
table.

As an example, if the Elems is plex-3 representing triangles, a selector [[0,1],[1,2],[2,0]]
would extract the edges of the triangle. The same would be obtained with selector=-1
or selector=1.

Returns Elems| Connectivity — An Elems or Connectivity object with eltype equal to that
of the selector. This means that if the selector has an eltype that is one of the elements defined
in elements, the return type will be Elems, else Connectivity. The shape is (self.
nelems*selector.nelems, selector.nplex). Duplicate elements created by the
selector are retained.

insertLevel (selector, permutations="all’)
Insert an extra hierarchical level in a Connectivity table.

A Connectivity table identifies higher hierarchical entities in function of lower ones. This method inserts an
extra level in the hierarchy. For example, if you have volumes defined in function of points, you can insert
an intermediate level of edges, or faces. Each element may generate multiple instances of the intermediate
level.

Parameters

* selector (int | int array_like) — A single int specifies a relative or absolute hierarchi-
cal level of element entities (See the Element class). A 2-dim int array selector is then
constructed automatically from self.eltype.getEntities (selector).

Else, it is a 2-dim int array like (often a Connectivity or another E1ems. Each row
of selector holds a list of the local node numbers that should be retained in the new Con-
nectivity table.

* permutations (str)— Defines which permutations of the row data are allowed while
still considering the rows equal. Equal rows in the intermediate level are collapsed into
single items. Possible values are:

320

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

— ’none’: no permutations are allowed: rows must match the same date at the same posi-
tions.

— ’roll’: rolling is allowed. Rows that can be transformed into each other by rolling are
considered equal;

— ’all’: any permutation of the same data will be considered an equal row. This is the
default.

Returns

e hi (Connectivity) — A Connecivity defining the original elements in function of the
intermediate level ones.

* lo (Elems | Connectivity) — An Elems or Connectivity object with eltype equal to
that of the selector. This means that if the selector has an eltype that is one of the elements
defined in e lement s, the return type will be Elems, else Connectivity.

o The resulting node numbering of the created intermediate entities

* (the /o return value) respects the numbering order of the original

e elements and the applied the selector, but in case of collapsing

* duplicate rows, it is undefined which of the collapsed sequences is

* returned.

* Because the precise order of the data in the collapsed rows is lost,

* it is in general not possible to restore the exact original table

* from the two result tables.

* See however mesh.Mesh.getBorder () for an application where an
* inverse operation is possible, because the border only contains

* unique rows.

e See also mesh.Mesh.combine (), which is an almost inverse operation
* for the general case, if the selector is complete.

 The resulting rows may however be permutations of the original.

reduceDegenerate (farget=None, return_indices=False)
Reduce degenerate elements to lower plexitude elements.

This will try to reduce the degenerate elements of the Elems to lower plexitude elements. This is only
possible if the ElementType has an attribute degenerate containing the proper reduction rules.

Parameters

* target (str, optional) — Target element name. If provided, only reductions to
that element type are performed. Else, all the target element types for which a reduction
scheme is available, will be tried.

e return_indices (bool, optional) - If True, also returns the indices of the ele-
ments in the input Elems that are contained in each of the parts returned.

Returns

 conn (list of Elems instances) — A list of Elems of which the first one contains the origi-
nally non-degenerate elements, the next one(s) contain the reduced elements (per reduced
element type) and the last one contains elements that could not be reduced (this may be
absent). In the following cases a list with only the original is returned:

6.2. Other pyFormex core modules 321

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

— there are no degenerate elements in the Elems;
— the ElementType does not have any reduction scheme defined;
— the ElementType does not have a reduction scheme fot the target.

* ind (list of indices, optional) — Only returned if return_indices is True: the indices
of the elements of self contained in each item in conn.

Note: If the Elems is part of a Me sh, you should use the mesh.Mesh. splitDegenerate () method
instead, as that will preserve the property numbers in the resulting Meshes.

The returned reduced Elems may still be degenerate for their own element type.

See also:

mesh.Mesh. splitDegenerate () split mesh in non-degenerate and reduced

Examples

>>> Elems ([[0,1,2],[0,1,3]1],eltype=Line3) .reduceDegenerate ()
[Elems([[O0, 1, 2],
[0, 1, 311, eltype=Line3)]
>>> C = Elems([[0,1,2],10,1,11,10,3,2]1],eltype="1ine3")
>>> C.reduceDegenerate ()
[Elems ([[O, 1, 2],
[0, 3, 2]], eltype=Line3), Elems ([[0, 1]], eltype=Line2)]
>>> C = Elems([[0,1,2],10,1,11,10,3,2],1[11,1,11,10,0,2]11,eltype=Line3)
>>> C.reduceDegenerate ()
[Elems ([[O0, 1, 2],

[0, 3, 211, eltype=Line3), Elems ([[1, 1],
[Ol 2:|I
ltype=Line2)]

(0, 111,
>>> conn, 1ind =
>>> conn

e
C.reduceDegenerate (return_indices=True)

[Elems ([[O0, 1, 2],

[0, 3, 211, eltype=Line3),
Elems ([[1, 1],

[0, 27,

[0, 1]], eltype=Line2)]
>>> ind

[array ([0, 2]), array(I[3, 4, 1])]

extrude (nnod, degree)

Extrude an Elems to a higher level Elems.
Parameters

* nnod (int) — Node increment for each new node plane. It should be higher than the
highest node number in self.

* degree (int)— Number of node planes to add. This is also the degree of the extrusion.
Currently it is limited to 1 or 2.

* extrusion adds degree planes of nodes, each with a node (The)

* nnod, to the original Elems and then selects (increment)-—

322

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* target nodes from it as defined by the (the)-
* value. (self.eltype.extruded[degree])—

Returns Elems — An Elems for the extruded element.

Examples

>>> a = Elems([[0,1],[1,2]],eltype=Line2) .extrude(3,1)
>>> print (a)
[[0 1 4 3]
[1 2 5 47]
>>> print (a.eltype.name())
quad4
>>> a = Elems([[0,1,2],[0,2,3]1],eltype=Line3) .extrude (4,2)
>>> print (a)
[T 0O 210 8 1 6 9 4 5]
[0 311 8 2 7 10 4 +6]]
>>> print (a.eltype.name())
quad9

getFreeEntities (level=-1, return_indices=False)

Return the free entities of the specified level.
Parameters

* level (int)— The level of the entities to return. If negative, it is a value relative to the
level of the caller. If non-negative, it specifies the absolute level.

* return_indices (bool) - If True, also returns an index array (nentities,2) for inverse
lookup of the higher entity (column 0) and its local lower entity number (column 1).

Returns Elems — A connectivity table with the free entities of the specified level. Free entities
are entities that are only connected to a single element.

See also:

Mesh.getFreeEntities () return the free entities of a Mesh

Mesh.getBorder () return the border entities of a Mesh

Examples

>>> elems = Elems([[0, 1, 31, [3, 2, 0]], eltype="tri3")
>>> elems.getFreeEntities (1)
Elems ([[0, 1],

(1, 31,

(3, 21,

[2, 0]], eltype=Line2)
>>> elems.getFreeEntities (1, True) [1]
array ([[0, O],

[0, 1]
(1, 0]
(1, 1]

14

’

1)

6.2. Other pyFormex core modules 323

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

6.2.8 field — Field data defined over a geometry.

This module defines the Field class, which can be used to describe scalar and vectorial field data over a geometrical

domain.

class field.Field (geometry, fldtype, data, fldname=None)
Scalar or vectorial field data defined over a geometric domain.

A scalar data field is a quantity having exactly one value in each point of some geometric domain. A vectorial
field is a quantity having exactly nval values at each point, where nval >= 1. A vectorial field can also be
considered as a collection of nval scalar fields: as far as the Field class is concerned, there is no relation between

the nval components of a vectorial field.

The definition of a field is always tied to some geometric domain. Currently pyFormex allows fields to be

defined on Formex and Mesh type geometries.

Fields should only be defined on geometries whose topology does not change anymore. This means that for
Formex type, the shape of the coords attribute should not be changed, and for Mesh type, the shape of coords
and the full contents of elems should not be changed. It is therefore best ot only add field data to geometry
objects that will not be changed in place. Nearly all methods in pyFormex return a copy of the object, and the
copy currently looses all the fields defined on the parent. In future however, selected transformations may inherit

fields from the parent.

While Field class instances are usually created automatically by the Geometry.addField () method of
some Geometry, it is possible to create Field instances yourself and manage the objects like you want. The
Fields stored inside Geometry objects have some special features though, like being exported to a PGF file

together with the geometry.
Parameters

* geometry (Formex | Mesh) — Describes the geometrical domain over which the field is
defined. Currently this has to be an instance of Formex or Mesh (or a subclass thereof).

* fldtype (str)— The field type, one of the following predefined strings:

'node’: the field data are specified at the nodes of the geometry;
— ’elemc’: the field data are constant per element;
— ’elemn’: the field data vary over the element and are specified at the nodes of the elements;

— ’elemg’: the field data are specified at a number of points of the elements, from which
they can be inter- or extrapolated;

The actually available field types depend on the type of the geometry object. Formex type
has only ‘elemc’ and ‘elemn’. Mesh currently has ‘node’, ‘elemc’ and ‘elemn’.

» data’ (array_like) — An array with the field values defined at the specified points. The
required shape of the array depends on fldtype:

— ’node’: (nnodes,) or (nnodes, nval)

elemc’: (nelems,) or (nelems, nval)

“elemn’: (nelems, nplex) or (nelems, nplex, nval)

“elemg’: (nelems, ngp) or (nelems, ngp, nval)

e fldname (str, optional)— The name used to identify the field. Fields stored in a
Geometry object can be retrieved using this name. See Geometry.getField (). If no
name is specified, an automatic name is generated.

324 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Examples

>>> from pyformex.formex import Formex

>>> M = Formex ('4:0123") .replic(2) .toMesh ()
>>> print (M.coords)

[l 0. 0.

O - O
o O O O

]
]
-]
]
]
]

NN PO O

. 1. 0.]]
>>> print (M.elems)
[[0 2 3 1]
[2 4 5 311
>>> d = M.coords.distanceFromPlane([0.,0.,0.1,[1.,0.,0.1)
>>> fl1 = Field (M, 'node',d)
>>> print (£1)

[0. 0. 1. 1. 2. 2.]
>>> f2 = fl.convert ('elemn')
>>> print (£2)
Field 'field-1', type 'elemn', shape (2, 4), nnodes=6, nelems=2,
[[0. 1. 1. 0.]
[1. 2. 2. 1.1]
>>> f3 = f2.convert ('elemc')
>>> print (£3)

[0.5 1.5]

>>> dl = M.coords.distanceFromPlane([0.,0.,0.],[0.,1.,0.1)
>>> f4 = Field(M, 'node',np.column_stack([d,d1l]))

>>> print (£4)

Field 'field-3', type 'node', shape (6, 2), nnodes=6, nelems=2,
[[0. 0.]

[0. 1.]

[1. 0.]

[1. 1.]

[2. 0.]

[2. 1.]]
>>> f5 = f4.convert ('elemn')

>>> print (£5)

[[[0. 0.]
[1. 0.]
[1. 1.]
[0. 1.]]
<BLANKLINE>
[[1. 0.]
[2. 0.]
[2. 1.]
[1. 1.17]
>>> f6 = f5.convert ('elemc')

>>> print (£6)
Field 'field-5', type 'elemc', shape (2, 2), nnodes=6, nelems=2,
[[0.5 0.5]
[1.5 0.5]]
>>> print (£3.convert ('elemn'))
Field 'field-6', type 'elemn', shape (2, 4), nnodes=6, nelems=2,

Field 'field-0', type 'node', shape (6,), nnodes=6, nelems=2, nplex=4

nplex=4

Field 'field-2', type 'elemc', shape (2,), nnodes=6, nelems=2, nplex=4

nplex=4

Field 'field-4', type 'elemn', shape (2, 4, 2), nnodes=6, nelems=2, nplex=4

nplex=4

nplex=4

(continues on next page)

6.2. Other pyFormex core modules

325

pyFormex Documentation, Release 2.2

(continued from previous page)

[[0.5 0.5 0.5 0.5]
[1.5 1.5 1.5 1.5]]
>>> print (f3.convert ('node'))
Field 'field-8', type 'node', shape (6, 1), nnodes=6, nelems=2, nplex=4
[[0.5]
[0.5]
[]
[]
[1.5]
[1.5]]
>>> print (f6.convert ('elemn'))
Field 'field-9', type 'elemn', shape (2, 4, 2), nnodes=6, nelems=2, nplex=4
[[[0.5 0.5]
[0.5 0.5]
[0.5 0.5]
[0.5 0.5]
<BLANKLINE>
[[1.5 0.5]
[1.5 0.5]
[1.5 0.5]
[1.5 0.511]
>>> print (f6.convert ('node'))
Field 'field-11', type 'node', shape (6, 2), nnodes=6, nelems=2, nplex=4
[[0.5 0.5]
.5

0
1.
1.
1
1

]

= =)
o oo oo

[
(
[
[
(

comp (i)
Return the data component i of a vectorial Field.

Parameters i (int:) — Component index of a vectorial Field. If the Field is a scalar one, any
value will return the full scalar data.

Returns array — An array with scalar data over the Geometry.

convert (totype, toname=None)
Convert a Field to another type.

Parameters

* totype (str)-The target field type. Can be any of the available field types. See Field
class. If the target type is equal to the source type, a copy of the original Field will result.
This may or may not be a shallow copy.

* toname (str)— The name of the target field. If not specified, a autoname is generated.

Returns Field — A Field of type fotype with data converted from the input Field.

6.2.9 fileread — Read geometry from files in a number of formats.

This module defines basic routines to read geometrical data from a file and the specialized importers to read files in a

number of well known standardized formats.

326 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Functions defined in module fileread
fileread.readPGF (filename, count=-1)
Read a pyFormex Geometry File.

A pyFormex Geometry File can store multiple geometrical objects in a native format that can be efficiently read
back into pyformex. The format is portable over different pyFormex versions and even to other software.

¢ filename: the name of an existing pyFormex Geometry File. If the filename ends on °.gz’, it is considered
to be a gzipped file and will be uncompressed transparently during the reading.

Returns a dictionary with the geometric objects read from the file. If object names were stored in the file, they
will be used as the keys. Else, default names will be provided.

fileread.readOFF (fn)
Read a surface mesh from an OFF file.

Note: All the faces in the file should have 3 vertices.

Parameters £n (path_like) — The name of a file in OFF format, commonly having a suffix ‘.off’.
If the name ends with ‘.off.gz’ or ‘.off.bz2’, then the file will transparently be uncompressed
during reading.

Returns
* coords (float array (ncoords, 3)) — The coordinates of all vertices.

* elems (int array (nelems,3)) — The element connectivity table.

Examples

>>> from .filewrite import writeOFF
>>> f = Path('test_filewrite.off")
>>> M = Mesh(eltype="'quad4') .convert ('tri3-u')
>>> writeOFF (£, M)
>>> coords, elems = readOFF (f)
>>> print (coords)
[l 0. 0. 0.]
[1. 0. 0.]
[1. 1. 0.]
[0. 1. 0.11]
>>> print (elems)
[[0 1 2]
[2 3 071

fileread.readGTS (fn)
Read a surface mesh from a GTS file.

Parameters £n (path_like) — The name of a file in GTS format, commonly having a suffix ‘.gts’.
If the name ends with ‘.gts.gz’ or .gts.bz2’, then the file will transparently be uncompressed
during reading.

Returns
* coords (float array (ncoords, 3)) — The coordinates of all vertices.

* edges (int array (nedges,2)) — The edges to nodes connectivity table.

6.2. Other pyFormex core modules 327

pyFormex Documentation, Release 2.2

* faces (int array (nfaces,2)) — The faces to edges connectivity table.

Examples

>>> from .filewrite import writeGTS

>>> f = Path('test_filewrite.gts')

>>> M = Mesh(eltype='quad4') .convert ('tri3-u')
>>> writeGTS (f, M.toSurface())

>>> coords, edges, faces = readGTS (f)
>>> print (coords)
[[O 0. 0.]

[1 0. 0.]

[1. 1. 0.]

[O 1. 0.1]1]
>>> print (edges)
[[0 1]

[1 2]

[2 0]

[2 3]

[3 01]
>>> print (faces)
[[0 1 2]

[3 4 2]]

fileread.readSTL (fn)

Read a surface mesh from an STL file.

Parameters £n (path_like) — The name of a file in STL format, commonly having a suffix ‘.stl’.
If the name ends with ‘.gz’ or “.bz2’, then the file will transparently be uncompressed during
reading.

Returns
* coords (float array (ncoords, 3)) — The coordinates of all vertices.
* edges (int array (nedges,2)) — The edges to nodes connectivity table.

* faces (int array (nfaces,2)) — The faces to edges connectivity table.

Notes

STL files come in ascii and binary formats. As there is no simple way to detect the format, a binary read is tried
first, and if unsuccessful, the ascii read is tried next.

Examples

>>> from .filewrite import writeSTL

>>> f = Path('test_filewrite.stl')

>>> M = Mesh(eltype='quad4') .convert ('tri3-u'")

>>> writeSTL(f, M.toFormex () .coords, binary=True, color=[255,0,0,128])
>>> coords, normals, color = readSTL(f)

>>> print (coords)

[[L 0. 0. 0.]
[1. 0. 0.]
[1. 1. 0.1]

(continues on next page)

328

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

(continued from previous page)

<BLANKLINE>
([1. 1. 0.]
[0. 1. 0.]
[0. 0. 0.1]]
>>> print (normals)
[[0. 0. 1.]
[0. 0. 1.1]
>>> print (color)
(1.0, 0.0, 0.0)
>>> writeSTL(f, M.toFormex().coords, binary=False)

>>> coords, normals, color = readSTL (f)
>>> print (coords)
[[[0. 0. 0.]

[1. 0. 0.]

[1. 1. 0.]1]
<BLANKLINE>

([1. 1. 0.]

[0. 1. 0.]

[0. 0. 0.111
>>> print (normals)
[[0. 0. 1.]

[0. 0. 1.11

fileread.read_stl_bin (fil)
Read a binary STL file.

Note: This is a low level routine for use in readSTL. It is not intended to be used directly.

Parameters £il (open file) - File opened in binary read mode, holding binary STL data.
Returns

* coords (Coords (ntri,3,3)) — A Coords with ntri triangles. Each triangle consists of 3 ver-
tices.

» normals (Coords (ntri,3)) — A Coords with ntri vectors: the outer normals on the triangles.

* color (None | float array (3,)) — If the STL file header contained a color in Materialise (TM)
format, the RGB color components are returned as OpenGL color components. The alpha
value is currently not returned.

fileread.read_stl_asc (fil)
Read an ascii STL file.

Note: This is a low level routine for use in readSTL. It is not intended to be used directly.

Parameters £il (open file) - File opened in binary read mode, holding ascii STL data.
Returns

* coords (Coords (ntri,3,3)) — A Coords with ntri triangles. Each triangle consists of 3 ver-
tices.

» normals (Coords (ntri,3)) — A Coords with ntri vectors: the outer normals on the triangles.

6.2. Other pyFormex core modules 329

pyFormex Documentation, Release 2.2

fileread.read_stl_cvt (fn, intermediate=None)
Read a surface from .stl file.

This is done by first coverting the .stl to .gts or .off format. The name of the intermediate file may be specified.
If not, it will be generated by changing the extension of fn to ‘.gts’ or ‘.off” depending on the setting of the
‘surface/stlread’ config setting.

Return a coords,edges,faces or a coords,elems tuple, depending on the intermediate format.

fileread.stlConvert (stlname, outname=None, binary=False, options="-d’)
Convert an .stl file to .off or .gts or binary .stl format.

Parameters
* stlname (path_like) — Name of an existing .stl file (either ascii or binary).

* outname (str or Path) — Name or suffix of the output file. The suffix defines the
format and should be one of ‘.off’, ‘.gts’, “.stl’, “.stla’, or .stlb’. If a suffix only is given
(other than ‘.stl’), then the outname will be constructed by changing the suffix of the input
st lname. If not specified, the suffix of the configuration variable ‘surface/stlread’ is used.

* binary (bool) — Only used if the extension of outname is “.stI’. Defines whether the
output format is a binary or ascii STL format.

* options (str)—
Returns
* outname (Path) — The name of the output file.
* status (int) — The exit status (0 if successful) of the conversion program.

* stdout (str) — The output of running the conversion program or a ‘file is already up to date’
message.

Notes
If the outname file exists and its mtime is more recent than the stiname, the outname file is considered up to date
and the conversion program will not be run.

The conversion program will be choosen depending on the extension. This uses the external commands ‘admesh’
or ‘stl2gts’.

fileread.getParams (line)
Strip the parameters from a comment line

fileread.readNodes (fil)
Read a set of nodes from an open mesh file

fileread.readElems (fil, nplex)
Read a set of elems of plexitude nplex from an open mesh file

fileread.readEsets (fil)
Read the eset data of type generate

fileread.readMeshFile (fnn)
Read a nodes/elems model from file.

Returns a dict:
e ‘coords’: a Coords with all nodes

e ‘elems’: a list of Connectivities

330 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

‘esets’: a list of element sets

fileread.extractMeshes (d)
Extract the Meshes read from a .mesh file.

fileread.convertInp (fn)
Convert an Abaqus .inp to a .mesh set of files

fileread.readInpFile (filename)
Read the geometry from an Abaqus/Calculix .inp file

This is a replacement for the convertInp/readMeshFile combination. It uses the ccxinp plugin to provide a direct
import of the Finite Element meshes from an Abaqus or Calculix input file. Currently still experimental and
limited in functionality (aimed primarily at Calculix). But also many simple meshes from Abaqus can already
be read.

Returns an dict.

fileread.read _gambit_neutral (fu, eltype="tri’)
Read a triangular/hexahedral surface mesh in Gambit neutral format.

eltype = ‘tri’ for triangular, ‘hex’ for hexahedral mesh. The .neu file nodes are numbered from 1! Returns a
nodes,elems tuple.

6.2.10 filewrite — Write geometry to file in a whole number of formats.

This module defines both the basic routines to write geometrical data to a file and the specialized exporters to write
files in a number of well known standardized formats.

The basic routines are very versatile as well as optimizedand allow to easily create new exporters for other formats.

Functions defined in module filewrite

filewrite.writePGF (filename, objects, sep="", mode="w’, shortlines=False, **kargs)
Save geometric objects to a pyFormex Geometry File.

A pyFormex Geometry File can store multiple geometrical objects in a native format that can be efficiently read
back into pyFormex. The format is portable over different pyFormex versions and even to other software.

* filename: the name of the file to be written. If it ends with *.gz’ or *.bz2’, the file will be compressed with

gzip or bzip2, respectively.

objects: a list or a dictionary. If it is a dictionary, the objects will be saved with the key values as there
names. Objects that can not be exported to a Geometry File will be silently ignored.

mode: can be set to ‘a’ to append to an existing file.

sep: the string used to separate data. If set to an empty string, the data will be written in binary format and
the resulting file will be smaller but less portable.

kargs: more arguments are passed to geomfile.GeometryFile.write ().

Returns the number of objects written to the file.

filewrite.writeOFF (fn, mesh)
Write a mesh of polygons to a file in OFF format.

Parameters
» f£n (path_like) — The output file name, commonly having a suffix ‘.off’.

¢ mesh (Mesh) — The Mesh to write to the file.

6.2. Other pyFormex core modules 331

pyFormex Documentation, Release 2.2

Notes

See https://en.wikipedia.org/wiki/OFF_(file_format).

Examples

>>> f = Path('test_filewrite.off"')

>>> M = Mesh(eltype="'quad4') .convert ('tri3-u')
>>> writeOFF (f, M)

>>> print (f.read_text())

OFF

4 20

0.0 0.0 0.0
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
3012
3230
<BLANKLINE>

>>> f.remove ()

filewrite.writeOBJ (fin, mesh, name=None)

Write a mesh of polygons to a file in OBJ format.

Parameters

* f£n (path_like) — The output file name, commonly having a suffix ‘.obj’.

* mesh (Mesh) — The Mesh to write to the file.

* name (str, optional)- Name of the Mesh to be writte

n into the file. If not provided

None and the Mesh has an .attrib.name, that name will be used.

Notes

See https://en.wikipedia.org/wiki/OBJ_(file_format).

Examples

>>> f = Path('test_filewrite.obj'")

>>> M = Mesh(eltype="'quad4') .convert ('tri3-u')
>>> writeOBJ (f, M, name='test')

>>> print (f.read_text())

.obj file written by pyFormex

test
0.0

(O = R

P WPk P OO
o o oo
o o oo
o o oo

H Mo << < < 0 F#*
s OO O

End
<BLANKLINE>
>>> f.remove ()

332

Chapter 6

. pyFormex reference manual

https://en.wikipedia.org/wiki/OFF_(file_format
https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/OBJ_(file_format

pyFormex Documentation, Release 2.2

filewrite.writePLY (fn, mesh, comment=None, color_table=None, binary=False)
Write a mesh to a file in PLY format.

Parameters
» £n (path_like) — The output file name, commonly having a suffix ‘.ply’.
¢ mesh (Mesh) — The Mesh to write to the file.

e comment (str, optional)-— An extracomment to add in the file header.

Notes

See https://en.wikipedia.org/wiki/PLY_(file_format)).

Examples

>>> f = Path('test_filewrite.ply')

>>> M = Mesh(eltype="'quad4') .convert ('tri3-u'")
>>> writePLY (f, M, comment='This is a test')
>>> print (f.read_text())

ply

format ascii 1.0

comment .ply file written by pyFormex

comment This is a test

element vertex 4

property float x

property float y

property float z

element face 2

property list uchar int vertex_indices
end_header

0.0 0.0 0.

o O O O

0
0.
0

w w o -
oo o«
= P = O
v o oo

2 30
<BLANKLINE>
>>> f.remove ()

filewrite.writeGTS (fn, surf)
Write a TriSurface to a file in GTS format.

Parameters
* fn (path_like) — The output file name, commonly having a suffix ‘.gts’.

e surf (TriSurface) - The TriSurface to write to the file.

Examples

>>> f = Path('test_filewrite.gts"')

>>> M = Mesh(eltype="'quad4') .convert ('tri3-u')
>>> writeGTS (f, M.toSurface())

>>> print (f.read_text())

(continues on next page)

6.2. Other pyFormex core modules 333

https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/PLY_(file_format)

pyFormex Documentation, Release 2.2

(continued from previous page)

N

52
.000000
.000000
.000000
.000000

2

SR W W NDRE O PO

a N =W

3
3

= P O O

.000000
.000000
.000000
.000000

#GTS file written
<BLANKLINE>
>>> f.remove ()

.000000
.000000
.000000
.000000

o O O O

by pyFormex

filewrite.writeSTL (fn, x, n=None, binary=False, color=None)

Write a collection of triangles to an STL file.

Parameters

£n (path_like) — The output file name, commonly having a suffix ‘.stl’ or ‘.stla’ (for ascii

output) or ‘.stlb’ (for binary output).

x (Coords | Formex) — A Coords or Formex with shape (ntriangles,3,3) holding the
coordinates of the vertices of the triangles to write to the file.

n(Coords,

to the triangles. If not specified, they will be calculated.

optional)— A Coords with shape (ntriangles,3) holding the normal vectors

binary (bool) — If True, the output file format will be a binary STL. The default is an
ascii STL.

color ((4,) int array)- An int array with 4 values in the range 0..255. These are
the red, green, blue and alpha components of a single color for all the triangles. It will be

stored in the header of a binary STL file.

Note: The color can only be used with a binary STL format, and is not recognized by all STL processing

software.

Warning: The STL format stores a loose collection of triangles and does not include connectivity informa-
tion between the triangles. Therefore the use of this format for intermediate storage is strongly discouraged,
as many processing algorithms will need to build the connectivity information over and again, which may
lead to different results depending on round-off errors. The STL format should only be used as a final export
to e.g. visualisation methods or machining processes.

Examples

>>> f =
>>> M =

>>> writeSTL (£,

Path('test_filewrite.stl')
Mesh (eltype="quad4') .convert ('tri3-u')
M.toFormex ())

>>> print (f.read_text ())
solid Created by pyFormex

(continues on next page)

334

Chapter 6

. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

(continued from previous page)

facet normal 0.0 0.0 1.0
outer loop
vertex 0.0 0.0 0.0
vertex 1.0 0.0 0.0
vertex 1.0 1.0 0.0
endloop
endfacet
facet normal 0.0 0.0 1.0
outer loop
vertex 1.0 1.0 0.0
vertex 0.0 1.0 0.0
vertex 0.0 0.0 0.0
endloop
endfacet
endsolid
<BLANKLINE>
>>> f.remove ()

filewrite.write_stl_bin (fil, x, color=None)
Write a binary stl.

Note: This is a low level routine for use in writeSTL. It is not intended to be used directly.

Parameters

e £il (file_like) — The file to write the data to. It can be any object supporting the write(bytes)
method, like a file opened in binary write mode.

* x((ntri,4,3) float array)- Array with 1 normal and 3 vertices and 1 normal per
triangle.

* color ((4,) int array, optional)- Fourcolor components in the range 0..255:
red, green, blue and alpha. If specified, these will be stored in the header and may be
recognized by some other software.

Examples

>>> f = Path('test_filewrite.stl')

>>> M Mesh (eltype="quad4') .convert ('tri3-u"')

>>> writeSTL(f, M.toFormex () .coords, binary=True, color=[255,0,0,128])
>>> from .fileread import readSTL

>>> x, n, ¢ = readSTL(f)
>>> print (x)
[[[0. 0. 0.]

[1. 0. 0.]

[1. 1. 0.]]
<BLANKLINE>

[l 1. 1. 0.]

[0. 1. 0.]

[0. 0. 0.111]
>>> print (n)
[T 0. 0. 1.
[0. 0. 1.11]
>>> print (c)

(continues on next page)

6.2. Other pyFormex core modules 335

pyFormex Documentation, Release 2.2

(continued from previous page)

(1.0, 0.0,
>>> f.remove ()

0.0)

filewrite.write_stl_asc (fil, x)
Write a collection of triangles to an ascii .stl file.

Note: This is a low level routine for use in writeSTL. It is not intended to be used directly.

Parameters

£i1 (file_like) — The file to write the data to. It can be any object supporting the write(bytes)
method, like a file opened in binary write mode.

x((ntri,4,3) float array)- Array with 1 normal and 3 vertices and 1 normal per
triangle.

filewrite.writeData (fil, data, fmt=None, sep=", end="\n")
Write an array of numerical data to an open file.

Parameters

Examples

£i1 (file_like) — The file to write the data to. It can be any object supporting the write(bytes)
method, like a file opened in binary write mode.

data (array_like) — A numerical array of int or float type. For output, the array will be
reshaped to a 2D array, keeping the length of the last axis.

fmt (str, optional)— A format string compatible with the array data type. If not
provided, the data are written as a single block using numpy .tofile (). If provided, the
format string should contain a valid format converter for a single data item. It may also
contain the necessary spacing or separator. Examples are ‘%5i * for int data and ‘%f,” or
‘%10.3¢’ for float data.

sep (str, optional)— A string to be used as separator between single items. If an
empty string and no fint is provided, the data are written in binary mode. This is the default.
For any other string, the data are written in ascii mode with the specified string inserted as
separator between any two items.

end (str, optional)-— A string to be written at the end of the data block (if no finf) or
at the end of each row (with finr). The default value is a newline character.

>>>
>>>

>>>

i = np.eye(3)

f = Path('test_filewrite.out"')
>>> with f.open('wb') as fil:
writeData (fil, i, sep=" ")

f.size ()
35
>>> print (f.read_text())
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
>>> with f.open('wb') as fil:
writeData (fil, i, fmt=" ', sep=" ")
>>> f.size()

(continues on next page)

336

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

(continued from previous page)

63

>>> print (f.read_text())
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

>>> 1 = np.arange (24) .reshape (2,3, 4)
>>> with f.open('wb') as fil:
writeData (fil, i, fmt=" ',y sep=" ")

>>> print (f.read_text())

0.0000 1.0000 2.0000 3.0000
4.0000 5.0000 6.0000 7.0000
8.0000 9.0000 10.0000 11.0000
12.0000 13.0000 14.0000 15.0000
16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000
>>> f.remove ()

filewrite.writeIData (fil, data, fmt, ind=1, sep="", end="\n")
Write an indexed array of numerical data to an open file.

Parameters

e £il (file_like) — The file to write the data to. It can be any object supporting the write(bytes)
method, like a file opened in binary write mode.

* data (array_like) — A numerical array of int or float type. For output, the array will be
reshaped to a 2D array, keeping the length of the last axis.

* fmt (str)— A format string compatible with the array data type. The format string should
contain a valid format converter for a a single data item. It may also contain the necessary
spacing or separator. Examples are ‘%5i ‘ for int data and ‘%f,” or ‘%10.3¢’ for float data.

* ind (int or int array_like) — The row indices to write with the data. If an array, its length
should be equal to the numbe of rows in the (2D-reshaped) data array. If a single int, it
specifies the index for the first row, and the value will be automatically incremented for the
other rows.

* sep(str, optional)— A string to be used as separator between single items.

* end(str, optional)-— A string to be written at the end of the data block (if no fmt) or
at the end of each row (with finr). The default value is a newline character.

Examples

>>> 1 = np.eye(3)

>>> f = Path('test_filewrite.out')

>>> with f.open('wb') as fil:

.. writeIData (fil, i, fmt=" ', sep=" ")
>>> f.size ()

72

>>> print (f.read_text())
1 1.0000 0.0000 0.0000
2 0.0000 1.0000 0.0000
3 0.0000 0.0000 1.0000
>>> f.remove ()

filewrite.writeText (fil, text)
Write text to a file opened in text or binary mode

6.2. Other pyFormex core modules

337

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

text can be either str or bytes. If not matching the open mode, text is encoded to/decoded from utf-8

6.2.11 geometry — A generic interface to the Coords transformation methods

This module defines a generic Geometry superclass which adds all the possibilities of coordinate transformations
offered by the Coords class to the derived classes.

class geometry.Geometry

A generic geometry class allowing manipulation of large coordinate sets.

The Geometry class is a generic parent class for all geometry classes. It is not intended to be used directly, but
only through derived classes. Examples of derived classes are Formex, Mesh and its subclass TriSurface,
Curve.

The basic entity of geometry is the point, defined by its coordinates. The Geometry class expects these to be
stored in a Coords object assigned to the coords attribute (it is the responsability of the derived class object
initialisation to do this).

The Geometry class exposes the following attributes of the coords attribute, so that they can be directly used
on the Geometry object: xyz, x, v, z, Xy, vz, XZ.

The Geometry class exposes a large set of Coords methods for direct used on the de-

rived class objects. These methods are automatically executed on the coords attribute
of the object. One set of such methods are those returning some information about the
Coords: points (), bbox(), center (), bboxPoint (), centroid(), sizes (),

dsize(), bsphere(), bboxes(), inertia(), principalCS(), principalSizes(),
distanceFromPlane (), distanceFromLine (), distanceFromPoint (),
directionalSize (), directionalWidth (), directionalExtremes (). Thus, if F is an
instance of class Formex, then one can use F.center () as a convenient shorthand for F.coords.
center ().

Likewise, most of the transformation methods of the :class:~coords.Coords‘ class are exported through the
Geometry class to the derived classes. When called, they will return a new object identical to the original, ex-
cept for the coordinates, which are transformed by the specified method. Refer to the correponding Coords
method for the precise arguments of these methods: scale (), adjust (), translate (), centered(),
align(), rotate(), shear (), reflect (), affine(), toCS(), fromCS (), transformCS(),
position(), cylindrical (), hyperCylindrical (), toCylindrical (), spherical (),
superSpherical (), toSpherical (), circulize(), bump (), flare(), map(), mapl(),
mapd (), copyAxes (), swapAxes (), rollAxes (), projectOnPlane (), projectOnSphere (),
projectOnCylinder (), isopar (), addNoise (), rot (),trl ().

Geometry is a lot more than points however. Therefore the Geometry and its derived classes can represent
higher level entities, such as lines, planes, circles, triangles, cubes,... These entities are often represented by
multiple points: a line segment would e.g. need two points, a triangle three. Geometry subclasses can implement
collections of many such entities, just like the Coords can hold many points. We call these geometric entities
‘elements’. The subclass must at least define a method nelems () returning the number of elements in the
object, even if there is only one.

The Geometry class allows the attribution of a property number per element. This is an integer number that can
be used as the subclass or user wants. It could be just the element number, or a key into a database with lots of
more element attributes. The Geometry class provides methods to handle these property numbers.

The Geometry class provides a separate mechanism to store attributes related to how the geometry should be
rendered. For this purpose the class defines an attrib attribute which is an object of class Attributes.
This attribute is callable to set any key/value pairs in its dict. For example, F.attrib (color=yellow)
will make the object F always be drawn in yellow.

338

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

The Geometry class provides for adding fields to instances of the derived classes. Fields are numerical data
(scalar or vectorial) that are defined over the geometry. For example, if the geometry represents a surface, the
gaussian curvature of that surface is a field defined over the surface. Field data are stored in F'ie1d objects and
the Geometry object stores them internally in a dict object with the field name as key. The dict is kept in an
attribute £ields that is only created when the first Field is added to the object.

Finally, the Geometry class also provides the interface for storing the Geometry object on a file in pyFormex’s
own ‘pgf’ format.

Note: When subclassing the Geometry class, care should be taken to obey some rules in order for all the above
to work properly. See UserGuide.

coords
A Coords object that holds the coordinates of the points required to describe the type of geometry.

Type Coords

prop
Element property numbers. This is a 1-dim int array with length nelems (). Each element of the Geom-
etry can thus be assigned an integer value. It is up the the subclass to define if and how its instances are
divided into elements, and how to use this element property number.

Type int array

attrib
An Attributes object that is primarily used to define persisting drawing attributes (like color) for the Ge-
ometry object.

Type Attributes

fields
A dict with the Fields defined on the object. This atribute only exists when at least one Field has been
defined. See addField ().

Type OrderedDict

Xyz
Return the xyz property of the coords attribute of the Geometry object.

See coords.Coords. xyz for details.

X
Return the x property of the coords attribute of the Geometry object.
See coords.Coords. x for details.

y
Return the y property of the coords attribute of the Geometry object.
See coords. Coords. y for details.

z
Return the z property of the coords attribute of the Geometry object.
See coords. Coords. z for details.

Xy

Return the xy property of the coords attribute of the Geometry object.

See coords.Coords. xy for details.

6.2. Other pyFormex core modules 339

pyFormex Documentation, Release 2.2

vz
Return the yz property of the coords attribute of the Geometry object.

See coords.Coords. yz for details.

Xz
Return the xz property of the coords attribute of the Geometry object.

See coords.Coords. xz for details.

nelems ()
Return the number of elements in the Geometry.

Returns int — The number of elements in the Geometry. This is an abstract method that should
be reimplemented by the derived class.

level ()
Return the dimensionality of the Geometry

The level of a Geomet ry is the dimensionality of the geometric object(s) represented:
* 0: points
* 1: line objects
* 2: surface objects
* 3: volume objects

Returns int — The level of the Geometry, or -1 if it is unknown. This should be implemented by
the derived class. The Geometry base class always returns -1.

info ()
Return a short string representation about the object

points (*args, **kargs)
Call Coords.points method on the Geometry object’s coords.

See coords.Coords.points () for details.

bbox (*args, **kargs)
Call Coords.bbox method on the Geometry object’s coords.

See coords.Coords.bbox () for details.

center (*args, **kargs)
Call Coords.center method on the Geometry object’s coords.

See coords.Coords.center () for details.

bboxPoint (*args, **kargs)
Call Coords.bboxPoint method on the Geometry object’s coords.

See coords.Coords.bboxPoint () for details.

centroid (*args, **kargs)
Call Coords.centroid method on the Geometry object’s coords.

See coords.Coords.centroid () for details.

sizes (*args, **kargs)
Call Coords.sizes method on the Geometry object’s coords.

See coords.Coords.sizes () for details.

340 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

dsize (*args, **kargs)
Call Coords.dsize method on the Geometry object’s coords.

See coords.Coords.dsize () for details.

bsphere (*args, **kargs)
Call Coords.bsphere method on the Geometry object’s coords.

See coords.Coords.bsphere () for details.

bboxes (*args, **kargs)
Call Coords.bboxes method on the Geometry object’s coords.

See coords.Coords.bboxes () for details.

inertia (*args, **kargs)
Call Coords.inertia method on the Geometry object’s coords.

See coords.Coords.inertia () for details.

principalCs (*args, **kargs)
Call Coords.principalCS method on the Geometry object’s coords.

See coords.Coords.principalCs () for details.

principalSizes (*args, **kargs)
Call Coords.principalSizes method on the Geometry object’s coords.

See coords.Coords.principalSizes () for details.

distanceFromPlane (*args, **kargs)
Call Coords.distanceFromPlane method on the Geometry object’s coords.

See coords.Coords.distanceFromPlane () for details.

distanceFromLine (*args, **kargs)
Call Coords.distanceFromLine method on the Geometry object’s coords.

See coords.Coords.distanceFromLine () for details.

distanceFromPoint (*args, **kargs)
Call Coords.distanceFromPoint method on the Geometry object’s coords.

See coords.Coords.distanceFromPoint () for details.

directionalSize (*args, **kargs)
Call Coords.directionalSize method on the Geometry object’s coords.

See coords.Coords.directionalSize () for details.

directionalWidth (*args, **kargs)
Call Coords.directional Width method on the Geometry object’s coords.

See coords.Coords.directionalWidth () for details.

directionalExtremes (*args, **kargs)
Call Coords.directionalExtremes method on the Geometry object’s coords.

See coords.Coords.directionalExtremes () for details.

convexHull (dir=None, return_mesh=True)
Return the convex hull of a Geometry.

This is the convexHull () applied to the coords attribute, butithas return_mesh=True as default.

Returns Mesh — The convex hull of the geometry.

6.2. Other pyFormex core modules 341

pyFormex Documentation, Release 2.2

testBbox (bb, dirs=(0, 1, 2), nodes="any’, atol=0.0)
Test which part of a Formex or Mesh is inside a given bbox.

The Geometry object needs to have a test () method, This is the case for the Formex and Mesh classes.
The test can be applied in 1, 2 or 3 viewing directions.

Parameters
* bb (Coords (2,3) or alike)-The bounding box to test for.

* dirs (tuple of ints (0,1,2)) - The viewing directions in which to check the
bbox bounds.

* nodes — Same as in formex.Formex.test () or mesh.Mesh.test ().
Returns bool array — The array flags the elements that are inside the given bounding box.

scale (*args, **kargs)
Apply the scale transformation to the Geometry object.

See coords.Coords.scale () for details.

resized (size=1.0, tol=1e-05)
Return a copy of the Geometry scaled to the given size.

size can be a single value or a list of three values for the three coordinate directions. If it is a single value,
all directions are scaled to the same size. Directions for which the geometry has a size smaller than tol
times the maximum size are not rescaled.

adjust (*args, **kargs)
Apply the ad just transformation to the Geometry object.

See coords.Coords.adjust () for details.

translate (*args, **kargs)
Apply the t ranslate transformation to the Geometry object.

See coords.Coords.translate () for details.

centered (*args, **kargs)
Apply the centered transformation to the Geometry object.

See coords.Coords.centered () for details.

align (*args, **kargs)
Apply the a11ign transformation to the Geometry object.

See coords.Coords.align () for details.

rotate (*args, **kargs)
Apply the rotate transformation to the Geometry object.

See coords.Coords.rotate () for details.

shear (*args, **kargs)
Apply the shear transformation to the Geometry object.

See coords.Coords.shear () for details.

reflect (*args, **kargs)
Apply the reflect transformation to the Geometry object.

See coords.Coords.reflect () for details.

affine (*args, **kargs)
Apply the a £ fine transformation to the Geometry object.

342 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

See coords.Coords.affine () for details.

toCsS (*args, **kargs)
Apply the £ oCS transformation to the Geometry object.

See coords.Coords.toCS () for details.

fromCs (*args, **kargs)
Apply the fromCS transformation to the Geometry object.

See coords.Coords. fromCS () for details.

transformCs (*args, **kargs)
Apply the t ransformCs transformation to the Geometry object.

See coords.Coords.transformCsS () for details.

position (*args, **kargs)
Apply the position transformation to the Geometry object.

See coords.Coords.position () for details.

cylindrical (*args, **kargs)
Apply the cylindrical transformation to the Geometry object.

See coords.Coords.cylindrical () for details.

hyperCylindrical (*args, **kargs)

Apply the hyperCylindrical transformation to the Geometry object.

See coords.Coords.hyperCylindrical () for details.

toCylindrical (*args, **kargs)
Apply the toCylindrical transformation to the Geometry object.

See coords.Coords.toCylindrical () for details.

spherical (*args, **kargs)
Apply the spherical transformation to the Geometry object.

See coords.Coords.spherical () for details.

superSpherical (*args, **kargs)
Apply the superSpherical transformation to the Geometry object.

See coords.Coords. superSpherical () for details.

toSpherical (*args, **kargs)
Apply the t oSpherical transformation to the Geometry object.

See coords.Coords.toSpherical () for details.

circulize (*args, **kargs)
Apply the circulize transformation to the Geometry object.

See coords.Coords.circulize () for details.

bump (*args, **kargs)
Apply the bump transformation to the Geometry object.

See coords.Coords.bump () for details.

flare (*args, **kargs)
Apply the £1are transformation to the Geometry object.

See coords.Coords.flare () for details.

6.2.

Other pyFormex core modules

343

pyFormex Documentation, Release 2.2

map (*args, **kargs)
Apply the map transformation to the Geometry object.

See coords.Coords.map () for details.

mapl (*args, **kargs)
Apply the map1 transformation to the Geometry object.

See coords.Coords.mapl () for details.

mapd (*args, **kargs)
Apply the mapd transformation to the Geometry object.

See coords.Coords.mapd () for details.

copyAxes (*args, **kargs)
Apply the copyAxes transformation to the Geometry object.

See coords.Coords.copyAxes () for details.

swapAxes (*args, **kargs)
Apply the swapAxes transformation to the Geometry object.

See coords.Coords.swapAxes () for details.

rollAxes (*args, **kargs)
Apply the rolIAxes transformation to the Geometry object.

See coords.Coords.rollAxes () for details.

projectOnPlane (*args, **kargs)
Apply the pro jectOnP1ane transformation to the Geometry object.

See coords.Coords.projectOnPlane () for details.

projectOnSphere (*args, **kargs)
Apply the pro jectOnSphere transformation to the Geometry object.

See coords.Coords.projectOnSphere () for details.

projectOnCylinder (*args, **kargs)
Apply the projectOnCylinder transformation to the Geometry object.

See coords.Coords.projectOnCylinder () for details.

isopar (*args, **kargs)
Apply the i sopar transformation to the Geometry object.

See coords.Coords. isopar () for details.

addNoise (*args, **kargs)
Apply the addNoi se transformation to the Geometry object.

See coords.Coords.addNoise () for details.

rot (*args, **kargs)
Apply the rotate transformation to the Geometry object.

See coords.Coords.rotate () for details.

trl (*args, **kargs)
Apply the t ranslate transformation to the Geometry object.

See coords.Coords.translate () for details.

344 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

setProp (prop=None)
Create or destroy the property array for the Geometry.

A property array is a 1-dim integer array with length equal to the number of elements in the Geometry. Each
element thus has its own property number. These numbers can be used for any purpose. In derived classes
like Formex and :class‘~mesh.Mesh* they play an import role when creating new geometry: new elements
inherit the property number of their parent element. Properties are also preserved on pure coordinate
transformations.

Because elements with different property numbers can be drawn in different colors, the property numbers
are also often used to impose color.

Parameters prop (int, int array_like or ‘range’) — The property number(s) to assign to the
elements. If a single int, all elements get the same property value. If the number of passed
values is less than the number of elements, the list will be repeated. If more values are passed
than the number of elements, the excess ones are ignored.

A special value 'range' may be given to set the property numbers equal to the element
number. This is equivalent to passing arange (self.nelems ()).

A value None (default) removes the properties from the Geometry.
Returns
* The calling object self, with the new properties inserted

* or with the properties deleted if argument is None.

Note: This is one of the few operations that change the object in-place. It still returns the object itself, so
that this operation can be used in a chain with other operations.

See also:

toProp () Create a valid set of properties for the object

whereProp () Find the elements having some property value
toProp (prop)

Create a valid set of properties for the object.

Parameters prop (int or int array_like) — The property values to turn into a valid set for the
object. If a single int, all elements get the same property value. If the number of passed values
is less than the number of elements, the list will be repeated. If more values are passed than
the number of elements, the excess ones are ignored.

Returns int array — A 1-dim int array that is valid as a property array for the Geometry object.
The length of the array will is self.nelems () and the dtype is Int.

See also:

setProp () Set the properties for the object

whereProp () Find the elements having some property value

Note: When you set the properties (using setProp ()) you do not need to call this method to validate
the properties. It is implicitely called from setProp ().

6.2. Other pyFormex core modules 345

pyFormex Documentation, Release 2.2

maxProp ()
Return the highest property value used.

Returns int — The highest value used in the properties array, or -1 if there are no properties.

propSet ()
Return a list with unique property values in use.

Returns int array — The unique values in the properties array. If no properties are defined, an
empty array is returned.

whereProp (prop)
Find the elements having some property value.

Parameters prop (int or int array_like) — The property value(s) to be found.
Returns

int array — A 1-dim int array with the indices of all the elements that have the property value
prop, or one of the values in prop.

If the object has no properties, an empty array is returned.

See also:

setProp () Set the properties for the object

toProp () Create a valid set of properties for the object

selectProp () Return a Geometry object with only the matching elements
copy ()

Return a deep copy of the Geometry object.

Returns Geometry (or subclass) object — An object of the same class as the caller, having all the
same data (for coords, prop, attrib, fields, and any other attributes possibly set by
the subclass), but not sharing any data with the original object.

Note: This is seldomly used, because it may cause wildly superfluous copying of data. Only used it if
you absolutely require data that are independent of those of the caller.

select (sel, compact=False)
Select some element(s) from a Geometry.

Parameters

* sel (index-1ike)— The index of element(s) to be selected. This can be anything that
can be used as an index in an array:

— asingle element number
— alist, or array, of element numbers

— abool list, or array, of length self.nelems(), where True values flag the elements to be
selected

* compact (bool, optional)— This option is only useful for subclasses that have a
compact method, such as mesh.Mesh and its subclasses. If True, the returned object
will be compacted, i.e. unused nodes are removed and the nodes are renumbered from
zero. If False (default), the node set and numbers are returned unchanged.

346 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Returns Geometry (or subclass) object — An object of the same class as the caller, but only
containing the selected elements.

See also:

cselect () Return all but the selected elements.
clip () Like select, but with compact=True as default.
cselect (sel, compact=False)
Return the Geometry with the selected elements removed.
Parameters

* sel (index—11ike) — The index of element(s) to be selected. This can be anything that
can be used as an index in an array:

— asingle element number
— alist, or array, of element numbers

— abool list, or array, of length self.nelems(), where True values flag the elements to be
selected

e compact (bool, optional) — This option is only useful for subclasses that have a
compact method, such as mesh.Mesh and its subclasses. If True, the returned object
will be compacted, i.e. unused nodes are removed and the nodes are renumbered from
zero. If False (default), the node set and numbers are returned unchanged.

Returns Geometry (or subclass) object — An object of the same class as the caller, but containing
all but the selected elements.

See also:

select () Return a Geometry with only the selected elements.
cclip () Like cselect, but with compact=True as default.
clip (sel)
Return a Geometry only containing the selected elements.
This is equivalent with select () but having compact=True as default.

See also:

select () Return a Geometry with only the selected elements.

cclip () The complement of clip, returning all but the selected elements.
cclip (sel)

Return a Geometry with the selected elements removed.

This is equivalent with select () but having compact=True as default.

See also:

cselect () Return a Geometry with only the selected elements.

clip () The complement of cclip, returning only the selected elements.

selectProp (prop, compact=False)
Select elements by their property value.

. Other pyFormex core modules 347

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Parameters prop (int or int array_like) — The property value(s) for which the elements should
be selected.

Returns Geometry (or subclass) object — An object of the same class as the caller, but only
containing the elements that have a property value equal to prop, or one of the values in
prop. If the input object has no properties, a copy containing all elements is returned.

See also:

cselectProp () Return all but the elements with property prop.
whereProp () Get the numbers of the elements having a specified property.
select () Select the elements with the specified indices.

cselectProp (prop, compact=False)
Return an object without the elements with property val.

Parameters prop (int or int array_like) — The property value(s) of the elements that should be
left out.

Returns Geometry (or subclass) object — An object of the same class as the caller, with all but
the elements that have a property value equal to prop, or one of the values in prop. If the
input object has no properties, a copy containing all elements is returned.

See also:

selectProp () Return only the elements with property prop.
whereProp () Get the numbers of the elements having a specified property.
cselect () Remove elements by their index.

splitProp (prop=None, compact=True)
Partition a Geometry according to the values in prop.

Parameters prop (int array_like, optional) — A 1-dim int array with length self.nelems ()
to be used in place of the objects own prop attribute. If None (default), the latter will be
used.

Returns

List of Geometry objects — A list of objects of the same class as the caller. Each object in
the list contains all the elements having the same value of prop. The number of objects in the
list is equal to the number of unique values in prop. The list is sorted in ascending order of
the prop value.

If prop is None and the the object has no prop attribute, an empty list is returned.

fields
Return the Fields dict of the Geometry.

If the Geometry has no Fields, an empty dict is returned.

addField (fldtype, data, fldname)
Add Field datato the Geometry.

Field data are scalar or vectorial data defined over the Geometry. This convenience function creates a
Field object with the specified data and adds it to the Geometry object’s £ields dict.

Parameters

e fldtype (str)— The field type. See F'ie1d for details.

348 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

* data (array_like) — The field data. See F'ie1d for details.

e fldname (str)— The field name. See Field for details. This name is also used as key
to store the Field in the £ie1ds dict.

Returns Field - The constructed and stored Field object.

Note: Whenever a Geometry object is exported to a PGF file, all Fields stored inside the Geometry object
are included in the PGF file.

See also:

getField () Retrieve a Field by its name.
delField() Deleted a Field.
convertField () Convert the Field to another Field type.
fieldReport () Return a short report of the stored Fields
getField (fldname)
Get the data field with the specified name.
Parameters £ldname (st r)— The name of the Field to retrieve.

Returns Field — The data field with the specified name, if it exists in the Geometry object’s
fields. Returns None if no such key exists.

delField (fldname)
Delete the Field with the specified name.

Parameters f£ldname (st r) — The name of the Field to delete from the Geometry object. A
nonexisting name is silently ignored.

Returns None

convertField (fldname, totype, toname)
Convert the data field with the specified name to another type.

Parameters

* fldname (str)— The name of the data Field to convert to another type. A nonexisting
name is silently ignored.

* totype (str)— The field type to convert to. See Fie1d for details.

* toname (str)— The name of the new (converted) Field (and key to store it). If the same
name is specified as the old Field, that one will be overwritten by the new. Otherwise, both
will be kept in the Geometry object’s fields dict.

Returns Field — The converted and stored data field. Returns None if the original data field
does not exist.

fieldReport ()
Return a short report of the stored fields

Returns str — A multiline string with the stored Fields’ attributes: name, type, dtype and shape.

write (filename, sep="", mode="w’, **kargs)
Write a Geometry to a PGF file.

This writes the Geometry to a pyFormex Geometry File (PGF) with the specified name.

6.2.

Other pyFormex core modules 349

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

It is a convenient shorthand for:

writeGeomFile (filename, self, sep=sep, mode=mode, =*=*kargs)

See writeGeomFile () for details.

classmethod read (filename)
Read a Geometry from a PGF file.

This reads a single object (the object) from a PGF file and returns it.

It is a convenient shorthand for:

next (readGeomFile (filename, 1) .values())

See readGeomFile () for details.

6.2.12 geomfile — Export/import of files in pyFormex’s native PGF format

This module defines a class to work with files in the native pyFormex Geometry File (PGF) format.

class geomfile.GeometryFile (filename, mode=None, compr=None, level=5, delete_temp=True,
sep="", ifmt=None, ffmt=None, version=None)
A class to handle files in the pyFormex Geometry File format.

The pyFormex Geometry File (PGF) format allows the persistent storage of most of the geometrical objects
available in pyFormex using a format that is independent of the pyFormex version. It guarantees a possible read
back in future versions. The format is simple and public, and hence also allows read back from other software.

See http://pyformex.org/doc/file_format for a full description of the file format(s). Older file formats are sup-
ported for reading.

Other than just geometry, the pyFormex Geometry File format can also store some attributes of the objects, like
names and colors. Future versions will also allow to store field variables.

The GeometryFile class uses the utils.File class to access the files, and thus provides for transparent compression
and decompression of the files. When making use of the compression, the PGF files will remain small even for
complex models.

A PGF file starts with a specific header identifying the format and version. When opening a file for reading, the
PGF header is read automatically, and the file is thus positioned ready for reading the objects. When opening a
file for writing (not appending!), the header is automatically written, and the file is ready for writing objects.

In append mode however, nothing is currently done with the header. This means that it is possible to append
to a file using a format different from that used to create the file initially. This is not a good practice, as it may
hinder the proper read back of the data. Therefore, append mode should only be used when you are sure that
your current pyFormex uses the same format as the already stored file. As a reminder, warning is written when
opening the file in append mode.

The filename, mode, compr, level and delete_temp arguments are passed to the utils.File class. See utils.
F'i 1e for more details.

Parameters

* filename (path_like) — The name of the file to open. If the file name ends with ‘.gz’ or
“bz2’, transparent (de)compression will be used, as provided by the utils.File class.

*mode ('rb', 'wb' or 'ab')- Specifies that the file should be opened in read, write
or append mode respectively. If omitted, an existing file will be opened in read mode and a
non-existing in write mode. Opening an existing file in ‘wb’ mode will overwrite the file,
while opening it in ‘ab’ mode will allow to append to the file.

350 Chapter 6. pyFormex reference manual

http://pyformex.org/doc/file_format

pyFormex Documentation, Release 2.2

* compr ('gz' or 'bz2')-The compression type to be used: gzip or bzip2. If the file
name is ending with ‘.gz’ or *.bz2’, this is set automatically from the suffix.

* level (int I1..9)— Compression level for gzip/bzip2. Higher values result in smaller
files, but require longer compression times. The default of 5 gives already a fairly good
compression ratio.

* delete_temp (bool) — If True (default), the temporary files needed to do the
(de)compression are deleted when the GeometryFile is closed.

* sep (str)— Separator string to be used when writing numpy arrays to the file. An empty
string will make the arrays being written in binary format. Any other string will force text
mode, and the sep string is used as a separator between subsequent array elements. See
also numpy.tofile ().

* ifmt (str)— Format for integer items when writing in text mode.
* £fmt (st r)— Format for float items when writing in test mode.

* version (str) — Version of PGF format to use when writing. Currently available are
‘1.9’, 2.0°, 2.1°. The defaultis 2.1°.

readline ()
Read a line from the file

writeline (s)
Werite a text line to the file

reopen (mode="rb’)
Reopen the file, possibly changing the mode.

The default mode for the reopen is ‘rb’

close ()
Close the file.

writeHeader ()
Write the header of a pyFormex geometry file.

The header identifies the file as a pyFormex geometry file and sets the following global values:
* version: the version of the geometry file format
* sep: the default separator to be used when not specified in the data block

writeData (data, sep)
Write an array of data to a pyFormex geometry file.

If fmt is None, the data are written using numpy.tofile, with the specified separator. If sep is an empty
string, the data block is written in binary mode, leading to smaller files. If fmt is specified, each

write (geom, name=None, sep=None)
Write a collection of Geometry objects to the Geometry File.

Parameters geom (ob ject) — An object of one the supported Geometry data types or a list or
dict of such objects, or a WebGL objdict. Currently exported geometry objects are Coords,
Formex, Mesh, PolyLine, BezierSpline.

Returns int — The number of objects written.

writeGeometry (geom, name=None, sep=None)
Write a single Geometry object.

Writes a single Geometry object to the Geometry File, using the specified name and separator.

6.2.

Other pyFormex core modules 351

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

pyFormex Documentation, Release 2.2

Parameters

* geom (a supported Geometry type object)— Currently supported Geometry
objects are Coords, Formex, Mesh, TriSurface, PolyLine, BezierSpline.
Other types are skipped, and a message is written, but processing continues.

* name (str, optional)- The name of the object to be stored in the file. If not speci-
fied, and the object has an artrib dict containing a name, that value is used. Else an object
name is generated from the file name. On readback, the object names are used as keys to
store the objects in a dict.

* sep (str) — The separator to be used for writing this object. If not specified, the value
given in the constructor will be used. This argument allows to override it on a per object
base.

* 1l if the object has been written, 0 otherwise. (Returns)-

writeFMT (F, name=None, sep=None)
Write a Formex, Mesh or TriSurface.

Parameters
* F (Formex, Mesh or TriSurface)— The object to be written.
* name (str)—See writeGeometry ()

* sep (str)—See writeGeometry ()

Notes

This writes a header line with these attributes and arguments: objtype, ncoords, nelems, nplex,
props(True/False), eltype, normals(True/False), color, sep, name. This is followed by the array data for:
coords, elems, prop, normals, color

The objtype can/should be overridden for subclasses.

writeCurve (F, name=None, sep=None, objtype=None, extra=None)
Write a Curve to a pyFormex geometry file.

This function writes any curve type to the geometry file. The objtype is automatically detected but can be
overridden.

The following attributes and arguments are written in the header: ncoords, closed, name, sep. The follow-
ing attributes are written as arrays: coords

writePolyLine (F, name=None, sep=None)
Write a PolyLine to a pyFormex geometry file.

This is equivalent to writeCurve(F,name,sep,objtype="PolyLine’)

writeBezierSpline (F, name=None, sep=None)
Write a BezierSpline to a pyFormex geometry file.

This is equivalent to writeCurve(F,name,sep,objtype="BezierSpline’)

writeNurbsCurve (F, name=None, sep=None, extra=None)
Write a NurbsCurve to a pyFormex geometry file.

This function writes a NurbsCurve instance to the geometry file.

The following attributes and arguments are written in the header: ncoords, nknots, closed, name, sep. The
following attributes are written as arrays: coords, knots

352

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

writeNurbsSurface (F, name=None, sep=None, extra=None)
Write a NurbsSurface to a pyFormex geometry file.

This function writes a NurbsSurface instance to the geometry file.

The following attributes and arguments are written in the header: ncoords, nknotsu, nknotsv, closedu,
closedv, name, sep. The following attributes are written as arrays: coords, knotsu, knotsv

writeAttrib (artrib)
Write the Attributes block of the Geometry

Parameters attrib (Attributes)— The Attributes dict of a Geometry object.

Warning: This is work in progress. Not all Attributes can currently be stored in the PGF format.

read (count=-1, warn_version=True)
Read objects from a pyFormex Geometry File.

This function reads objects from a Geometry File until the file ends, or until count objects have been read.
The File should have been opened for reading.

A count may be specified to limit the number of objects read.

Returns a dict with the objects read. The keys of the dict are the object names found in the file. If the file
does not contain object names, they will be autogenerated from the file name.

Note that PGF files of version 1.0 are no longer supported. The use of formats 1.1 to 1.5 is deprecated,
and users are urged to upgrade these files to a newer format. Support for these formats may be removed in
future.

decode (s)
Decode the announcement line.

Returns a dict with the interpreted values of the line.

readHeader (s=None)
Read the header of a pyFormex geometry file.

Without argument, reads a line from the file and interpretes it as a header line. This is normally used to
read the first line of the file. A string s may be specified to interprete further lines as a header line.

doHeader (version="1.1", sep=", **kargs)
Read the header of a pyFormex geometry file.

Sets detected default values

readGeometry (objtype="Formex’, name=None, nelems=None, ncoords=None, nplex=None,
props=None, eltype=None, normals=None, color=None, colormap=None,

closed=None, degree=None, nknots=None, sep=None, **kargs)
Read a geometry record of a pyFormex geometry file.

If an object was successfully read, it is set in self.geometry

readField (field=None, fldtype=None, shape=None, sep=None, **kargs)
Read a Field defined on the last read geometry.

readAttrib (attrib=None, **kargs)
Read an Attributes dict defined on the last read geometry.

readFormex (nelems, nplex, props, eltype, sep)
Read a Formex from a pyFormex geometry file.

6.2.

Other pyFormex core modules 353

pyFormex Documentation, Release 2.2

The coordinate array for nelems*nplex points is read from the file. If present, the property numbers for
nelems elements are read. From the coords and props a Formex is created and returned.

readMesh (ncoords, nelems, nplex, props, eltype, normals, sep, objtype="Mesh’)
Read a Mesh from a pyFormex geometry file.

The following arrays are read from the file: - a coordinate array with ncoords points, - a connectivity array
with nelems elements of plexitude nplex, - if present, a property number array for nelems elements.

Returns the Mesh constructed from these data, or a subclass if an objtype is specified.

readPolyLine (ncoords, closed, sep)
Read a Curve from a pyFormex geometry file.

The coordinate array for ncoords points is read from the file and a Curve of type objtype is returned.

readBezierSpline (ncoords, closed, degree, sep)
Read a BezierSpline from a pyFormex geometry file.

The coordinate array for ncoords points is read from the file and a BezierSpline of the given degree is
returned.

readNurbsCurve (ncoords, nknots, closed, sep)
Read a NurbsCurve from a pyFormex geometry file.

The coordinate array for ncoords control points and the nknots knot values are read from the file. A
NurbsCurve of degree p = nknots - ncoords - 1 is returned.

readNurbsSurface (ncoords, nuknots, nvknots, uclosed, vclosed, sep)
Read a NurbsSurface from a pyFormex geometry file.

The coordinate array for ncoords control points and the nuknots and nvknots values of uknots and vknots
are read from the file. A NurbsSurface of degree pu = nuknots - ncoords - 1 and pv =
nvknots - ncoords - 1 isreturned.

readLegacy (count=-1)
Read the objects from a pyFormex Geometry File format <= 1.7.

This function reads all the objects of a Geometry File. The File should have been opened for reading, and
the header should have been read previously.

A count may be specified to limit the number of objects read.

Returns a dict with the objects read. The keys of the dict are the object names found in the file. If the file
does not contain object names, they will be autogenerated from the file name.

oldReadBezierSpline (ncoords, nparts, closed, sep)
Read a BezierSpline from a pyFormex geometry file version 1.3.

The coordinate array for ncoords points and control point array for (nparts,2) control points are read from
the file. A BezierSpline is constructed and returned.

rewrite ()
Convert the geometry file to the latest format.

The conversion is done by reading all objects from the geometry file and writing them back. Parts that
could not be successfully read will be skipped.

6.2.13 geomtools — Basic geometrical operations.

This module defines some basic operations on simple geometrical entities such as points, lines, planes, vectors, seg-
ments, triangles, circles.

354 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

The operations include intersection, projection, distance computing.

Many of the functions in this module are exported as methods on the Coords and the Geomet ry derived classes.

Renamed functions:

intersectionPointsLWL —> intersectLineWithLine
intersectionTimesLWL —> intersectLineWithLine
intersectionPointsLWP -> intersectLineWithPlane
intersectionTimesLWP —> intersectLineWithPlane
intersectionTimesPOP -> projectPointOnPlane
intersectionPointsPOP —> projectPointOnPlane
intersectionTimesPOL —> projectPointOnLine
intersectionPointsPOL -> projectPointOnLine
distancesPFL —> distanceFromLine
distancesPFS -> distanceFromLine

Planned renaming of functions:

areaNormals

degenerate

levelVolumes

smallestDirection

distance —> distance

closest

closestPair

projectedArea

polygonNormals

averageNormals

triangleInCircle

triangleCircumCircle

triangleBoundingCircle

triangleObtuse

lineIntersection -> to be removed (or intersect2DLineWithLine)
displacelines

segmentOrientation

rotationAngle

anyPerpendicularVector

perpendicularVector

projectionvOoVv -> projectVectorOnVector
projectionVOP —> projectVectorOnPlane
pointsAtLines —> pointOnLine

pointsAtSegments -> pointOnSegment
intersectionTimesSWP —> remove or intersectLineWithLine
intersectionSwP —> intersectSegmentWithPlane
intersectionPointsSWP -> intersectSegmentWithPlane
intersectionTimesLWT —> intersectLineWithTriangle
intersectionPointsLWT —> intersectLineWithTriangle
intersectionTimesSWT -> intersectSegmentWithTriangle
intersectionPointsSWT —-> intersectSegmentWithTriangle
intersectionPointsPWP —> intersectThreePlanes
intersectionLinesPWP —-> intersectTwoPlanes (or intersectPlaneWithPlane)

intersectionSphereSphere —>

faceDistance

>

intersectTwoSpheres

(or intersectSphereWithSphere)

(continues on next page)

6.2. Other pyFormex core modules

355

pyFormex Documentation, Release 2.2

(continued from previous page)

edgeDistance ->
vertexDistance ->
baryCoords

insideSimplex
insideTriangle

Classes defined in module geomtools
class geomtools.Lines (data)
A collection of lines, half-lines(rays) or segments.

This class is intended as a common interface for a collection of lines, half-lines or segments. Many functions
in the geomtools module operate on lines (or rays, or segments). Sometimes these are specified by two points,
while in other case they need to be specified by one point and a vector. Also the user might store his line data in
one of these two ways, and it is annoying and not effective to have to convert between these two multiple times.

Then this class comes as a help. It is a lightweight class that can store lines, rays or segments. The class itself
does not discriminate between these: the user is responsible for the interpretation. This is further complicated
by the fact that the data structure of a vector is the same as that of a point.

In what follows, a line can mean any of:
¢ a full twosided infinite line,
* aray starting at some point and infinite in one direction,
* afinite straight segment between two points.
A Lines instance can be initialized by any of the following data:

* a coords_like object with shape (nlines, 2, 3), containing the coordinates of two points on each of the
nlines lines. This is the natural way to specify segments, but it can be used for infinite lines and rays as
well.

¢ a tuple of two coords_like objects, each with shape (nlines, 2, 3). The first contains a point on each of
the lines, the second is a vector along the line. The vectors do not need to be unit length vectors. They
typically will not be if this method is used to specify segments.

* another Lines instance. In this case a shallow copy of the Lines is created, sharing its data with the input
Lines. This is a convenience allowing the user to pass raw data as well as data already converted to a Lines
instance in places where line data are expected.

Parameters data (coords_like | tuple | Lines) — A coords_like argument should have a shape
(nlines,2,3) and defines n1 ines lines by the coordinates of two points on each of the lines.

A tuple should contain two (nlines,3) shaped coords_like structures. The first holds a point on
the lines, the second a vector along the lines.

If a Lines instance is specified as data, a shallow copy sharing the same data is created.

A Lines instance has the following attributes (onbly the first two are actually stored):

P
The first point of the Lines.

Type array (nlines,3)

The vector from the first to the second point.

356 Chapter 6. pyFormex reference manual

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

Type array (nlines,3)

coords
A Coords containing both points on the lines.

Type Coords (nlines, 2, 3)

Examples

Create Lines from two points.

>>> L = Lines([[[2.,0.,0.1,[2.,3.,0.11, [[0.,1.,0.1,([1.,1.,0.111)
>>> print (L.p

)
[l 2. 0. 0.]
[0. 1. 0.11]
>>> print (L.n)
[[0. 3. 0.]
[1. 0. 0.11]
>>> L,.coords
Coords ([[[2., 0., 0.1,
[2., 3., 0.11,
<BLANKLINE>

(r 0., 1., 0.1,
[1., 1., 0.111)

Create the same Lines from one point and a vector.

>>> M = Lines(([[2.,0.,0.1,[0.,1.,0.11, I
>>> print ((M.p == L.p).all() and (M.n =
True

>>> print (id(M.p) == id(L.p) and id(M.n) == id(L.n))
False

Create a shallow copy.

>>> M = Lines (L)

>>> print ((M.p == L.p).all() and (M.n == L.n).all())
True

>>> print (id(M.p) == i1id(L.p) and id(M.n) == id(L.n))
True

toFormex ()
Convert a Lines to a 2-plex Formex.

Returns Formex (nlines, 2, 3) — A plex-2 Formex representing the Lines.

Notes

When drawn, the Lines will always be represented as straight line segments, even if they represent infinitely
long lines.

Examples

>>> L = Lines([[[2.,0.,0.],(2.,3.,0.]1], [[0.,1.,0.],([1.,1.,0.11])
>>> print (L.toFormex())
{{2.0,0.0,0.0; 2.0,3.0,0.0], [0.0,1.0,0.0; 1.0,1.0,0.01}

6.2. Other pyFormex core modules 357

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/sip/sip-module.html#array

pyFormex Documentation, Release 2.2

Functions defined in module geomtools
geomtools.pointsAtLines (g, m, 1)
Return the points of lines (q,m) at parameter values t.
Parameters
* g(float array (.., 3))-— Array with (starting) points of a collection of lines.

* m(float array (.., 3))-—Array with vectors along the lines, broadcast compatible
with q. The vectors do not need to have unit length.

* t (float array) - Array with parameter values, broadcast compatible with q[...] and
ml...]. Parametric value O is at point q, parametric value 1 is at q + m.

Returns Coords — A Coords array with the points at parameter values t.

geomtools.pointsAtSegments (S, ¢)
Return the points of line segments S at parameter values t.

Parameters
* S(float array (.., 2, 3))-A collection of line segments defined by two points.

* t (float array)-— Array with parameter values, broadcast compatible with S[...]. Para-
metric value O is at point 0, parametric value 1 is at point 1.

Returns Coords — A Coords array with the points at parameter values t.

geomtools.intersectLineWithLine (ql, ml, g2, m2, mode="all’, times=False)
Find the common perpendicular of lines (q1,m1) and lines (q2,m2).

Return the intersection points of lines (ql,m1) and lines (q2,m2) with the perpendiculars between them. For
intersecting lines, the corresponding points will coincide.

Parameters
* ql (float array (ngl, 3))- Points on the first set of lines.
e ml (float array (ngl, 3))- Direction vectors of the first set of lines.
* g2 (float array (ng2, 3))-Pointson the second set of lines.
e m2 (float array (ng2, 3))- Direction vectors of the second set of lines.

e mode ('all' | 'pair') - If ‘all’, the intersection of all lines (ql,m1) with all lines
(q2,m2) is computed; nql and nq2 can be different. If ‘pair’, nql and nq2 should be equal
(or 1) and the intersection of pairs of lines is computed (using broadcasting for length 1
data).

times (bool) — If True, return the parameter values of the intersection points instead of
the coordinates (see Notes).

Returns

* arl (float array) — The intersection points of the common perpendiculars with the first set
of lines. See Notes.

 ar2 (float array) — The intersection points of the common perpendiculars with the second
set of lines. See Notes.

358 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Notes

By default (t imes=False) the returned arrays are the coordinates of the points, with shape (nql,nq2,3) for
mode ‘all’ and (nq1,3) for mode ‘pair’. With t imes=True the return values are the parameter values of the
intersection points, and the size opf the arrays is (nql,nq2) for mode ‘all’ and (nq1,) for mode ‘pair’.

The coordinates of a point with parameter value t on a line (q,m) are givenby g + t » m.

The intersection of two parallel lines results in NAN-values. These are not removed from the result. The user
has to do it himself if needed.

Examples
>>> ¢q,m = [[O0,0,0],(0,0,11,(0,0,371, ([1,0,01,01,1,0],(0,1,07]
>>> p,n = [[2.,0.,0.],[0.,0.,0.7], [[0.,1.,0.],[0.,0.,1.11]
>>> x1,x2 = intersectLineWithLine (g, m,p,n)
>>> print (x1)
[[[2. 0. 0.]
[0. 0. 0.]]
<BLANKLINE>
[r 2. 2. 1.1
[0. 0. 1.]]
<BLANKLINE>
[[nan nan nan]
[0. 0. 3.111
>>> print (x2)
[[[2. 0. 0.]
[0. 0. 0.]]
<BLANKLINE>
(1 2. 2. 0.]
[0. 0. 1.]]
<BLANKLINE>
[[nan nan nan]
[0. 0. 3.111
>>> x1,x2 = intersectLineWithLine(g[:2],m[:2],p,n,mode="pair")
>>> print (x1)
[[2. 0. 0.]
[0. 0. 1.11]
>>> print (x2)
[[2. 0. 0.]
[0. 0. 1.11]
>>> t1,t2 = intersectlLineWithLine (g, m,p,n,times=True)
>>> print (tl)
[[2. =0.]
[2. -0.]
[nan -0.]]
>>> print (t2)
[[-0. -0.]
[2. 1.]
[nan 3.]]
>>> tl1,t2 = intersectLineWithLine(g[:2],m[:2],p,n,mode="pair',times=True)
>>> print (tl)
[2. =0.]

(continues on next page)

6.2. Other pyFormex core modules 359

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> print (t2)
[-0. 1.]

geomtools.intersectLineWithPlane (g, m, p, n, mode="all’, times=False)
Find the intersection of lines (q,m) and planes (p,n).

Return the intersection points of lines (q,m) and planes (p,n).
Parameters:

* g,'m‘: (nq,3) shaped arrays of points and vectors (mode=all) or broadcast compatible arrays (mode=pair),
defining a single line or a set of lines.

* p,‘n‘: (np,3) shaped arrays of points and normals (mode=all) or broadcast compatible arrays (mode=pair),
defining a single plane or a set of planes.

* mode: all to calculate the intersection of each line (q,m) with all planes (p,n) or pair for pairwise intersec-
tions.

Returns a (ng,np) shaped (mode=all) array of parameter values t, such that the intersection points are given by
g+t*m.

Notice that the result will contain an INF value for lines that are parallel to the plane.

Example:
>>> q,m = [[O0,0,0],(0,1,0],(0,0,3]1, ([1,0,0],(0,1,0],[0,0,17]
>>> p,n = [[1.,1.,1.],(1.,1.,2.1], [(1.,1.,0.1,([1.,1.,1.1]
>>> t = intersectLineWithPlane (g, m,p,n,times=True)
>>> print (t)
[[2. 3.]
[1. 2.1
[inf 0.1]
>>> x = intersectLineWithPlane (g, m,p,n)
>>> print (x)
[[[2. 0. 0.]
[3. 0. 0.]]
<BLANKLINE>
[[0. 2. 0.]
[0. 3. 0.]]
<BLANKLINE>
[[nan nan inf]
[0. 0. 3.111
>>> x = intersectLineWithPlane(g[:2],m[:2],p,n,mode="pair")
>>> print (x)
[[2. 0. 0.]
[0. 3. 0.11]

geomtools.intersectLineWithTriangle (7, p, pl, method="line’, atol=1e-05)
Compute the intersection points with a set of lines.

Parameters
* T (coords_like (ntri,3,3)) — The coordinates of the three vertices of ntri triangles.
* p (coords_like (nlines,3)) — A first point for each of the lines to intersect.

* pl (coords_like (nlines,3)) — The second point defining the lines to intersect.

360 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* method ('Iine' | 'segment' | ' ray')- Define whether the points p and pl
define an infinitely long line, a finite segment p-p1 or a half infinite ray (p->p1).

* atol (float)—- Tolerance to be used in deciding whether an intersection point on a border
edge is inside the surface or not.

Returns
* X (Coords (nipts, 3)) — A fused set of intersection points

* ind (int array (nipts, 3)) — An array identifying the related intersection points, lines and
triangle.

Notes

A line laying in the plane of a triangle does not generate intersections.

This method is faster than the similar function intersectionPointsLWT ().

Examples

>>> T = Formex ('3:.12.34") .coords

>>> I, = Coords([[[0.,0.,0.], [0.,0.,1.11,
[[0.5,0.5,0.5], [0.5,0.5,1.11,
[(0.2,0.7,0.51, [0.2,0.8,0.5]],
[f0.2,0.7,0.51, [0.2,0.7,0.211,

C 1)
>>> P, ind = intersectLineWithTriangle(T, L[:,0,:], L[:,1,:])
>>> print (P)
[[O. 0. 0.]

[0.5 0.5 0.]

[0.2 0.7 0. 1]
>>> print (ind)
0]

YWk oo
[

, ind = intersectLineWithTriangle(T, L[:,0,:], L[:,1,:1,
. method="ray")
>>> print (P)
[[O. 0. 0. 1]

[0.2 0.7 0. 1]
>>> print (ind)

[[0 0 0]

[0 0 1]

[1 3 111
>>> P, ind = intersectLineWithTriangle(T, L[:,0,:], L[:,1,:],
C. method="'segment ")
>>> print (P)

[[0. 0. 0.]]
>>> print (ind)
[[0 0 0]

[0 0 171

geomtools.intersectionTimesSWP (S, p, n, mode="all’)
Return the intersection of line segments S with planes (p,n).

6.2. Other pyFormex core modules 361

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

This is like intersectionTimesLWP, but the lines are defined by two points instead of by a point and a vector.
Parameters:

* §:(nS,2,3) shaped array (mode=all) or broadcast compatible array (mode=pair), defining one or more line
segments.

* p,‘n‘: (np,3) shaped arrays of points and normals (mode=all) or broadcast compatible arrays (mode=pair),
defining a single plane or a set of planes.

e mode: all to calculate the intersection of each line segment S with all planes (p,n) or pair for pairwise
intersections.

Returns a (nS,np) shaped (mode=all) array of parameter values t, such that the intersection points are given by
(1-t)*S[...,0,:] + t*S[...,1,:].

geomtools.intersectionSWP (S, p, n, mode="all’, return_all=False, atol=0.0)
Return the intersection points of line segments S with planes (p,n).

Parameters:
¢ §:(nS,2,3) shaped array, defining a single line segment or a set of line segments.
* p,‘n‘: (np,3) shaped arrays of points and normals, defining a single plane or a set of planes.

* mode: all to calculate the intersection of each line segment S with all planes (p,n) or pair for pairwise
intersections.

e return_all: if True, all intersection points of the lines along the segments are returned. Default is to return
only the points that lie on the segments.

* atol: float tolerance of the points inside the line segments.
Return values if return_all==True:
e . (nS,NP) parametric values of the intersection points along the line segments.
* x: the intersection points themselves (nS,nP,3).
Return values if return_all==False:
* t: (n,) parametric values of the intersection points along the line segments (n <= nS*nP)
 x: the intersection points themselves (n,3).
* wl: (n,) line indices corresponding with the returned intersections.
* wp: (n,) plane indices corresponding with the returned intersections

geomtools.intersectionPointsSWP (S, p, n, mode="all’, return_all=False, atol=0.0)
Return the intersection points of line segments S with planes (p,n).

This is like intersectionSWP () but does not return the parameter values. It is equivalent to:

intersectionSWP (S, p,n,mode, return_all) [1:]

geomtools.intersectionTimesIWT (g, m, F, mode="all’)
Return the intersection of lines (q,m) with triangles F.

Parameters:

* g,‘m‘: (nq,3) shaped arrays of points and vectors (mode=all) or broadcast compatible arrays (mode=pair),
defining a single line or a set of lines.

e F: (nF3,3) shaped array (mode=all) or broadcast compatible array (mode=pair), defining a single triangle
or a set of triangles.

362 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* mode: all to calculate the intersection of each line (q,m) with all triangles F or pair for pairwise intersec-
tions.

Returns a (nq,nF) shaped (mode=all) array of parameter values t, such that the intersection points are
given g+tm.

geomtools.intersectionPointsLWT (g, m, F, mode="all’, return_all=False)
Return the intersection points of lines (q,m) with triangles F.
Parameters:
* g,'m‘: (nq,3) shaped arrays of points and vectors, defining a single line or a set of lines.
e F: (nF3,3) shaped array, defining a single triangle or a set of triangles.

* mode: all to calculate the intersection points of each line (q,m) with all triangles F or pair for pairwise
intersections.

e return_all: if True, all intersection points are returned. Default is to return only the points that lie inside

the triangles.

Returns If return_all==True, a (nq,nF,3) shaped (mode=all) array of intersection points, else, a
tuple of intersection points with shape (n,3) and line and plane indices with shape (n), where n
<=nq*nF.

geomtools.intersectionTimesSWT (S, F, mode="all’)
Return the intersection of lines segments S with triangles F.
Parameters:

* §: (nS,2,3) shaped array (mode=all) or broadcast compatible array (mode=pair), defining a single line
segment or a set of line segments.

e F: (nF;3,3) shaped array (mode=all) or broadcast compatible array (mode=pair), defining a single triangle
or a set of triangles.

* mode: all to calculate the intersection of each line segment S with all triangles F or pair for pairwise
intersections.

Returns a (nS,nF) shaped (mode=all) array of parameter values t, such that the intersection points are given by
(1-1)*S[...,0,:] + t*S[...,1,:].

geomtools.intersectionPointsSWT (S, F, mode="all’, return_all=False)
Return the intersection points of lines segments S with triangles F.

Parameters:
* §:(nS,2,3) shaped array, defining a single line segment or a set of line segments.
e F: (nF.3,3) shaped array, defining a single triangle or a set of triangles.

* mode: all to calculate the intersection points of each line segment S with all triangles F or pair for pairwise
intersections.

e return_all: if True, all intersection points are returned. Default is to return only the points that lie on the
segments and inside the triangles.

Returns If return_all==True, a (nS,nF,3) shaped (mode=all) array of intersection points, else, a
tuple of intersection points with shape (n,3) and line and plane indices with shape (n), where n
<=nS*nF.

6.2. Other pyFormex core modules 363

pyFormex Documentation, Release 2.2

geomtools.intersectionPointsPWP (pl, nl, p2, n2, p3, n3, mode="all’)
Return the intersection points of planes (p1,nl), (p2,n2) and (p3,n3).

Parameters:

e pi,'ni‘ (i=1...3): (npi,3) shaped arrays of points and normals (mode=all) or broadcast compatible arrays
(mode=pair), defining a single plane or a set of planes.

* mode: all to calculate the intersection of each plane (p1,nl) with all planes (p2,n2) and (p3,n3) or pair for
pairwise intersections.

Returns a (np1,np2,np3,3) shaped (mode=all) array of intersection points.

geomtools.intersectionLinesPWP (pl, nl, p2, n2, mode="all’)
Return the intersection lines of planes (p1l,nl) and (p2,n2).

Parameters:

e pi,'ni‘ (i=1...2): (npi,3) shaped arrays of points and normals (mode=all) or broadcast compatible arrays
(mode=pair), defining a single plane or a set of planes.

* mode: all to calculate the intersection of each plane (pl,nl) with all planes (p2,n2) or pair for pairwise
intersections.

Returns a tuple of (npl,np2,3) shaped (mode=all) arrays of intersection points q and vectors m, such that the
intersection lines are given by g+t »m.

geomtools.intersectionSphereSphere (R, 1, d)
Intersection of two spheres (or two circles in the X,y plane).

Computes the intersection of two spheres with radii R, resp. r, having their centres at distance d <= R+r. The
intersection is a circle with its center on the segment connecting the two sphere centers at a distance x from the
first sphere, and having a radius y. The return value is a tuple x,y.

geomtools.projectPointOnPlane (X, p, n, mode="all’)
Return the projection of points X on planes (p,n).

Parameters:
* X: a (nx,3) shaped array of points.
* p, n: (np,3) shaped arrays of points and normals defining np planes.
* mode: ‘all’ or ‘pair:
— if ‘all’, the projection of all points on all planes is computed; nx and np can be different.

— if ‘pair’: nx and np should be equal (or 1) and the projection of pairs of point and plane are computed
(using broadcasting for length 1 data).

Returns a float array of size (nx,np,3) for mode ‘all’, or size (nx,3) for mode ‘pair’.

Example:
>>> X = Coords([[0.,1.,0.1,[3.,0.,0.1,[4.,3.,0.11)
>>> p,n = [[2.,0.,0.],[0.,2.,0.7]1, [[1.,0.,0.],[0.,1.,0.1]
>>> print (projectPointOnPlane (X,p,n))
[[[2. 1. 0.]
[0. 1. 0.7]
<BLANKLINE>
[[2. 0. 0.]
[3. 1. 0.7]
<BLANKLINE>
([2. 3. 0.]

(continues on next page)

364 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

(continued from previous page)

[4. 1. 0.111]
>>> print (projectPointOnPlane (X[:2],p,n,mode="pair"))
[[2. 1. 0.]
[3. 1. 0.1]

geomtools.projectPointOnPlaneTimes (X, p, n, mode="all’)
Return the projection of points X on planes (p,n).

This is like pro jectPointOnPlane () but instead of returning the projected points, returns the parametric
values t along the lines (X,n), such that the projection points can be computed from X+t*n.

Parameters: see pro jectPointOnPlane ().
Returns a float array of size (nx,np) for mode ‘all’, or size (nx,) for mode ‘pair’.

Example:

>>> X Coords ([[0.,1.,0.],(3.,0.,0.1,[4.,3.,0.11)
>>> p,n = [[2.,0.,0.],(0.,1.,0.7], [[1.,0.,0.1,[0.,1.,0.11
>>> print (projectPointOnPlaneTimes (X,p,n))
[[2. 0.]

[-1. 1.]

[-2. =-2.11
>>> print (projectPointOnPlaneTimes (X[:2],p,n,mode="pair"))
[2. 1.]

geomtools.projectPointOnLine (X, p, n, mode="all’)
Return the projection of points X on lines (p,n).

Parameters:
¢ X:a (nx,3) shaped array of points.
e p, n: (np,3) shaped arrays of points and vectors defining np lines.
* mode: ‘all’ or ‘pair:
— if “all’, the projection of all points on all lines is computed; nx and np can be different.

— if “pair’: nx and np should be equal (or 1) and the projection of pairs of point and line are computed
(using broadcasting for length 1 data).

Returns a float array of size (nx,np,3) for mode ‘all’, or size (nx,3) for mode ‘pair’.

Example:

>>> X Coords ([[0.,1.,0.1,[3.,0.,0.1,[4.,3.,0.11)
>>> p,n = [[2.,0.,0.],[0.,1.,0.71, [[0.,2.,0.],[1.,0.,0.711
>>> print (projectPointOnLine (X, p,n))
[[[2. 1. 0.]
[0. 1. 0.1]
<BLANKLINE>
[[2. 0. 0.]
[3. 1. 0.1]
<BLANKLINE>
[[2. 3. 0.]
[4. 1. 0.111]
>>> print (projectPointOnLine (X[:2],p,n,mode="pair'))
[[2. 1. 0.]
[3. 1. 0.1]

6.2. Other pyFormex core modules 365

pyFormex Documentation, Release 2.2

geomtools.projectPointOnLineTimes (X, p, n, mode="all’)

Return the projection of points X on lines (p,n).

This is like projectPointOnLine () but instead of returning the projected points, returns the parametric
values t along the lines (X,n), such that the projection points can be computed from p+t*n.

Parameters: see projectPointOnLine ().
Returns a float array of size (nx,np) for mode ‘all’, or size (nx,) for mode ‘pair’.

Example:

>>> X = Coords([[0.,1.,0.1,[3.,0.,0.1,1[4.,3.,0.11)
>>> p,n = [[2.,0.,0.],[0.,1.,0.]], [[(0.,1.,0.],([1.,0.,0.11
>>> print (projectPointOnLineTimes (X, p,n))
[[1. 0.]

[0. 3.]

[3. 4.]]
>>> print (projectPointOnLineTimes (X[:2],p,n,mode="pair"))
[1. 3.1

geomtools.distanceFromLine (X, lines, mode="all’)

Return the distance of points X from lines (p,n).
Parameters
* X (coords_like (nx,3)) — A collection of points.
* lines (/ine_like) — One of the following definitions of the line(s):

— a tuple (p,n), where both p and n are (np,3) shaped arrays of respectively points and
vectors defining np lines;

— an (np,2,3) shaped array containing two points of each line.

* mode ('all' or 'pair:)-If ‘all’, the distance of all points to all lines is computed;
nx and np can be different. If ‘pair’: nx and np should be equal (or 1) and the distance of
pairs of point and line are computed (using broadcasting for length 1 data).

Returns float array — A float array of size (nx,np) for mode ‘all’, or size (nx) for mode ‘pair’, with
the distances between the points and the lines.

Examples

>>> X = Coords([[0.,1.,0.1,[3.,0.,0.1
>>> I, = Lines(([[2.,0.,0.],[0.,1.,0
>>> print (distanceFromLine (X, L))
[[2. 0.]
[1. 1.]
[2. 2.]]
>>> print (distanceFromLine (X[:2],L,mode="pair"))
[2. 1.]
>>> L = Lines(([[[2.,0.,0.],(2.,2.,0.1], [[0.,1.,0.1,([1.,1.,0.711))
>>> print (distanceFromLine (X, L))
[[2. 0.]
[1. 1.]
[2. 2.]]
>>> print (distanceFromLine (X[:2],L,mode="pair"'))
[2. 1.]

366

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

geomtools.pointNearLine (X, p, n, atol, nproc=1)
Find the points from X that are near to lines (p,n).

Finds the points from X that are closer than atol to any of the lines (p,n).
Parameters
* X (coords_like (npts,3)) — An array of points.
* p (coords_like (nlines,3)) — An array of points which together with n define the lines.

* n (coords_like (nlines,3)) — An array of direction vectors which together with p define the
lines.

* atol (float or float array (npts,))— A global or pointwise tolerance to be
used in determining close points.

Returns list of int arrays — An index array for each of the lines, holding the indices of the points
that are close to that line.

Examples

>>> X = Coords([[0.,1.,0.1,[3.,0.,0.1,[4.,3.,0.11)

>>> p,n = [[2.,0.,0.],(0.,1.,0.71, [[0.,3.,0.1,[1.,0.,0.11
>>> print (pointNearLine(X,p,n,1.5))

[array ([1]), array ([0, 17)]

>>> print (pointNearLine (X,p,n,1.5,2))

larray ([1]), array ([0, 1])]

geomtools.faceDistance (X, Fp, return_points=False)
Compute the closest perpendicular distance to a set of triangles.

X is a (nX,3) shaped array of points. Fp is a (nF,3,3) shaped array of triangles.
Note that some points may not have a normal with footpoint inside any of the facets.
The return value is a tuple OKpid,OKdist,OKpoints where:

* OKpid is an array with the point numbers having a normal distance;

* OKdist is an array with the shortest distances for these points;

* OKpoints is an array with the closest footpoints for these points and is only returned if return_points =
True.

geomtools.edgeDistance (X, Ep, return_points=False)
Compute the closest perpendicular distance of points X to a set of edges.

X is a (nX,3) shaped array of points. Ep is a (nE,2,3) shaped array of edge vertices.
Note that some points may not have a normal with footpoint inside any of the edges.
The return value is a tuple OKpid,OKdist,OKpoints where:

* OKpid is an array with the point numbers having a normal distance;

* OKdist is an array with the shortest distances for these points;

* OKpoints is an array with the closest footpoints for these points and is only returned if return_points =
True.

geomtools.vertexDistance (X, Vp, return_points=False)
Compute the closest distance of points X to a set of vertices.

6.2. Other pyFormex core modules 367

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

X is a (nX,3) shaped array of points. Vp is a (nV,3) shaped array of vertices.
The return value is a tuple OKdist,OKpoints where:
» OKdist is an array with the shortest distances for the points;
* OKpoints is an array with the closest vertices for the points and is only returned if return_points = True.

geomtools.areaNormals (x)
Compute the area and normal vectors of a collection of triangles.

X is an (ntri,3,3) array with the coordinates of the vertices of ntri triangles.

Returns a tuple (areas,normals) with the areas and the normals of the triangles. The area is always positive. The
normal vectors are normalized.

geomtools.degenerate (area, normals)
Return a list of the degenerate faces according to area and normals.

area,normals are equal sized arrays with the areas and normals of a list of faces, such as the output of the
areaNormals () function.

A face is degenerate if its area is less or equal to zero or the normal has a nan (not-a-number) value.
Returns a list of the degenerate element numbers as a sorted array.

geomtools.hexVolume (x)
Compute the volume of hexahedrons.

Parameters:
 x: float array (nelems,8,3)

Returns a float array (nelems) withe the approximate volume of the hexahedrons formed by each 8-tuple of
vertices. The volume is obained by dividing the hexahedron in 24 tetrahedrons and using the formulas from
http://www.osti.gov/scitech/servlets/purl/632793

Example:

>>> from pyformex.elements import Hex8

>>> X = Coords (Hex8.vertices) .reshape(-1,8,3)
>>> print (hexVolume (X))

[1.]

geomtools.levelVolumes (x)
Compute the level volumes of a collection of elements.

x is an (nelems,nplex,3) array with the coordinates of the nplex vertices of nelems elements, with nplex equal to
2,3 or4.

If nplex == 2, returns the lengths of the straight line segments. If nplex == 3, returns the areas of the triangle
elements. If nplex == 4, returns the signed volumes of the tetrahedron elements. Positive values result if vertex
3 is at the positive side of the plane defined by the vertices (0,1,2). Negative volumes are reported for tetrahedra
having reversed vertex order.

For any other value of nplex, raises an error. If successful, returns an (nelems,) shaped float array.

geomtools.inertialDirections (x)
Return the directions and dimension of a Coords based of inertia.

* x: a Coords-like array

Returns a tuple of the principal direction vectors and the sizes along these directions, ordered from the smallest
to the largest direction.

368 Chapter 6. pyFormex reference manual

http://www.osti.gov/scitech/servlets/purl/632793

pyFormex Documentation, Release 2.2

geomtools.smallestDirection (x, method="inertia’, return_size=False)
Return the direction of the smallest dimension of a Coords.

* x: a Coords-like array
e method: one of ‘inertia’ or ‘random’

* return_size: if True and method is ‘inertia’, a tuple of a direction vector and the size along that direction
and the cross directions; else, only return the direction vector.

geomtools.largestDirection (x, return_size=False)
Return the direction of the largest dimension of a Coords.

e x: a Coords-like array

e return_size: if True and method is ‘inertia’, a tuple of a direction vector and the size along that direction
and the cross directions; else, only return the direction vector.

geomtools.distance (X, Y)
Return the distance of all points of X to those of Y.

Parameters:
* X: (nX,3) shaped array of points.
e Y: (nY,3) shaped array of points.
Returns an (nX,nT) shaped array with the distances between all points of X and Y.

geomtools.closest (X, Y=None, return_dist=False)
Find the point of Y closest to each of the points of X.

Parameters:
* X: (nX,3) shaped array of points

* Y:(nY,3) shaped array of points. If None, Y is taken equal to X, allowing to search for the closest point in a
single set. In the latter case, the point itself is excluded from the search (as otherwise that would obviously
be the closest one).

e return_dist: bool. If True, also returns the distances of the closest points.
Returns:
* ind: (nX,) int array with the index of the closest point in Y to the points of X

e dist: (nX,) float array with the distance of the closest point. This is equal to length(X-Y[ind]). It is only
returned if return_dist is True.

geomtools.closestPair (X, Y)
Find the closest pair of points from X and Y.

Parameters:
* X: (nX,3) shaped array of points
¢ Y: (nY,3) shaped array of points

Returns a tuple (i,j,d) where i,j are the indices in X,Y identifying the closest points, and d is the distance between
them.

geomtools.projectedArea (x, dir)
Compute projected area inside a polygon.

Parameters:

* x: (npoints,3) Coords with the ordered vertices of a (possibly nonplanar) polygonal contour.

6.2. Other pyFormex core modules 369

pyFormex Documentation, Release 2.2

e dir: either a global axis number (0, 1 or 2) or a direction vector consisting of 3 floats, specifying the
projection direction.

Returns a single float value with the area inside the polygon projected in the specified direction.

Note that if the polygon is planar and the specified direction is that of the normal on its plane, the returned area
is that of the planar figure inside the polygon. If the polygon is nonplanar however, the area inside the polygon
is not defined. The projected area in a specified direction is, since the projected polygon is a planar one.

geomtools.polygonNormals (x)

Compute normals in all points of polygons in x.
x is an (nel,nplex,3) coordinate array representing nel (possibly nonplanar) polygons.

The return value is an (nel,nplex,3) array with the unit normals on the two edges ending in each point.

geomtools.averageNormals (coords, elems, atNodes=False, treshold=None)

Compute average normals at all points of elems.
coords is a (ncoords,3) array of nodal coordinates. elems is an (nel,nplex) array of element connectivity.

The default return value is an (nel,nplex,3) array with the averaged unit normals in all points of all elements. If
atNodes == True, a more compact array with the unique averages at the nodes is returned.

geomtools.triangleInCircle (x)

Compute the incircles of the triangles x.

The incircle of a triangle is the largest circle that can be inscribed in the triangle.
x is a Coords array with shape (ntri,3,3) representing ntri triangles.

Returns a tuple r,C,n with the radii, Center and unit normals of the incircles.

Example:

>>> X = Formex (Coords([1.,0.,0.])).rosette(3,120.)

>>> print (X)

{(1.0,0.0,0.0], [-0.5,0.866025,0.0], [-0.5,-0.866025,0.0]}

>>> radius, center, normal = triangleInCircle(X.coords.reshape(-1,3,3))
>>> print (radius)

[0.5]

>>> print (center)

[[0. 0. 0.711]

geomtools.triangleCircumCircle (x, bounding=False)

Compute the circumcircles of the triangles x.
x is a Coords array with shape (ntri,3,3) representing ntri triangles.

Returns a tuple r,C,n with the radii, Center and unit normals of the circles going through the vertices of each
triangle.

If bounding=True, this returns the triangle bounding circle.

geomtools.triangleBoundingCircle (x)

Compute the bounding circles of the triangles x.

The bounding circle is the smallest circle in the plane of the triangle such that all vertices of the triangle are
on or inside the circle. If the triangle is acute, this is equivalent to the triangle’s circumcircle. It the triangle is
obtuse, the longest edge is the diameter of the bounding circle.

x is a Coords array with shape (ntri,3,3) representing ntri triangles.

Returns a tuple 1,C,n with the radii, Center and unit normals of the bounding circles.

370

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

geomtools.triangleObtuse (x)
Check for obtuse triangles.

x is a Coords array with shape (ntri,3,3) representing ntri triangles.
Returns an (ntri) array of True/False values indicating whether the triangles are obtuse.

geomtools.lineIntersection (PO, NO, PI1, NI)
Find the intersection of 2 (sets of) lines.

This relies on the lines being pairwise coplanar.

geomtools.displaceLines (A, N, C, d)
Move all lines (A,N) over a distance a in the direction of point C.

A,N are arrays with points and directions defining the lines. C is a point. d is a scalar or a list of scalars. All line
elements of F are translated in the plane (line,C) over a distance d in the direction of the point C. Returns a new
set of lines (A,N).

geomtools.segmentOrientation (vertices, vertices2=None, point=None)
Determine the orientation of a set of line segments.

vertices and vertices2 are matching sets of points. point is a single point. All arguments are Coords objects.

Line segments run between corresponding points of vertices and vertices2. If vertices2 is None, it is obtained
by rolling the vertices one position foreward, thus corresponding to a closed polygon through the vertices). If
point is None, it is taken as the center of vertices.

The orientation algorithm checks whether the line segments turn positively around the point.
Returns an array with +1/-1 for positive/negative oriented segments.

geomtools.rotationAngle (A, B, m=None, angle_spec=0.017453292519943295)
Return rotation angles and vectors for rotations of A to B.

A and B are (n,3) shaped arrays where each line represents a vector. This function computes the rotation from
each vector of A to the corresponding vector of B. If m is None, the return value is a tuple of an (n,) shaped
array with rotation angles (by default in degrees) and an (n,3) shaped array with unit vectors along the rotation
axis. If m is a (n,3) shaped array with vectors along the rotation axis, the return value is a (n,) shaped array with
rotation angles. The returned angle is then the angle between the planes formed by the axis and the vectors.
Specify angle_spec=RAD to get the angles in radians.

geomtools.anyPerpendicularVector (A)
Return arbitrary vectors perpendicular to vectors of A.

A is a (n,3) shaped array of vectors. The return value is a (n,3) shaped array of perpendicular vectors.
The returned vector is always a vector in the x,y plane. If the original is the z-axis, the result is the x-axis.

geomtools.perpendicularVector (A, B)
Return vectors perpendicular on both A and B.

geomtools.projectionVOV (A, B)
Return the projection of vector of A on vector of B.

geomtools.projectionVOP (A, n)
Return the projection of vector of A on a plane with normal n.

geomtools.baryCoords (S, P)
Compute the barycentric coordinates of points wrt. simplexes.

An n-simplex is a geometrical structure defined by n+1 vertices and bordered by the convex hull of those vertices.
In practice it is either:

* 1-simplex: line segment (nplex=2)

6.2. Other pyFormex core modules 371

pyFormex Documentation, Release 2.2

geomtools.insideSimplex (S, P, atol=0.0)
Check which points P are inside the simplexes S.

* 2-simplex: triangle (nplex=3)

e 3-simplex: tetrahedron (nplex=4)

The barycentric coordinates of a 3d point with respect to a simplex of a lower order are the barycentric coordi-

nates of the projection of that point on the simplex.

Parameters

* S (coords_like (nel, nplex, 3)) — A set of nel n-simplexes (n=nplex-1).

* P (coords_like (nel, npts, 3) or (1, npts, 3)) — A set of npts points (for each of the simplexes
in S) for which the barycentric coordinates are to be computed. If the shape is (1,npts,3),
the same points are used with each of the simplexes.

Returns float array (nel, npts, nplex) — The barycentric coordinates of the points with respect to the

simplexes.

See also:

insideSimplex () testif a (projection) point falls within a simplex

Examples

>>> S = Coords('.1.6.4") .reshape(3,2,3)

>>> p = Coords([[[0,0,0],[0.2,0.2,01,[0.5,0.5,01,[0.5,0.7,0111)

>>> baryCoords (S, P)
array ([[[1. , 0.
[0.8,

[0.5,

[0.5,
<BLANKLINE>
[[0.5

[0.5,
5

4

o O O

[O.

[0.
<BLANKLINE>
[[O.

O O O O

~

4

1

0
, 0.

0

o O O
~ 0N

[
[
[’
>>> S1 = Coords (
>>> baryCoords (S
array ([[[1. ,

’

~
O O O O

]
[0. .27,
[0., .51,
[-0.2, S7110)

) .reshape (1, 3, 3)

An n-simplex is a geometrical structure defined by n+1 vertices and bordered by the convex hull of those vertices.

In practice it is either:
* 1-simplex: line segment (nplex=2)
» 2-simplex: triangle (nplex=3)

* 3-simplex: tetrahedron (nplex=4)

372

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

A 3d point is ‘inside’ a simplex of a lower order if its projection on that simplex falls within the simplex. This
is satisfied iff all the barycentric coordinates of the point with respect to the simplex are in the range [0.0, 1.0].

Parameters
* S (coords_like (nel, nplex, 3)) — A set of nel n-simplexes (n=nplex-1).

* P (coords_like (nel, npts, 3) or (1, npts, 3)) — A set of npts points that have to be tested
against the nel simplexes. If the shape is (1,npts,3), the same points are tested against each
of the simplexes. With a shape (nel, npts, 3) each simplex has its own set of points to be
tested.

* atol (float, optional) - If provided, points which are falling outside the simplex
within this tolerance (in parametric space), are also reported as inside.

Returns bool array (nel, npts) — The array holds True where the (projection of the) points fall inside
the simplex, to the accuracy atol.

See also:

baryCoords () compute the barycentric coordiantes of the points

Examples

>>> S = Coords('.1.6.4") .reshape(3,2,3)
>>> P = Coords([[[0.2,0.2,0],[0.5,0.5,01,(0.5,0.7,01,10.5,1.2,0111)
>>> insideSimplex (S,P)
array([[True, True, True, True]l,
[True, True, True, Truel,
[True, True, True, False]])
>>> T = Coords('132.14") .reshape(2,3,3)
>>> insideSimplex (T, P)
array ([[True, True, False, False],
[False, True, True, Falsel]])

geomtools.insideTriangle (S, P, atol=0.0)
Check which points P are inside the simplexes S.

An n-simplex is a geometrical structure defined by n+1 vertices and bordered by the convex hull of those vertices.
In practice it is either:

*]-simplex: line segment (nplex=2)
» 2-simplex: triangle (nplex=3)
e 3-simplex: tetrahedron (nplex=4)

A 3d point is ‘inside’ a simplex of a lower order if its projection on that simplex falls within the simplex. This
is satisfied iff all the barycentric coordinates of the point with respect to the simplex are in the range [0.0, 1.0].

Parameters
* S (coords_like (nel, nplex, 3)) — A set of nel n-simplexes (n=nplex-1).

* P (coords_like (nel, npts, 3) or (1, npts, 3)) — A set of npts points that have to be tested
against the nel simplexes. If the shape is (1,npts,3), the same points are tested against each
of the simplexes. With a shape (nel, npts, 3) each simplex has its own set of points to be
tested.

* atol (float, optional) - If provided, points which are falling outside the simplex
within this tolerance (in parametric space), are also reported as inside.

6.2. Other pyFormex core modules 373

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Returns bool array (nel, npts) — The array holds True where the (projection of the) points fall inside
the simplex, to the accuracy atol.

See also:

baryCoords () compute the barycentric coordiantes of the points

Examples

>>> S = Coords('.1.6.4") .reshape(3,2,3)
>>> P = Coords([[[0.2,0.2,0],[0.5,0.5,01,(0.5,0.7,01,10.5,1.2,0111)
>>> insideSimplex (S, P)
array ([[True, True, True, True],
[True, True, True, True],
[True, True, True, Falsel]l])
>>> T = Coords('132.14") .reshape(2,3,3)
>>> insideSimplex (T, P)
array ([[True, True, False, False],
[False, True, True, False]])

geomtools.insideSegment (Q, QI, P, atol=0.0)
Check if projections of points are inside line segments.

Checks which projections of points P on the line segments Q-Q1 are within the line segments.
Parameters
* Q (array_like (nseg, 3)) — First point of nseg line segments.
* Q1 (array_like (nseg, 3)) — Second point of nseg line segments.

* P (array_like (nseg, 3)) — The points to test against the segments. The testing is done by
pair: one point for each segment. The test pertains to the projection of the point on the line
containing the segment.

* atol (float, optional) - If provided, points which are falling outside the segment
but within this tolerance are also reported as inside.

Returns bool array (nseg) — The array holds True where the (projection of the) point falls inside the
corresponding segemnt, within the accuracy atol.

Notes

On large data sets this is (slightly) more efficient than the equivalent:

S = np.stack ([Q, Q1], axis=1l)

P = P[:,np.newaxis]
t = geomtools.insideSimplex (S,P) .reshape(-1)
See also:

insideSimplex () a general test of (projection of) points inside simplexes

insideRay () asimilar test for points on a half-line (ray)

374 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

Examples

>>> nseg = 13

>>> Q = Coords (np.random.rand (nseg, 3))

>>> Q1 = Coords (np.random.rand (nseg, 3))

>>> u = at.uniformParamValues (nseg-1, -0.1, 1.1).reshape(-1,1,1)

>>> P = Q[:,np.newaxis] * (l.-u) + Ql[:, np.newaxis] * u

>>> P = P.reshape (nseqg, 3)

>>> insideSegment (Q, Q1, P, atol=l.e-5)

array ([False, True, True, True, True, True, True, True, True,
True, True, True, False])

>>> insideRay (Q, Q1-Q, P, atol=l.e-5)

array ([False, True, True, True, True, True, True, True, True,
True, True, True, True])

geomtools.insideRay (Q, v, P, atol=0.0)
Check if projections of points are inside rays (half-lines).

Checks which projections of points P on the line (Q,v) are within the positive half-lines (rays).
Parameters
* Q (array_like (nlines, 3)) — Starting point of nlines rays (half-lines).
* v (array_like (nlines, 3)) — Direction vectors of nlines rays (half-lines).

* P (array_like (nlines, 3)) — The points to test against the rays. The testing is done by pair:
one point for each segment. The test pertains to the projection of the point on the line
containing the ray.

* atol (float, optional) — If provided, points which are falling outside the ray but
within this tolerance are also reported as inside.

Returns bool array (nseg) — The array holds True where the (projection of the) point falls inside the
corresponding ray, within the accuracy atol.

Notes

On large data sets this is (slightly) more efficient than the equivalent:

S = np.stack ([Q, Q+v], axis=1)

P = P[:,np.newaxis]

B = geomtools.baryCoords (S,P) .reshape (-1, 2)
t = where(B[:,1] >= atol)

See also:

insideSimplex () a general test of (projection of) points inside simplexes

insideRay () asimilar test for points on a half-line (ray)

6.2.14 inertia — Compute inertia related quantities of geometrical models.

Inertia related quantities of a geometrical model comprise: the total mass, the center of mass, the inertia tensor, the
principal axes of inertia.

This module defines some classes to store the inertia data:

* Tensor: a general second order tensor

6.2. Other pyFormex core modules 375

https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

* Tnertia: aspecialized second order tensor for inertia data

This module also provides the basic functions to compute the inertia data of collections of simple geometric data:
points, lines, triangles, tetrahedrons.

The prefered way to compute inertia data of a geometric model is through the Geometry.inertia () methods.

Classes defined in module inertia

class inertia.Tensor

A second order symmetric(!) tensor in 3D vector space.
This is a new class under design. Only use for development!

The Tensor class provides conversion between full matrix (3,3) shape and contracted vector (6,) shape. It can
e.g. be used to store an inertia tensor or a stress or strain tensor. It provides methods to transform the tensor to
other (cartesian) axes.

Parameters:
e data: array_like (float) of shape (3,3) or (6,)

» symmetric: bool. If True (default), the tensor is forced to be symmetric by averaging the off-diagonal
elements.

* ¢s: CoordSys. The coordinate system of the tensor.
Properties: a Tensor T has the following properties:
o T.xx, T.xy, T.xz, T.yx, T.yy, T.yz, T.zx, T.zy, T.zz: aliases for the nine components of the tensor
 T.contracted: the (6,) shaped contracted array with independent values of the tensor
* T.tensor: the full tensor as an (3,3) array
Discussion:

* inertia and stres/strain tensors transform in the same way on rotations of axes. But differently on transla-
tions! Should we therefore store the purpose of the tensor??

— Propose to leave it to the user to know what he is doing.

— Propose to have a separate class Inertia derived from Tensor, which implements computing the inertia
tensor and translation.

¢ should we allow non-symmetrical tensors? Then what with principal?

— Propose to silently allow non-symm. Result of functions is what it is. Again, suppose the user knows
what he is doing.

Example

>>> t = Tensor([1,2,3,4,5,6])
>>> print (t)

[l 1. 6. 5.]
[6. 2. 4.]
[5. 4. 3.1]

>>> print (t.contracted)
[1. 2. 3. 4. 5. 6.]
>>> s = Tensor (t)

>>> print (s)

(continues on next page)

376

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

(continued from previous page)

[[1. 6. 5.]
[6. 2. 4.]
[5. 4. 3.1]

contracted

Returned the symmetric tensor data as a numpy array with shape (6,)

tensor
Returned the tensor data as a numpy array with shape (3,3)

sym
Return the symmetric part of the tensor.

asym
Return the antisymmetric part of the tensor.

principal (sort=True, right_handed=True)
Returns the principal values and axes of the inertia tensor.

Parameters:

e sort: bool. If True (default), the return values are sorted in order of decreasing principal values.
Otherwise they are unsorted.

* right_handed: bool. If True (default), the returned axis vectors are guaranteed to form a right-handed
coordinate system. Otherwise, lef-handed systems may result)

Returns a tuple (prin,axes) where
* prin: is a (3,) array with the principal values,

* axes: is a (3,3) array with the rotation matrix that rotates the global axes to the principal axes. This
also means that the rows of axes are the unit vectors along the principal directions.

Example:

>>> t = Tensor([-19., 4.6, -8.3, 11.8, 6.45, 4.7 1)
>>> p,a = t.principal()
>>> print (p)
[11.62 -9. -25.32]
>>> print (a)
[[-0.03 0.86 0.5]
[-0.62 0.38 -0.69]
[-0.78 -0.33 0.53]]

rotate (rot)
Transform the tensor on coordinate system rotation.

Note: for an inertia tensor, the inertia should have been computed around axes through the center of mass.
See also translate.

Example:

>>> t = Tensor([-19., 4.6, -8.3, 11.8, 6.45, 4.7 1)
>>> p,a = t.principal()
>>> print (t.rotate(np.linalg.linalg.inv(a)))

([11.62 0. 0.]
[-0. -9. 0.]
[0. -0. -25.32]]

6.2. Other pyFormex core modules 377

pyFormex Documentation, Release 2.2

class inertia.Inertia

A class for storing the inertia tensor of an array of points.
Parameters:
* X: a Coords with shape (npoints,3). Shapes (...,3) are accepted but will be reshaped to (npoints,3).
* mass: optional, (npoints,) float array with the mass of the points. If omitted, all points have mass 1.
The result is a tuple of two float arrays:
— the center of gravity: shape (3,)
— the inertia tensor: shape (6,) with the following values (in order): Ixx, lyy, Izz, Iyz, Izx, Ixy

Example:

>>> from .elements import Tet4
>>> X = Tetd.vertices
>>> print (X)

[[0. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.1]
>>> I = X.inertial()

>>> print (I)

[[1.5 0.25 0.25]
[0.25 1.5 0.25]
[0.25 0.25 1.5 1]

>>> print (I.ctr)

[0.25 0.25 0.25]

>>> print (I.mass)

4.0
>>> print (I.translate(-I.ctr))
[[2. 0. 0.]

[0. 2. 0.]

[0. 0. 2.11]

translate (7], toG=False)
Return the inertia tensor around axes translated over vector trl.

Parameters:
e trl: arraylike (3,). Distance vector from the center of mass to the new reference point.

¢ toG: bool. If False (default) the inertia tensor is translated to the the new reference point, otherwise it
will be translated to its center of mass

translateTo (ref, toG=False)
Return the inertia tensor around axes translated to the reference point ref.

Parameters:
* ref: arraylike (3,). The new reference point coordinates.

* t0G: bool. If False (default) the inertia tensor is translated to the the new reference point, otherwise it
will be translated to its center of mass

toCS (cs)
Transform the coordinates to another CoordSys.

378

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Functions defined in module inertia
inertia.point_inertia (X, mass=None, center_only=False)
Compute the total mass, center of mass and inertia tensor mass points.
Parameters:
¢ X: a Coords with shape (npoints,3). Shapes (...,3) are accepted but will be reshaped to (npoints,3).
* mass: optional, (npoints,) float array with the mass of the points. If omitted, all points have mass 1.
e center_only: bool: if True, only returns the total mass and center of mass.

Returns a tuple (M,C,I) where M is the total mass of all points, C is the center of mass, and I is the inertia tensor
in the central coordinate system, i.e. a coordinate system with axes paralle to the global axes but origin at the
(computed) center of mass. If center_only is True, returns the tuple (M,C) only. On large models this is more
effective in case you do not need the inertia tensor.

inertia.surface_volume (x, pt=None)
Return the volume inside a 3-plex Formex.

e x: an (ntri,3,3) shaped float array, representing ntri triangles.
 pt: apoint in space. If unspecified, it is taken equal to the origin of the global coordinate system ([0.,0.,0.]).

Returns an (ntri) shaped array with the volume of the tetrahedrons formed by the triangles and the point pt.
Triangles with an outer normal pointing away from pt will generate positive tetrahral volumes, while triangles
having pt at the side of their positive normal will generate negative volumes. In any case, if x represents a closed
surface, the algebraic sum of all the volumes is the total volume inside the surface.

inertia.surface_volume_inertia (x, center_only=False)
Return the inertia of the volume inside a 3-plex Formex.

e x: an (ntri,3,3) shaped float array, representing ntri triangles.
This uses the same algorithm as tetrahedral_inertia using [0.,0.,0.] as the 4-th point for each tetrahedron.

Returns a tuple (V,C,I) where V is the total volume, C is the center of mass (3,) and I is the inertia tensor (6,) of
the tetrahedral model.

Example:

>>> from .simple import sphere

>>> S = sphere(4) .toFormex ()

>>> V,C,I = surface_volume_inertia(S.coords)

>>> print (vV,C, I)

4.04701 [-0. -0. -0.] [1.58 1.58 1.58 -0. 0. 0.]

inertia.tetrahedral_volume (x)
Compute the volume of tetrahedrons.

e x: an (ntet,4,3) shaped float array, representing ntet tetrahedrons.

Returns an (ntet,) shaped array with the volume of the tetrahedrons. Depending on the ordering of the points,
this volume may be positive or negative. It will be positive if point 4 is on the side of the positive normal formed
by the first 3 points.

inertia.tetrahedral_inertia (x, density=None, center_only=False)
Return the inertia of the volume of a 4-plex Formex.

Parameters:

e x: an (ntet,4,3) shaped float array, representing ntet tetrahedrons.

6.2. Other pyFormex core modules 379

pyFormex Documentation, Release 2.2

* density: optional mass density (ntet,) per tetrahedron

e center_only: bool. If True, returns only the total volume, total mass and center of gravity. This may be
used on large models when only these quantities are required.

Returns a tuple (V,M,C,I) where V is the total volume, M is the total mass, C is the center of mass (3,) and I is
the inertia tensor (6,) of the tetrahedral model.

Formulas for inertia were based on F. Tonon, J. Math & Stat, 1(1):8-11,2005

Example:

>>> x = Coords ([
[8.33220, -11.86875, 0.93355 1],
[0.75523, 5.00000, 16.37072 1,
[52.61236, 5.00000, -5.38580 1,
[2.000000, 5.00000, 3.00000 1,

R 1)

>>> F = Formex ([x])

>>> print (tetrahedral_center (F.coords))
[15.92 0.78 3.73]
>>> print (tetrahedral_volume (F.coords))

[1873.23]
>>> print (rtetrahedral_inertia (F.coords))
1873.23 1873.23 [15.92 0.78 3.73] [43520.32 194711.28 191168.77 4417.66,

—-46343.16 11996.2]

inertia.tetrahedral_center (x, density=None)
Compute the center of mass of a collection of tetrahedrons.

e x: an (ntet,4,3) shaped float array, representing ntet tetrahedrons.
* density: optional mass density (ntet,) per tetrahedron. Default 1.
Returns a (3,) shaped array with the center of mass.

inertia.inertia (X, mass=None, center_only=False)
Compute the total mass, center of mass and inertia tensor mass points.

Parameters:
* X: a Coords with shape (npoints,3). Shapes (...,3) are accepted but will be reshaped to (npoints,3).
* mass: optional, (npoints,) float array with the mass of the points. If omitted, all points have mass 1.
* center_only: bool: if True, only returns the total mass and center of mass.

Returns a tuple (M,C,I) where M is the total mass of all points, C is the center of mass, and I is the inertia tensor
in the central coordinate system, i.e. a coordinate system with axes paralle to the global axes but origin at the
(computed) center of mass. If center_only is True, returns the tuple (M,C) only. On large models this is more
effective in case you do not need the inertia tensor.

6.2.15 multi — Framework for multi-processing in pyFormex

This module contains some functions to perform multiprocessing in pyFormex in a unified way.

Functions defined in module multi

multi.splitArgs (args, mask=None, nproc=-1, close=False)
Split data blocks over multiple processors.

380 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Parameters

* args (list or tuple of array_like) — A sequence of data blocks that may need to be split
for parallel processing over multiple processors. Splitting is done along the first dimension,
which should therefore be the same for all arrays in the sequence that need to be split.

* mask (list or tuple of bool) — If provided, this flags the items in args that
should be split. The list should have the same length as args. If not provided, all array
type items in args will be split.

nproc (int) — Intended number of processors. If negative (default), it is set equal to the

number of processors detected on the host machine.

close (bool)—If True, the elements where the arrays are split are included in both blocks

delimited by the element. Thus splitting an array [1, 2, 3] in two results in [1, 2] and [2, 3],
while the default split would be [1, 2] and [3].

Returns list of tuples. — The list contains nproc tuples and each tuple contains the same number of
items as the input args and in the same order, whereby the (nonmasked) arrays are replaced by
a slice of the array along its first axis, and the masked and non-array items are replicated as is.

See also:

arraytools.splitar() the low level function used to do the splitting

Examples
>>> splitArgs ([np.arange (5), "abcde'
[(array ([0, 1]), 'abcde'), (array(
>>> for i in splitArgs([np.eye(5),
ce print (" "% 1)
[l 1. 0. 0. 0. 0.]

[0. 1. 0. 0. 0.11 => [0 1]
[[0. 0. 1. 0. 0.1] => [2]
[l 0. 0. 0. 1. 0.]

[0. 0. 0. 0. 1.11 => [3 4]
>>> for i in splitArgs([np.eye(5),
R print (" "% 1)

[l 1. 0. 0. 0. 0.]

[0. 1. 0. 0. 0.]] => [0 1 2 3 4]
[[0. 0. 1. 0. 0.1] => [0 1 2 3 4]
[l 0. 0. 0. 1. 0.]

[0. 0. 0. 0. 1.]] => [0 1 2 3 4]

,nproc=3)
]), 'abcde'), (array([3, 4]),
>',np.arange (5)], nproc=3) :

1
[2 'abcde')]

'=>'",np.arange(5)],mask=[1,0,0],nproc=3) :

multi.dofunc (arg)
Helper function for the multitask function.

Parameters arg (tuple) — The first item of the tuple is a callable. The remaining items are its

arguments.

Returns object — The value of the callable when passed the remaining items as arguments.

Examples

>>> dofunc ((max, (2,
5

5, 3)))

6.2. Other pyFormex core modules

381

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

pyFormex Documentation, Release 2.2

multi.multitask (fasks, nproc=-1)
Perform tasks in parallel.

Runs a number of tasks in parallel over a number of subprocesses.
Parameters

* tasks (list of tuples) — Each task in the list is a tuple where the first item is a
callable and the other items are the arguments to be passed to the callable.

* nproc (int) — The number of subprocesses to be started. This may be different from
the number of tasks to run: processes finishing a task will pick up a next one. There is no
benefit in starting more processes than the number of tasks or the number of processing units
available. The default will set nproc to the minimum of these two values.

Examples

>>> taskl = (int.__add__, (2, 3))
>>> task2 = (int._mul__, (2, 3))
>>> multitask ((taskl, task2))

[5, 6]

6.2.16 options — pyFormex command line options

This module defines the pyFormex command line options. It is placed in a separate module so that it has very limited
dependencies and can be loaded very early in the startup procedure. This allows options to be used to influence the
further startup process and the modules that are imported.

Functions defined in module options
options.createParser ()
Create a parser for the pyFormex command line.
Returns argparse.ArgumentParser — A parser for the pyFormex command line.

options.parseOptions (args)
Parse command line arguments

The arguments of the pyFormex command line can be splitted in options and remaining arguments. This function
will split the options from the other arguments and store them in the variable pf.options for access throughout
pyFormex. The remaining arguments are stored in pf.options.args

Parameters args (1ist of str)— A list of command line arguments for the pyformex com-
mand

Returns bool — True if the parsing was successful.

6.2.17 project — project.py

Functions for managing a project in pyFormex.

382 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

pyFormex Documentation, Release 2.2

Classes defined in module project

class project.Unpickler (f, try_resolve=True)
Customized Unpickler class

find class (module, name)
Return an object from a specified module.

If necessary, the module will be imported. Subclasses may override this method (e.g. to restrict unpickling
of arbitrary classes and functions).

This method is called whenever a class or a function object is needed. Both arguments passed are str
objects.

class project.Project (filename=None, access="wr’, convert=True, signature='pyFormex 2.2
(release-2.1-33-g4410eadl) DEVELOPMENT VERSION’, compression=>5,
binary=True, data={}, protocol=3, **kargs)

Project: a persistent storage of pyFormex data.

A pyFormex Project is a regular Python dict that can contain named data of any kind, and can be saved to a file
to create persistence over different pyFormex sessions.

The Project class is used by pyFormex for the py formex . PF global variable that collects variables exported
from pyFormex scripts. While projects are mostly handled through the pyFormex GUI, notably the File menu,
the user may also create and handle his own Project objects from a script.

Because of the way pyFormex Projects are written to file, there may be problems when trying to read a project
file that was created with another pyFormex version. Problems may occur if the project contains data of a class
whose implementation has changed, or whose definition has been relocated. Our policy is to provide backwards
compatibility: newer versions of pyFormex will normally read the older project formats. Saving is always
done in the newest format, and these can generally not be read back by older program versions (unless you are
prepared to do some hacking).

Warning: Compatibility issues.

Occasionally you may run into problems when reading back an old project file, especially when it was
created by an unreleased (development) version of pyFormex. Because pyFormex is evolving fast, we can
not test the full compatibility with every revision You can file a support request on the pyFormex support
tracker. and we will try to add the required conversion code to pyFormex.

The project files are mainly intended as a means to easily save lots of data of any kind and to restore them in
the same session or a later session, to pass them to another user (with the same or later pyFormex version), to
store them over a medium time period. Occasionally opening and saving back your project files with newer
pyFormex versions may help to avoid read-back problems over longer time.

For a problemless long time storage of Geometry type objects you may consider to write them to a pyFormex
Geometry file (.pgf) instead, since this uses a stable ascii based format. It can however (currently) only store
obects of class Geometry or one of its subclasses.

Parameters:

e filename: the name of the file where the Project data will be saved. If the file exists (and access is not w),
it should be a previously saved Project and an attempt will be made to load the data from this file into the
Project. If this fails, an error is raised.

If the file exists and access is w, it will be overwritten, destroying any previous contents.

If no filename is specified, a temporary file will be created when the Project is saved for the first time. The
file with not be automatically deleted. The generated name can be retrieved from the filename attribute.

6.2. Other pyFormex core modules 383

http://savannah.nongnu.org/support/?group=pyformex
http://savannah.nongnu.org/support/?group=pyformex

pyFormex Documentation, Release 2.2

* access: One of ‘wr’ (default), ‘rw’, ‘w’ or ‘r’. If the string contains an ‘r’ the data from an existing file
will be read into the dict. If the string starts with an ‘r’, the file should exist. If the string contains a ‘w’,
the data can be written back to the file. The ‘r’ access mode is thus a read-only mode.

access | File must exist | File isread | File can be written
r yes yes no
'w yes yes yes
wr no if it exists yes
w no no yes

 convert: if True (default), and the file is opened for reading, an attempt is made to open old projects in a
compatibility mode, doing the necessary conversions to new data formats. If convert is set False, only the
latest format can be read and older formats will generate an error.

* signature: A text that will be written in the header record of the file. This can e.g. be used to record format
version info.

* compression: An integer from 0 to 9: compression level. For large data sets, compression leads to much
smaller files. 0 is no compression, 9 is maximal compression. The default is 4.

e binary: if False and no compression is used, storage is done in an ASCII format, allowing to edit the file.
Otherwise, storage uses a binary format. Using binary=False is deprecated.

* data: a dict-like object to initialize the Project contents. These data may override values read from the file.

Example

>>> d = dict(a=1l,b=2,c=3,d=[1,2,3],e={"£"':4,"'g':5})
>>> P = Project ()

>>> P.update (d)

>>> print (P)

Project name: None

access: Wwr mode: b gzip: 5
signature: pyFormex
contents: ['a', 'b', 'c¢', 'd', 'e']
<BLANKLINE>
>>> print (utils.dictStr(P))
{'a': 1, 'b': 2, '¢': 3, 'd': [1, 2, 3], 'e': ...}

>>> with utils.TempFile() as tmp:

P.save (filename=tmp.path, quiet=True)
P.clear ()

print (utils.dictStr (P))

. P.load (quiet=True)

{}
>>> print (utils.dictStr (P))

{'a': 1, 'b': 2, 'c¢': 3, 'd': [1, 2, 3], 'e': ...}

header_data ()
Construct the data to be saved in the header.

save (filename=None, quiet=False)
Save the project to file.

readHeader (f, quiet=False)
Read the header from a project file.

f is the file opened for reading. Tries to read the header from different legacy formats, and if successful,
adjusts the project attributes according to the values in the header. Returns the open file if successful.

384

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

load (filename=None, try_resolve=True, quiet=False)
Load a project from file.

The loaded definitions will update the current project.

convert (filename=None)
Convert an old format project file.

The project file is read, and if successful, is immediately saved. By default, this will overwrite the original
file. If a filename is specified, the converted data are saved to that file. In both cases, access is set to ‘wr’,
so the tha saved data can be read back immediately.

uncompress (verbose=True)
Uncompress a compressed project file.

The project file is read, and if successful, is written back in uncompressed format. This allows to make
conversions of the data inside.

delete ()
Unrecoverably delete the project file.

Functions defined in module project

project.find_class (module, name)
Find a class whose name or module has changed

6.2.18 simple — Predefined geometries with a simple shape.

This module contains some functions, data and classes for generating Formex structures representing simple geometric
shapes. You need to import this module in your scripts to have access to its contents.

Functions defined in module simple

simple. shape (name)
Return a Formex with one of the predefined named shapes.

This is a convenience function returning a plex-2 Formex constructed from one of the patterns defined in the
Pattern dictionary. Currently, the following pattern names are defined: ‘line’, ‘angle’, ‘square’, ‘plus’, ‘cross’,
‘diamond’, ‘rtriangle’, ‘cube’, ‘star’, ‘star3d’. See the Pattern example.

simple.randomPoints (n, bbox=[[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]])
Create n random points in a specified bbox.

Examples

>>> X = randomPoints (10)

>>> X.shape

(10, 3)

>>> np.asarray (X >= 0.).all(), np.asarray (X <= 1.).all()

(True, True)

>>> X = randomPoints (15, bbox=[[1.,1.,1.]1,[2.,2.,2.11)
>>> X.shape

(15, 3)

>>> np.asarray(X >= 1.).all(), np.asarray(X <= 2.).all()
(True, True)

6.2. Other pyFormex core modules 385

pyFormex Documentation, Release 2.2

simple.regularGrid (x0, xI, nx, swapaxes=None)
Create a regular grid of points between two points x0 and x1.

Parameters:
* x0: n-dimensional float (usually 1D, 2D or 3D).
e xI: n-dimensional float with same dimension as x0.

¢ nx: n-dimensional int with same dimension as x0 and x/. The space between x0 and x/ is subdivided in
nx[i] equal parts along the axis i.

* swapaxes: bool. If False(default), the points are number first in the direction of the 0 axis, then the next
axis,. .. If True, numbering starts in the direction of the highest axis. This is the legacy behavior.

Returns a rectangular grid of n-dimensional coordinates in an array with shape (nx[0]+1, nx[1]+1, ..., ndim).
Example:
>>> regularGrid(0.,1.,4)
array ([[0.],

[0.257,

[0.5 1,

[0.757,

[1. 101
>>> regularGrid((0.,0.),(1.,1.),(3,2))
array ([[[0. , 0. 1,

[0.33, 0. 1,

[0.67, O. 11,
<BLANKLINE>

(c 1. , 0. 1,

[0. , 0.5 17,

[0.33, 0.5 11,
<BLANKLINE>

[[0.67, 0.5 7],

[1. , 0.5 171,

[0. , 1. 11,
<BLANKLINE>

[[0.33, 1. 1,

[0.67, 1. 1,

(1. , 1 111)

simple.point (x=0.0, y=0.0, z=0.0)
Return a Formex which is a point, by default at the origin.

Each of the coordinates can be specified and is zero by default.

simple.line (pI=/0.0, 0.0, 0.0], p2=[1.0, 0.0, 0.0], n=1)
Return a Formex which is a line between two specified points.

pl: first point, p2: second point The line is split up in n segments.

simple.rect (pI/=/0.0, 0.0, 0.0], p2=[1.0, 0.0, 0.0], nx=1, ny=1)
Return a Formex which is a the circumference of a rectangle.

pl and p2 are two opposite corner points of the rectangle. The edges of the rectangle are in planes parallel to
the z-axis. There will always be two opposite edges that are parallel with the x-axis. The other two will only be
parallel with the y-axis if both points have the same z-value, but in any case they will be parallel with the y-z
plane.

The edges parallel with the x-axis are divide in nx parts, the other ones in ny parts.

386 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

simple.rectangle (nx=1, ny=1, b=None, h=None, bias=0.0, diag=None)
Return a Formex representing a rectangular surface.

The rectangle has a size(b,h) divided into (nx,ny) cells.

The default b/h values are equal to nx/ny, resulting in a modular grid. The rectangle lies in the (x,y) plane, with
one corner at [0,0,0]. By default, the elements are quads. By setting diag="u’,’d’ of ‘x’, diagonals are added in
/, resp. and both directions, to form triangles.

simple.Cube ()
Create the surface of a cube

Returns a TriSurface representing the surface of a unit cube. Each face of the cube is represented by two
triangles.

simple.circle (al=2.0, a2=0.0, a3=360.0, r=None, n=None, c=None, eltype="line2’, an-
gle_spec=0.017453292519943295)
A polygonal approximation of a circle or arc.

All points generated by this function lie on a circle with unit radius at the origin in the x-y-plane.
* al: the angle enclosed between the start and end points of each line segment (dash angle).

* a2: the angle enclosed between the start points of two subsequent line segments (module angle). If
a2==0.0, a2 will be taken equal to al.

* a3: the total angle enclosed between the first point of the first segment and the end point of the last segment
(arc angle).

All angles are given in degrees and are measured in the direction from x- to y-axis. The first point of the first
segment is always on the x-axis.

The default values produce a full circle (approximately). If $a3 < 3608, the result is an arc. Large values of al
and a2 result in polygons. Thus circle(120.) is an equilateral triangle and circle(60.) is regular hexagon.

Remark that the default a2 == al produces a continuous line, while a2 > al results in a dashed line.
Three optional arguments can be added to scale and position the circle in 3D space:

* r: the radius of the circle

* n: the normal on the plane of the circle

¢ c: the center of the circle

Examples
>>> circle(90., 90.) .coords
Coords ([[[1., 0., 0.1,

[0., 1., 0.11,
<BLANKLINE>

(¢t 6., 1., 0.7,

[-1., 0., 0.11,
<BLANKLINE>

((-1., 0., 0.7,

[-0., -1., 0.11,

<BLANKLINE>

[(-0., -1., 0.7,

[1., -0., 0.11D)
>>> circle(90., 45.).coords
Coords ([[[1. , 0. , 0. 1,

(continues on next page)

6.2. Other pyFormex core modules 387

pyFormex Documentation, Release 2.2

(continued from previous page)

ro. , 1. , 0. 171,
<BLANKLINE>

(r 0.7, 0.71, 0. 1,

[-0.71, 0.71, O. 11,
<BLANKLINE>

(¢ 6. , 1. , 0. 1,

[-1. , 0. , 0. 171,
<BLANKLINE>

((-6.71, 0.71, 0. 1,

[-0.71, -0.71, O. 11,
<BLANKLINE>

((-. , O0. , 0. 1,

[-0. , -1. , 0. 11,
<BLANKLINE>

((-6.71, -0.71, 0. 1,

[0.71, -0.71, 0. 11,
<BLANKLINE>

((-6. , -1. , 0. 1,

(1. , -0. , 0. 11,
<BLANKLINE>

(r 0.71, -0.71, 0. 1,

[0.7, 0.7, 0. 111)

simple.polygon (n)
A regular polygon with n sides.

Creates the circumference of a regular polygon with n sides, inscribed in a circle with radius 1 and center
at the origin. The first point lies on the axis 0. All points are in the (0,1) plane. The return value is a plex-2
Formex. This function is equivalent to circle(360./n).

simple.polygonSector (n)
Create one sector of a regular polygon with n sides

simple.triangle ()
An equilateral triangle with base [0,1] on axis 0.

Returns an equilateral triangle with side length 1. The first point is the origin, the second points is on the axis 0.
The return value is a plex-3 Formex.

simple.quadraticCurve (x=None, n=8)
Create a collection of curves.

x is a (3,3) shaped array of coordinates, specifying 3 points.

Return an array with 2*n+1 points lying on the quadratic curve through the points x. Each of the intervals
[x0,x1] and [x1,x2] will be divided in n segments.

simple.sphere (ndiv=6, base="icosa’, equiv="max’)
Create a triangulated approximation of a spherical surface.

A (possibly high quality) approximation of a spherical surface is constructed as follows. First a simple base tri-
angulated surface is created. Its triangular facets are subdivided by dividing all edges in ndiv parts. The resulting
mesh is then projected on a sphere with unit radius. The higher ndiv is taken, the better the approximation. For
ndiv=1, the base surface is returned.

Parameters:
* ndiv: number of divisions along the edges of the base surface.

e base: the type of base surface. One of the following:

388 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

— ‘icosa’: icosahedron (20 faces): this offers the highest quality with triangles of almost same size ans
shape.

— ‘octa’: octahedron (8 faces): this model will have the same mesh on each of the quadrants. The
coordinate planes do not cut any triangle. This model is this fit to be subdivided along coordinate
planes.

Returns a TriSurface, representing a triangulated approximation of a spherical surface with radius 1 and center
at the origin.

simple.sphere3 (nx, ny, r=1, bot=-90.0, top=90.0)
Return a sphere consisting of surface triangles

A sphere with radius r is modeled by the triangles formed by a regular grid of nx longitude circles, ny latitude
circles and their diagonals.

The two sets of triangles can be distinguished by their property number: 1: horizontal at the bottom, 2: horizontal
at the top.

The sphere caps can be cut off by specifying top and bottom latitude angles (measured in degrees from O at north
pole to 180 at south pole.

simple.sphere2 (nx, ny, r=1, bot=-90, top=90)
Return a sphere consisting of line elements.

A sphere with radius r is modeled by a regular grid of nx longitude circles, ny latitude circles and their diagonals.
The 3 sets of lines can be distinguished by their property number: 1: diagonals, 2: meridionals, 3: horizontals.

The sphere caps can be cut off by specifying top and bottom latitude angles (measured in degrees from 0 at north
pole to 180 at south pole.

simple.connectCurves (curvel, curve2, n)
Connect two curves to form a surface.

curvel, curve2 are plex-2 Formices with the same number of elements. The two curves are connected by a
surface of quadrilaterals, with n elements in the direction between the curves.

See also:
Mesh.connect ()

simple.sector (1, t, nr, nt, h=0.0, diag=None)
Constructs a Formex which is a sector of a circle/cone.

A sector with radius r and angle t is modeled by dividing the radius in nr parts and the angle in nt parts and then
creating straight line segments. If a nonzero value of h is given, a conical surface results with its top at the origin
and the base circle of the cone at z=h. The default is for all points to be in the (x,y) plane.

By default, a plex-4 Formex results. The central quads will collapse into triangles. If diag="up’ or diag = ‘down’,
all quads are divided by an up directed diagonal and a plex-3 Formex results.

simple.eylinder (D, L, nt, nl, DI=None, angle=360.0, bias=0.0, diag=None)
Create a cylindrical, conical or truncated conical surface.

Returns a Formex representing (an approximation of) a cylindrical or (possibly truncated) conical surface with
its axis along the z-axis. The resulting surface is actually a prism or pyramid, and only becomes a good approx-
imation of a cylinder or cone for high values of nt.

Parameters:
* D: base diameter (at z=0) of the cylinder/cone,

* L: length (along z-axis) of the cylinder/cone,

6.2. Other pyFormex core modules 389

pyFormex Documentation, Release 2.2

 nt: number of elements along the circumference,
* nl: number of elements along the length,

e DI: diameter at the top (z=L) of the cylinder/cone: if unspecified, it is taken equal to D and a cylinder
results. Setting either DI or D to zero results in a cone, other values will create a truncated cone.

* diag: by default, the elements are quads. Setting diag to ‘u’ or ‘d’ will put in an ‘up’ or ‘down’ diagonal
to create triangles.

simple.boxes (x)

Create a set of cuboid boxes.
x: Coords with shape (nelems,2,3), usually with x[:,0,:] < x[:,1,:]

Returns a Formex with shape (nelems,8,3) and of type ‘hex8’, where each element is the cuboid box which has
x[:,0,:] as its minimum coordinates and x[:,1,:] as the maximum ones. Note that the elements may be degenerate
or reverted if the minimum coordinates are not smaller than the maximum ones.

This function can be used to visualize the bboxes() of a geometry.

simple.boxes2d (x)

Create a set of rectangular boxes.
Parameters:
* x: Coords with shape (nelems,2,3), usually with x[:,0,:] < x[:,1,:] and x[:,:,2] == 0.

Returns a Formex with shape (nelems,4,3) and of type ‘quad4’, where each element is the rectangular box
which has x[:,0,:] as its minimum coordinates and x[:,1,:] as the maximum ones. Note that the elements may be
degenerate or reverted if the minimum coordinates are not smaller than the maximum ones.

This function is a 2D version of bboxes ().

simple.cuboid (xmin=/[0.0, 0.0, 0.0], xmax=[1.0, 1.0, 1.0], cs=None)

Create a rectangular prism.

Create a rectangular prism from two opposite corners. The vertices are specified in the global or a given coordi-
nate system. The faces faces are parallel to the coordinate planes.

Parameters:
e xmin: float(3): minimum coordinates
e xmax: float(3): maximum coordinates

* c¢s: CoordSys: if specified, the cuboid is constructed in this coordinate system, and then transformed back
to global axes.

Returns a single element Formex with eltype ‘hex8’.

simple.cuboid2d (xmin=/0.0, 0.0, 0.0], xmax=[1.0, 1.0, 0.0])

Create a rectangle.

Creates a rectangle with sides parallel to the global y-axis and global xz-plane, and having the points xmin and
Xmax as opposite corner points.

Returns a single element Formex with eltype ‘quad4’.

simple.boundingBox (0bj, cs=None)

Returns a cuboid that is the bounding box of some geometry
The boundingBox is computed in the specified coordinate system. The default is the global axes.

Returns a single hexahedral Formex object.

390

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

6.2.19 software — Detecting and checking installed software

A module to help with detecting required software and helper software, and to check the versions of it.

Classes defined in module software
class software.Software (name)
Register for software versions.

This class holds a register of the version of installed software. The class is not intended to be used directly, but
rather through the derived classes Module and External.

Parameters name (st r) — The software name as known in pyFormex: this is often the same as
the real software name, but can be different if the real software name is complex. We try to use
simple lower case names in pyFormex.

The default software object only has two attributes:

name
The registered name of the software.

Type str

version
The version of the software. This is set to None when the name is registered, and becomes a (possibly
empty) string after calling the detect () method.

Type str

Examples

>>> np = Software ('numpy')
>>> Software.print_all()
numpy (** Not Found =*x)
>>> Software.has ('numpy"')
T
>>> np.detect ('detected")
'detected’
>>> Software.has ('numpy"')
'detected’
>>> Software.require ('numpy')
>>> Software.has('foo')
Traceback (most recent call last):
ValueError: foo is not a registered Software
>>> foo = Software('foo')
>>> Software.require('foo')
Traceback (most recent call last):
ValueError: Required Software 'foo' (foo) not found
>>> Software.print_all()
numpy (detected)
foo (x* Not Found xx)
>>> Software('foo'")
Traceback (most recent call last):
ValueError: A Software with name 'foo' is already registered

version ()
Return the version of the software, if installed.

6.2. Other pyFormex core modules 391

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

If the software has already been detected, just returns the stored version string. Else, runs the software
detect () method and stores and returns the version string.

Returns str — The version of the software, or an empty string if the software can not be detected.

detect (version=", fatal=False, quiet=False)
Detect the version of the software.

Parameters

* version (str) — The version string to be stored for a detected software. The default
empty string means the software was not detected. Derived classes should call this method
fromt their detect method and pass a non-empty string for detected softwares.

e fatal (bool, optional) - If True and the software can not be loaded, a fatal ex-
ception is raised. Default is to silently ignore the problem and return an empty version
string.

e quiet (bool, optional) - If True, the whole operation is done silently. The only
information about failure will be the returned empty version string.

Returns str — The version string of the software, empty if the software can not be loaded.

Notes
As a side effect, the detected version string is stored for later reuse. Thus subsequent tests will not try to
re-detect.

classmethod detect_all()
Detect all registered softwares.

Usually, the detection is only performed when needed. Calling this method will perform the detection for
all registered softwares.

classmethod print_all ()
Print the list of registered softwares

classmethod detected (all=Fualse)
Return the successfully detected softwares and their version

Returns OrderedDict — A dict with the software name as key and the detected version as value.

classmethod has (name, check=False, fatal=False, quiet=False)
Test if we have the named software available.

Returns a nonzero (version) string if the software is available, or an empty string if it is not.

By default, the software is only checked on the first call. The optional argument check==True forces a new
detection.

classmethod check (name, version)
Check that we have a required version of a software.

classmethod require (name, version=None)
Ensure that the named Python software/version is available.

Checks that the specified software is available, and that its version number is not lower than the specified
version. If no version is specified, any version is ok.

Returns if the required software/version could be loaded, else an error is raised.

392 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

class software.Module (name, modname=None, attr=None)

Register for Python module version detection rules.

This class holds a register of version detection rules for installed Python modules. Each instance holds the rule
for one module, and it is automatically registered at instantiation. The modules used by pyFormex are declared
in this module, but users can add their own just by creating a Module instance.

Parameters

* name (str) — The module name as known in pyFormex: this is often the same as the
Python module name, but can be different if the Python module name is complex. We try to
use simple lower case names in pyFormex.

* modname (str, optional)— The correct Python package.module name. If not pro-
vided, it is equal to the pyFormex name.

e attr (str or tuple of str, optional)-Ifastr itis the name of the attribute
holding the module version. This should be an attribute of the module modname. The
default is °__version__’, as it is used by many projects. If the version is not stored in a
direct attribute of the same module as used for the detection, then a tuple of strings can be
specified, starting with the Python module name in which the version attribute is stored, and
a list of subsequent attribute names leading to the version. In this case the first element of
the tuple is always a module name. If it is the same as modname, an empty string may be
specified. If the final attribute is a callable, it will be called to get the version. The result is
always converted to str before being stored as the version.

Examples

>>> Module.register.clear()
>>> Module.detect_all()
>>> Module.print_all()
>>> np = Module ("'numpy')
>>> pil = Module('pil', modname='PIL', attr='VERSION'")
>>> Module.print_all()
numpy (** Not Found =*x)
pil (x*x Not Found x*x)
>>> SaneVersion (Module.has ('numpy')) >= SaneVersion('1.10")
True
>>> Module.print_all()
numpy (1...)
pil (x*x Not Found x*x)
>>> Module.has('foo'")
Traceback (most recent call last):
ValueError: foo is not a registered Module
>>> Module.require('foo')
Traceback (most recent call last):
ValueError: foo is not a registered Module
>>> foo = Module('foo', 'FooBar'")
>>> Module.has ('foo'")
T
>>> Module.require('foo')
Traceback (most recent call last):
ValueError: Required Module 'foo' (FooBar) not found

Now fake a detection of Module ‘foo’

6.2. Other pyFormex core modules 393

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

>>> Module.register['foo'].version = '1.2.3"'
>>> Module.has('foo'")
'1.2.3"

>>> Module.require('foo')

>>> Module.require('foo','>= 1.1.7")

>>> Module.require('foo','>= 1.3.0")

Traceback (most recent call last):

ValueError: Required version of Module 'foo' (FooBar) not found

detect (fatal=False, quiet=False)
Detect the version of the module.

Parameters

e fatal (bool, optional) - If True and the module can not be loaded, a fatal ex-
ception is raised. Default is to silently ignore the problem and return an empty version
string.

* quiet (bool, optional) - If True, the whole operation is done silently. The only
information about failure will be the returned empty version string.

Returns str — The version string of the module, empty if the module can not be loaded.

Notes

As a side effect, the detected version string is stored for later reuse. Thus subsequent tests will not try to
re-detect.

class software.External (name, command, regex)
Register for external application version detection rules.

This class holds a register of version detection rules for installed external applications. Each instance holds the
rule for one application, and it is automatically registered at instantiation. The applications used by pyFormex
are declared in this module, but users can add their own just by creating an External instance.

Parameters

* name (str) — The application name as known in pyFormex: this is often the same as the
executable name, but can be different if the executable name is complex. We try to use
simple lower case names in pyFormex.

* command (st r)— The command to run the application. Usually this includes an option to
make the application just report its version and then exit. The command should be directly
executable as-is, without invoking a new shell. If a shell is required, it should be made part
of the command (see e.g. tetgen). Do not use commands that take a long time to load and
run.

* regex (r-string) — A regular expression that extracts the version from the output of
the command. If the application does not have or report a version, any non-empty string
is accepted as a positive detection (for example the executable’s name in a bin path). The
regex string should contain one set of grouping parentheses, delimiting the part of the output
that will be stored as version. If the output of the command does not match, an empty string
is stored.

394 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Examples

>>> External.register.clear ()
>>> External.detect_all ()
>>> External.print_all()

detect (fatal=False, quiet=False)
Detect the version of the external.

Parameters

e fatal (bool, optional)-If True and the external can not be run, a fatal exception
is raised. Default is to silently ignore the problem and return an empty version string.

* quiet (bool, optional) — If True, the whole operation is done silently. The only
information about failure will be the returned empty version string.

Returns str — The version string of the external, empty if the external can not be run.

Notes

As a side effect, the detected version string is stored for later reuse. Thus subsequent tests will not try to
re-detect.

Functions defined in module software
software.Shaders ()
Return a list of the available GPU shader programs.

Shader programs are in the pyformex/glsl directory and consist at least of two files: ‘vertex_shader SHADER.c’
and ‘fragment_shader_ SHADER.c’. This function will return a list of all the SHADER filename parts currently
available. The default shader programs do not have the *_SHADER’ part and will not be contained in this list.

software.detectedSoftware (all=True)
Return a dict with all detected helper software

software.formatDict (d, indent=4)
Format a dict in nicely formatted Python source representation.

Each (key, alue) pair is formatted on a line of the form:

key = value

If all the keys are strings containing only characters that are allowed in Python variable names, the resulting text
is a legal Python script to define the items in the dict. It can be stored on a file and executed.

This format is the storage format of the Config class.

software.compareVersion (has, want)
Check whether a detected version matches the requirements.

has is the version string detected. want is the required version string, possibly preceded by one of the doubly
underscored comparison operators: __gt__, etc. If no comparison operator is specified, ‘__eq__’ is assumed.

Note that any tail behind x.y.z version is considered to be later version than x.y.z.

Returns the result of the comparison: True or False .. rubric:: Examples

6.2. Other pyFormex core modules 395

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

>>> compareVersion('2.7','2.4.3")

False

>>> compareVersion('2.7','>2.4.3")

True

>>> compareVersion('2.7','>= 2.4.3")

True

>>> compareVersion('2.7',"'>= 2.7-rc3")
False

>>> compareVersion('2.7-rcd',"'>= 2.7-rc3")
True

software.checkDict (has, want)

Check that software dict has has the versions required in want

software.checkSoftware (req, report=False)

Check that we have the matching components

Returns True or False. If report=True, also returns a string with a full report.

software.registerSoftware (req)

Register the current values of required software

software.soft2config (soft)

Convert software collection to config

software.config2soft (conf)

Convert software collection from config

software.storeSoftware (soft, fn, mode="pretty’)

Store the software collection on file.

software.readSoftware (fn, mode="python’)

Read the software collection from file.
* mode = ‘pretty’: readable, editable
* mode = ‘python’: readable, editable
* mode = ‘config’: readable, editable

* mode = ‘pickle’: binary

6.2.20 trisurface — Operations on triangulated surfaces.

A triangulated surface is a surface consisting solely of triangles. Any surface in space, no matter how complex, can be
approximated with a triangulated surface.

Classes defined in module trisurface

class trisurface.TriSurface (*args, **kargs)

A class representing a triangulated 3D surface.

A triangulated surface is a surface consisting of a collection of triangles. The TriSurface is subclassed from
Mesh with a fixed plexitude 3. The surface contains ntri triangles and nedg edges. Each triangle has 3 vertices
with 3 coordinates. The total number of vertices is ncoords. The TriSurface can be initialized from one of the
following sets of data:

¢ an (ntri,3,3) shaped array of floats

* a Formex with plexitude 3

396

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

* a Mesh with plexitude 3
* an (ncoords,3) float array of vertex coordinates and an (ntri,3) integer array of vertex numbers

* an (ncoords,3) float array of vertex coordinates, an (nedg,2) integer array of vertex numbers, an (ntri,3)
integer array of edges numbers.

Additionally, a keyword argument prop may be provided to specify property values, as in Mesh.

nedges ()
Return the number of edges of the TriSurface.

nfaces ()
Return the number of faces of the TriSurface.

vertices ()
Return the coordinates of the nodes of the TriSurface.

shape ()
Return the number of points, edges, faces of the TriSurface.

getElemEdges ()
Get the faces’ edge numbers.

setCoords (coords)
Change the coords.

setElems (elems)
Change the elems.

setEdgesAndFaces (edges, faces)
Change the edges and faces.

append (S5)
Merge another surface with self.

This just merges the data sets, and does not check whether the surfaces intersect or are connected! This is
intended mostly for use inside higher level functions.

classmethod read (fi, ftype=None)
Read a surface from file.

If no file type is specified, it is derived from the filename extension. Currently supported file types:
o .off
e .gts
* .stl (ASCII or BINARY)
¢ .neu (Gambit Neutral)
 .smesh (Tetgen)

Compressed (gzip or bzip2) files are also supported. Their names should be the normal filename with ‘.gz’
or “bz2’ appended. These files are uncompressed on the fly during the reading and the uncompressed
versions are deleted after reading.

The file type can be specified explicitely to handle file names where the extension does not directly specify
the file type.

write (fname, ftype=None, color=None)
Write the surface to file.

6.2. Other pyFormex core modules 397

pyFormex Documentation, Release 2.2

If no filetype is given, it is deduced from the filename extension. If the filename has no extension, the ‘off’
file type is used. For a file with extension ‘stl’, the ftype may be ‘stla’ or ‘stlb’ to force ascii or binary STL
format. The color is only useful for ‘stlb’ format.

avgVertexNormals ()

Compute the average normals at the vertices.

areaNormals ()

Compute the area and normal vectors of the surface triangles.
The normal vectors are normalized. The area is always positive.

The values are returned and saved in the object.

areas ()

Return the areas of all facets

volume ()

Return the enclosed volume of the surface.

This will only be correct if the surface is a closed manifold.

volumeInertia (density=1.0)

Return the inertia properties of the enclosed volume of the surface.

The surface should be a closed manifold and is supposed to be the border of a volume of constant density
1.

Returns an inertia. Inertia instance with attributes

¢ mass: the total mass (float)

e ctr: the center of mass: float (3,)

* tensor: the inertia tensor in the central axes: shape (3,3)
This will only be correct if the surface is a closed manifold.
See inertia () for the inertia of the surface.

Example:

>>> from pyformex.simple import sphere
>>> S = sphere(8)
>>> I = S.volumelnertia()
>>> print (I.mass)
4.1526...
>>> print (I.ctr)

[0. 0. 0.]
>>> print (I.tensor)

[[1.65 0. -0. 1]

[0. 1.65 -0.]

[-0. -0. 1.65]]

inertia (volume=False, density=1.0)

Return inertia related quantities of the surface.

This computes the inertia properties of the centroids of the triangles, using the triangle area as a weight.
The result is therefore different from self.coords.inertia() and usually better suited for the surface, espe-
cially if the triangle areas differ a lot.

Returns a tuple with the center of gravity, the principal axes of inertia, the principal moments of inertia
and the inertia tensor.

See also volumeInertia().

398

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

curvature (neighbours=1)
Calculate curvature parameters at the nodes.

Algorithms based on Dong and Wang 2005; Koenderink and Van Doorn 1992. This uses the nodes that are
connected to the node via a shortest path of ‘neighbours’ edges. Eight values are returned: the Gaussian
and mean curvature, the shape index, the curvedness, the principal curvatures and the principal directions.

surfaceType ()
Check whether the TriSurface is a manifold and if it’s closed.

borderEdges ()
Detect the border elements of TriSurface.

The border elements are the edges having less than 2 connected elements. Returns True where edge is on
the border.

borderEdgeNrs ()
Returns the numbers of the border edges.

borderNodeNrs ()
Detect the border nodes of TriSurface.

The border nodes are the vertices belonging to the border edges. Returns a list of vertex numbers.

isManifold()
Check whether the TriSurface is a manifold.

A surface is a manifold if a small sphere exists that cuts the surface to a surface that can continously be
deformed to an open disk.

nonManifoldEdges ()
Return the non-manifold edges.

Non-manifold edges are edges having more than two triangles connected to them.
Returns the indices of the non-manifold edges in a TriSurface.

nonManifoldEdgesFaces ()
Return the non-manifold edges and faces.

Non-manifold edges are edges that are connected to more than two faces.
Returns
* edges (list of int) — The list of non-manifold edges.
* faces (list of int) — The list of faces connected to any of the non-manifold edges.

isClosedManifold()
Check whether the TriSurface is a closed manifold.

isConvexManifold()
Check whether the TriSurface is a convex manifold.

removeNonManifold ()
Remove the non-manifold edges.

Removes the non-manifold edges by iteratively applying removeDuplicate() and
collapseEdge () until no edge has more than two connected triangles.

Returns the reduced surface.

checkBorder ()
Return the border of TriSurface.

6.2. Other pyFormex core modules 399

pyFormex Documentation, Release 2.2

Returns a list of connectivity tables. Each table holds the subsequent line segments of one continuous
contour of the border of the surface.

border (compact=True)
Return the border(s) of TriSurface.

The complete border of the surface is returned as a list of plex-2 Meshes. Each Mesh constitutes a con-
tinuous part of the border. By default, the Meshes are compacted. Setting compact=False will return all
Meshes with the full surface coordinate sets. This is usefull for filling the border and adding to the surface.

fillBorder (method="radial’, dir=None, compact=True)
Fill the border areas of a surface to make it closed.

Returns a list of surfaces, each of which fills a singly connected part of the border of the input surface.
Adding these surfaces to the original will create a closed surface. The surfaces will have property values
set above those used in the parent surface. If the surface is already closed, an empty list is returned.

There are three methods: ‘radial’, ‘planar’ and ‘border’, corresponding to the methods of the
fillBorder () function.

close (method="radial’, dir=None)
This method needs documentation!!!!

edgeCosAngles (return_mask=False)
Return the cos of the angles over all edges.

The surface should be a manifold (max. 2 elements per edge). Edges adjacent to only one element get
cosangles = 1.0. If return_mask == True, a second return value is a boolean array with the edges that
connect two faces.

As a side effect, this method also sets the area, normals, elem_edges and edges attributes.

edgeAngles ()
Return the angles over all edges (in degrees).

It is the angle (0 to 180) between 2 face normals.

edgeSignedAngles (return_mask=False)
Return the signed angles over all edges (in degrees).

It is the angle (-180 to 180) between 2 face normals.

Positive/negative angles are associated to convexity/concavity at that edge. The border edges attached to
one triangle have angle 0. NB: The sign of the angle is relevant if the surface has fixed normals. Should
this check be done?

edgelLengths ()
Returns the lengths of all edges

Returns an array with the length of all the edges in the surface. As a side effect, this stores the connectivities
of the edges to nodes and the elements to edges in the attributes edges, resp. elem_edges.

perimeters ()
Compute the perimeters of all triangles.

quality ()
Compute a quality measure for the triangle schapes.

The quality of a triangle is defined as the ratio of the square root of its surface area to its perimeter relative
to this same ratio for an equilateral triangle with the same area. The quality is then one for an equilateral
triangle and tends to zero for a very stretched triangle.

aspectRatio ()
Return the apect ratio of the triangles of the surface.

400

Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

The aspect ratio of a triangle is the ratio of the longest edge over the smallest altitude of the triangle.
Equilateral triangles have the smallest edge ratio (2 over square root 3).

smallestAltitude ()
Return the smallest altitude of the triangles of the surface.

longestEdge ()
Return the longest edge of the triangles of the surface.

shortestEdge ()
Return the shortest edge of the triangles of the surface.

stats ()
Return a text with full statistics.

distanceOfPoints (X, return_points=False)
Find the distances of points X to the TriSurface.

The distance of a point is either: - the closest perpendicular distance to the facets; - the closest perpendic-
ular distance to the edges; - the closest distance to the vertices.

X is a (nX,3) shaped array of points. If return_points = True, a second value is returned: an array with the
closest (foot)points matching X.

degenerate ()
Return a list of the degenerate faces according to area and normals.

A face is degenerate if its surface is less or equal to zero or the normal has a nan.
Returns the list of degenerate element numbers in a sorted array.

removeDegenerate (compact=False)
Remove the degenerate elements from a TriSurface.

Returns a TriSurface with all degenerate elements removed. By default, the coords set is unaltered and will
still contain all points, even ones that are no longer connected to any element. To reduce the coordinate
set, set the compact argument to True or use the compact () method afterwards.

collapseEdge (edg)
Collapse an edge in a TriSurface.

Collapsing an edge removes the triangles connected to the edge and replaces the two vertices of the edge
with a single one, placed at the center of the edge. Triangles connected to one of the edge vertices, will
become connected to the new vertex.

Parameters edg (int)— The index of the edg to be removed. This is an index in the array of
edges as returned by getElemEdges ().

Returns TriSurface — An almost equivalent surface with the specified edge removed.

offset (distance=1.0)
Offset a surface with a certain distance.

All the nodes of the surface are translated over a specified distance along their normal vector.

dualMesh (method="median’)
Return the dual mesh of a compacted triangulated surface.

Creates a new triangular mesh where all triangles with prop p represent the dual mesh region around the
original surface node p.

Parameters method ('median' | 'voronoi')-—

Returns

6.2. Other pyFormex core modules 401

https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

* Mesh — The dual Mesh. The elements have property numbers equal to the node number
around which they are based.

¢ .. Note (This needs more explanation.)

featureEdges (angle=60.0)

Return the feature edges of the surface.

Feature edges are edges that are prominent features of the geometry. They are either border edges or edges
where the normals on the two adjacent triangles differ more than a given angle. The non feature edges then
represent edges on a rather smooth surface.

Parameters angle (f1oat)— The minimum value of the angle (in degrees) between the nor-
mals on two adjacent triangles in order for the edge to be considered a feature edge.

Returns bool array — An array with shape (nedg,) where the feature angles are marked True.
Notes
As a side effect, this also sets the elem_edges and edges attributes, which can be used to get the edge data

with the same numbering as used in the returned mask. Thus, the following constructs a Mesh with the
feature edges of a surface S:

p = S.featureEdges ()
Mesh (S.coords, S.edges[p])

partitionByAngle (angle=60.0, sort="number’)

Partition the surface by splitting it at sharp edges.

The surface is partitioned in parts in which all elements can be reached without ever crossing a sharp edge
angle. More precisely, any two triangles will belong to the same part if the can be connected by a line in
the surface that does not cross an edge between two elements having their normals differ more than the
specified angle.

Parameters

* angle (float)— The minimum value of the angle (in degrees) between the normals on
two adjacent triangles in order for the edge to be considered a sharp edge.

* sort (str) — Defines how the resulting parts are sorted (by assigning them increasing
part numbers). The following sort criteria are currently defined (any other value will return
the parts unsorted):

— ’number’: sort in decreasing order of the number of triangles in the part. This is the
default.

— ’area’: sort according to decreasing surface area of the part.

Returns int array — An int array specifying for each triangle to which part it belongs. Values are
in the range 0..nparts.

Notes
In order for the operation to be non-trivial, the specified edges, possibly together with (parts of) the border,
should form one or more closed loops.

Beware that the existence of degenerate elements may cause unexpected results. If unsure, use the
removeDegenerate () method first to remove those elements.

402

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

cutWithPlanel (p, n, side=", return_intersection="False, atol=0.0)
Cut a surface with a plane.

Cut the surface with a plane defined by a point p and normal n.

Warning: This is experimental and may not work correctly.

Parameters
* p (float array_like (3,)) — A point in the cutting plane.
* n (float array_like (3,)) — The normal vector to the cutting plane.

e side ('’ | '+' | '—=")—Selects the returned parts. Default (‘") is to return a tuple
of two surfaces, with the parts at the positive, resp. negative side of the plane, as defined
by the normal vector. If a “+’ or ‘-* is specified, only the corresponding part is returned.

Returns

 Spos (TriSurface, optional) — The part of the surfacec at the positive side of thr plane (p,n).
Only returned if side is “’ or ‘+’.

* Sneg (TriSurface, optional) — The part of the surfacec at the negative side of thr plane
(p,n). Only returned if side is ** or *-*.

* The returned surfaces have their normals fixed wherever possible.
e Prop values are set containing the triangle number in the
* original surface from which the elements resulted.
cutWithPlane (*args, **kargs)
Cut a surface with a plane or a set of planes.

Cut the surface with one or more plane and returns either one side or both. This uses a conversion to a
3-plex Formex to do the cutting, and then converts the results back to TriSurfaces. The parameters are the
same as in Formex.CutWithPlane (). The returned surface(s) will have its normals fixed wherever
possible.

intersectionWithPlane (p, n, atol=0.0, sort="number’)
Return the intersection lines with plane (p,n).

Returns a plex-2 mesh with the line segments obtained by cutting all triangles of the surface with the plane
(p,n) p is a point specified by 3 coordinates. n is the normal vector to a plane, specified by 3 components.

The return value is a plex-2 Mesh where the line segments defining the intersection are sorted to form
continuous lines. The Mesh has property numbers such that all segments forming a single continuous part
have the same property value.

By default the parts are assigned property numbers in decreasing order of the number of line segments in
the part. Setting the sort argument to ‘distance’ will sort the parts according to increasing distance from
the point p.

The splitProp() method can be used to get a list of Meshes.

slice (dir=0, nplanes=20)
Intersect a surface with a sequence of planes.

A sequence of nplanes planes with normal dir is constructed at equal distances spread over the bbox of the
surface.

6.2. Other pyFormex core modules 403

pyFormex Documentation, Release 2.2

The return value is a list of intersectionWithPlane() return values, i.e. a list of Meshes, one for every
cutting plane. In each Mesh the simply connected parts are identified by property number.

smooth (method="lowpass’, iterations=1, lambda_value=0.5, neighbourhood=1, alpha=0.0,

beta=0.2)
Smooth the surface.

Returns a TriSurface which is a smoothed version of the original. Two smoothing methods are available:
‘lowpass’ and ‘laplace’.

Parameters:
* method: ‘lowpass’ or ‘laplace’
* iterations: int: number of iterations
* lambda_value: float: lambda value used in the filters
Extra parameters for ‘lowpass’ and ‘laplace’:
* neighbourhood: int: maximum number of edges followed in defining the node neighbourhood
Extra parameters for ‘laplace’:
* alpha, beta: float: parameters for the laplace method.
Returns the smoothed TriSurface

smoothLowPass (iterations=2, lambda_value=0.5, neighbours=1)
Apply a low pass smoothing to the surface.

smoothLaplaceHC (iterations=2, lambda_value=0.5, alpha=0.0, beta=0.2)
Apply Laplace smoothing with shrinkage compensation to the surface.

refine (max_edges=None, min_cost=None, method="gts’)
Refine the TriSurface.

Refining a TriSurface means increasing the number of triangles and reducing their size, while keeping the
changes to the modeled surface minimal. Construct a refined version of the surface. This uses the external
program gtsrefine. The surface should be a closed orientable non-intersecting manifold. Use the check ()
method to find out.

Parameters:
* max_edges: int: stop the refining process if the number of edges exceeds this value
» min_cost: float: stop the refining process if the cost of refining an edge is smaller
* Jog: boolean: log the evolution of the cost
* verbose: boolean: print statistics about the surface

similarity (S)
Compute the similarity with another TriSurface.

Compute a quantitative measure of the similarity of the volumes enclosed by two TriSurfaces. Both the
calling and the passed TriSurface should be closed manifolds (see i sClosedManifold()).

Returns a tuple (jaccard, dice, overlap). If A and B are two closed manifolds, VA and VB are their
respective volumes, VC is the volume of the intersection of A and B, and VD is the volume of the union
of A and B, then the following similarity measures are defined:

* jaccard coefficient: VC/ VD
e dice: 2 * VC/ (VA + VB)
* overlap: VC/ min(VA,VB)

404 Chapter 6. pyFormex reference manual

pyFormex Documentation, Release 2.2

Both jaccard and dice range from 0 when the surfaces are completely disjoint to 1 when the surfaces are
identical. The overlap coefficient becomes 1 when one of the surfaces is completely inside the other.

This method uses gts library to compute the intersection or union. If that fails, nan values are returned.

fixNormals (outwards=True)
Fix the orientation of the normals.

Some surface operations may result in improperly oriented normals, switching directions from one triangle
to the adjacent one. This method tries to reverse improperly oriented normals so that a singly oriented
surface is achieved.

If the surface is a (possibly non-orientable) manifold, the result will be an orientable manifold.

If the surface is a closed manifold, the normals will be oriented to the outside. This is done by computing
the volume inside the surface and reversing the normals if that turns out to be negative.

Parameters:

e outwards: boolean: if True (default), a test is done whether the surface is a closed manifold, and if
so, the normals are oriented outwards. Setting this value to False will skip this test and the (possible)
reversal of the normals.

check (matched=True, verbose=Fualse)
Check the surface using gtscheck.

Uses the external program gtscheck to check whether the surface is an orientable, non self-intersecting
manifold. This is a necessary condition for using the gts methods: split, coarsen, refine, boolean. Addi-
tionally, the surface should be closed: this can be checked with isClosedManifold().

Parameters

* matched (bool) — If True, self intersecting triangles are returned as element indices of
self. This is the default. If False, the self intersecting triangles are returned as a separate
TriSurface.

* verbose (boo1l) - If True, prints the statistics reported by the gtscheck command.
Returns
* status (int) — Return code from the checking program. One of the following:
— 0: the surface is an orientable, non self-intersecting manifold.
— 1: the created GTS file is invalid: this should normally not occur.

— 2: the surface is not an orientable manifold. This may be due to misoriented normals.
The fixNormals () and reverse () methods may be used to help fixing the prob-
lem in such case.

— 3: the surface is an orientable manifold but is self-intersecting. The self intersecting
triangles are returned as the second return value.

* intersect (None | list of ints | TriSurface) — None in case of a status 0, 1 or 2. For
status value 3, returns the self intersecting triangles as a list of element numbers (if
matched is True) or as a TriSurface (if mat ched is False).

split (base, verbose=False)
Split the surface using gtssplit.

Splits the surface into connected and manifold components. This uses the external program gtssplit. The
surface should be a closed orientable non-intersecting manifold. Use the check () method to find out.

This method creates a series of files with given base name, each file contains a single connected manifold.

6.2. Other pyFormex core modules 405

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

coarsen (min_edges=None, max_cost=None, mid_vertex=False, length_cost=False, max_fold=1.0,
volume_weight=0.5, boundary_weight=0.5, shape_weight=0.0, progressive=False,

log=False, verbose=False)
Coarsen a surface using gtscoarsen.

Construct a coarsened version of the surface. This uses the external program gtscoarsen. The surface
should be a closed orientable non-intersecting manifold. Use the check () method to find out.

Parameters

* min_edges (int)— Stop the coarsening process if the number of edges was to fall below
it.

* max_cost (float) — Stop the coarsening process if the cost of collapsing an edge is
larger than the specified value.

* mid_vertex (bool) — Use midvertex as replacement vertex instead of the default,
which is a volume optimized point.

* length_cost (bool)— Use length"2 as cost function instead of the default optimized
point cost.

* max_fold (float)— Maximum fold angle in degrees.

* volume_weight (float)— Weight used for volume optimization.

* boundary_weight (float)— Weight used for boundary optimization.
* shape_weight (f1oat)— Weight used for shape optimization.

* progressive (bool) —If True, write progressive surface file.

* log (bool)—1If Trye, log the evolution of the cost.

* verbose (bool) - If True, print statistics about the surface.

gts_refine (max_edges=None, min_cost=None, log=False, verbose=False)
Refine the TriSurface.

Refining a TriSurface means increasing the number of triangles and reducing their size, while keeping the
changes to the modeled surface minimal. This uses the external program gtsrefine. The surface should be
a closed orientable non-intersecting manifold. Use the check () method to find out.

Parameters
* max_edges (int)— Stop the refining process if the number of edges exceeds this value.
* min_cost (f1oat)— Stop the refining process if the cost of refining an edge is smaller.
* log (bool) - If True, log the evolution of the cost.
* verbose (bool) - If True, print statistics about the surface.

gts_smooth (iterations=1, lambda_value=0.5, verbose=False)
Smooth the surface using gtssmooth.

Smooth a surface by applying iterations of a Laplacian filter. This uses the external program gtssmooth.
The surface should be a closed orientable non-intersecting manifold. Use the check () method to find
out.

Parameters
* lambda_value (float)— Laplacian filter parameter.
e iterations (int)— Number of iterations.

* verbose (bool) - If True, print statistics about the surface.

406 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

See also:
smoothLowPass (), smoothLaplaceHC ()

gts_set (surf, op, prop=[1, 1, 2, 2], check=False, verbose=False)
Perform a boolean operation with another surface.

Boolean operations between surfaces are a basic operation in free surface modeling. Both surfaces should
be closed orientable non-intersecting manifolds. Use the check () method to find out.

Following is a list of defined operations, where surface 1 relates to self and surface 2 to the surf argument.
For simplicity, the operations are identified by a short string.

Basic operations:

‘I’ : the part of surface 1 inside surface 2 ‘0’ : the part of surface 1 outside surface 2 “2i’ : the part of
surface 2 inside surface 1 20’ : the part od surface 2 outside surface 1

These surface are manifolds, but may be closed or not. From these basic parts, the following set operation
can be constructed. These are mathematical set operation on the volumes in side the surfaces, and result in
closed surfaces:

‘+’ : the union of surfaces 1 and 2 “*’ : the intersection of surfaces 1 and 2 ‘-* : the difference of surface
1 minus surface 2 ‘2-° : the difference of surface 2 minus surface 1 ‘A’ : the symmetric difference of the
surfaces (equal to - + ‘2-°)

Parameters
e surf (TriSurface)— Another TriSurface that is a closed manifold surface.

* op (str or list of str) — The operation(s) to perform: one of the operations
specified above, or a list of such operations. A special value ‘a’ will return the full list
of 9 surfaces in the above order.

* prop (list of int)— A list of 4 integer values that will be set as props on the four
base surfaces, to facilitate identification of the parts of the result(s). The default value will
give prop values 1 or 2 depending on the original surface the parts belonged to. Specifying
None or an empty list will return surfaces without props.

* check (bool)—If True, a check is done that the surfaces are not self-intersecting; if one
of them is, the set of self-intersecting faces is written (as a GtsSurface) on standard output

* verbose (bool) - If True, print statistics about the surface.

Returns TriSurface or list thereof — A single manifold surface, or a list of such surfaces,
corresponding to the specified oppetaion(s). The base operation may not be closed. The set
operations always are closed.

Note: This method uses the external command ‘gtsset’ and will not run if it is not installed (available
from pyformex/extras).

boolean (surf, op, check=False, verbose=False)
Perform a boolean operation with another surface.

Boolean operations between surfaces are a basic operation in free surface modeling. Both surfaces should
be closed orientable non-intersecting manifolds. Use the check () method to find out.

The boolean operations are set operations on the enclosed volumes: union(‘+’), difference(‘-°) or intersec-
tion(“*”).

Parameters

6.2. Other pyFormex core modules 407

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

e surf (TriSurface)— Another TriSurface that is a closed manifold surface.

cop('+', '"-'" or '+'")—Theboolean operation to perform: union(‘+’), difference("‘-
‘) or intersection(‘*”).

e check (bool)—If True, a check is done that the surfaces are not self-intersecting; if one
of them is, the set of self-intersecting faces is written (as a GtsSurface) on standard output

* verbose (bool) - If True, print statistics about the surface.

Returns TriSurface — A closed manifold TriSurface that is the volume union, difference or in-
tersection of self with surf.

Note: This method uses the external command ‘gtsset’ and will not run if it is not installed (available
from pyformex/extras).

intersection (surf, check=False, verbose=False)
Return the intersection curve(s) of two surfaces.

Boolean operations between surfaces are a basic operation in free surface modeling. Both surfaces should
be closed orientable non-intersecting manifolds. Use the check () method to find out.

Parameters
e surf (TriSurface)— A closed manifold surface.

e check (bool, optional) - If True, a check is made that the surfaces are not self-
intersecting; if one of them is, the set of self-intersecting faces is written (as a GtsSurface)
on standard output

* verbose (bool, optional)-If True, statistics about the surface are printed on std-
out.

Returns Mesh — A Mesh with eltype Line2 holding all the line segments of the intersection
curve(s).

inside (pts, method="gts’, tol="auto’, multi=False, tmpdir=None)
Test which of the points pts are inside the surface.

Parameters
e pts (:term_ "coords_like")—The points to check agains the surface.

* method’ (str)— Method to be used for the detection. Depending on the software you
have installed the following are possible:

— ’gts’: provided by pyformex-extra (default)
— ’vtk’: provided by python-vtk (slower)
* tol (float) - Tolerance on equality of floating point values.

* multi (bool) - If True, uses multiprocessing to speed up the operation. Only available
with method ‘gts’.

e tmpdir (path_like) — If specified, it is a directory path where the intermediate results
from the gtsinside program are stored. The default is to use temporary directories and
destroy the intermediary results.

Returns int array — The indices of the points that are inside the surface. The indices refer to the
onedimensional list of points as obtained from Coords(pts).points().

408 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

outside (pts, **kargs)
Returns the points outside the surface.

This is the complement of inside (). See there for parameters and return value.

voxelize (n, bbox=0.01, return_formex=False)
Voxelize the volume inside a closed surface.

Parameters

* n(int or (int, int, int))-—Resolution,i.e. number of voxel cells to use along
the three axes. If a single int is specified, the number of cells will be adapted according
to the surface’s sizes () (as the voxel cells are always cubes). The specified number of
voxels will be used along the largest direction.

* bbox (float or (point,point))— Defines the bounding box of the volume that
needs to be voxelized. A float specifies a relative amount to add to the surface’s bounding
box. Note that this defines the bounding box of the centers of the voxels.

e return_formex (bool)-If True, also returns a Formex with the centers of the voxels.
Returns

* voxels (int array (nz,ny,nx)) — The array has a value 1 for the voxels whose center is inside
the surface, else 0.

* centers (Formex) — A plex-1 Formex with the centers of the voxels, and property values 0
or 1 if the point is respectively outside or inside the surface. The voxel cell ordering in the
Formex is z-direction first, then y, then x.

Notes

See also example Voxelize, for saving the voxel values in a stack of binary images.

tetgen (quality=2.0, volume=None, filename=None)
Create a tetrahedral mesh inside the surface.

This uses tetMesh () to generate a quality tetrahedral mesh inside the surface. The surface should be a
closed manifold.

Parameters

* quality (float) — The quality of the output tetrahedral mesh. The value is a con-
straint on the circumradius-to-shortest-edge ratio. The default (2.0) already provides a
high quality mesh. Providing a larger value will reduce quality but increase speed. With
quality=None, no quality constraint will be imposed.

e volume (float, optional) — If provided, applies a maximum tetrahedron volume
constraint.

* filename (path_like) — Specifies where the intermediate files will be stored. The default
will use a temporary directory which will be destroyed after return. If the path of an exist-
ing directory is provided, the files will be stored in that directory with a name ‘surface.off’
for the original surface model and files ‘surface.1.*’ for the generated tetrahedral model
(in tetgen format). If the path does not exist or is an existing file, the parent directory
should exist and files are stored with the given file name as base. Existing files will be
silently overwritten.

Returns Mesh — A tetrahedral Mesh (eltype="tet4’) filling the input surface, provided the
tetMesh () function finished successfully.

. Other pyFormex core modules 409

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyFormex Documentation, Release 2.2

webgl (name, caption=None)
Create a WebGL model of a surface

e §: TriSurface
* name: basename of the output files
* caption: text to use as caption

surface2webgl (name, caption=None)
Create a WebGL model of a surface

¢ §: TriSurface
* name: basename of the output files

* caption: text to use as caption

Functions defined in module trisurface

trisurface.fillBorder (border, method="radial’, dir=None)

Create a triangulated surface inside a given closed polygonal line.
Parameters

* border (PolyLine, Mesh or Coords) — A closed polygonal line that forms the border
of the triangulated surface to be created. The polygon does not have to be planar. The line
can be provided as one of the following:

— aclosed PolyLine,

— a 2-plex Mesh, with a Connectivity table such that the elements in the specified order
form a closed polyline,

— asimple Coords holding the subsequent vertices of the polygonal border line.

* method (st r)— Specifies the algorithm to be used to fill the polygon. Currently available
are:

— ’radial’: this method adds a central point and connects all border segments with the center
to create triangles.

— ’border’: this method creates subsequent triangles by connecting the endpoints of two
consecutive border segments and thus works its way inwards until the hole is closed.
Triangles are created at the line segments that form the smallest angle.

See also Notes below.

Returns TriSurface — A TriSurface filling the hole inside the border.

Notes

The ‘radial’ method produces nice results if the border is relative smooth, nearly convex and nearly planar. It
adds an extra point though, which may be unwanted. On irregular 3D borders there is a high change that the
resulting TriSurface contains intersecting triangles.

The ‘border’ method is slower on large borders, does not introduce any new point and has a better chance of
avoiding intersecting triangles on irregular 3D borders.

The resulting surface can be checked for intersecting triangles with the check () method.

Because the ‘border’ does not create any new points, the returned surface can use the same point coordinate
array as the input object.

410

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

6.2.21 utils — A collection of miscellaneous utility functions.

The pyformex.utils module contains a wide variety of utilitary functions. Because there are so many and they are so
widely used, the utils module is imported in the environment where scripts and apps are executed, so that users can
always call the utils functions without explicitely importing the module.

Module attributes

utils.FileTypes
A collection of i 1eType records. Each FileType instance holds the definition of a file type, and is accessible
from this dict with a simple mnemonic key. These are the ones that are commonly used in pyFormex. But users
can add their own definitions too, just by creating an instance of Fi leType.

Type OrderedDict

Examples

>>> for k,v in FileTypes.items () : print (f"{k} = "{v}'")

all = 'All files (*)'

ccx = 'CalCuliX files (x.dat x.inp)'

dcm = 'DICOM images (x.dcm)'

dxf = '"AutoCAD DXF files (*.dxf)'

dxftext = 'Converted AutoCAD files (*.dxftext)'
flavia = 'flavia results (*x.flavia.msh x.flavia.res)'
gts = 'GTS files (x.gts)'

gz = 'Compressed files (x.gz *.bz2)'

html = 'Web pages (*x.html)'

icon = 'Icons (*.xpm)'

img = 'Images (x.png *.Jjpg *.jpeg *.eps *x.gif *.bmp)'
inp = 'Abaqus or CalCuliX input files (*.inp)'

neu = 'Gambit Neutral files (*.neu)'

obj = '"Wavefront OBJ files (x.obj)’

off = 'Geomview object files (x.off)'

pgf = 'pyFormex geometry files (x.pgf)'

ply = 'Stanford Polygon File Format files (x.ply)'
png = 'PNG images (*.png)’'

postproc = 'Postproc scripts (x.post.py)'

pyformex = 'pyFormex scripts (*x.py *x.pye)'

pyf = 'pyFormex projects (*x.pyvf)'

pzf = 'pyFormex zip files (*x.pzf)'

smesh = 'Tetgen surface mesh files (x.smesh)'

stl = '"STL files (x.stl)'

stlb = 'Binary STL files (*.stl)'

surface = 'Surface models (x.off *x.gts x.stl)'
tetsurf = 'Tetgen surface (*.smesh)'

tetgen = 'Tetgen files (*x.poly x.smesh x.ele *.face *x.edge x.node x.neigh)’'
video = 'Video (x.mp4)'

vtk = 'VTIK types (x.vtk *.vtp)'

vtp = 'vtkPolyData file (x.vtp)'

Classes defined in module utils

class utils.FileType (key, text, *suffixes)
A class for holding file types and the related filename patterns.

6.2. Other pyFormex core modules 411

pyFormex Documentation, Release 2.2

Parameters

* key (str)— A short and unique mnemonic string, by preference lower case, that wil be
used as lookup key for this FileType definition in the global F'i 1e Types collection.

* text (str)— A textual description of the file type.

* xsuffixes (sequence of str) — All remaining parameters are file suffixes that
should be used to filter files that are supposed to be of this type. Any number of suffixes is
allowed. If None are provided, all files will match the file type.

See also:
FileTypes the set of FileType’s knownd by pyFormex

suffixes (compr=False)
Return a list of file suffixes for the FileType.

Parameters compr (bool) — If True, the file suffixes for compressed files of this type are
automatically added.

Examples

>>> FileTypes|['pgf'].suffixes ()

['pgf']

>>> FileTypes|['pgf'].suffixes (compr=True)
['pgf', 'pgf.gz', 'pgf.bz2']

>>> FileTypes|['all'].suffixes()

[]

patterns (compr=False)
Return a list with the file patterns matching the FileType.

Parameters compr (bool) — If True, the file suffixes for compressed files of this type are
automatically added.

Examples

>>> FileTypes|['pgf'].patterns()

['x.pgf']

>>> FileTypes|['pgf'].patterns (compr=True)
["x.pgf', '"x.pgf.gz', 'x.pgf.bz2']

>>> FileTypes['all'] .patterns()

["*']

desc (compr=False)
Create a filetype description compatible with Qt Widgets.

Parameters compr (bool) — If True, the file patterns for compressed files are automatically
added.

Returns

str — A string that can be directly used in the Qt File Dialog widgets to filter the selectable
files. This string has the format:

file type text (x.extl *.ext2)

412 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Examples

>>> FileTypes|['img'] .desc ()

'Images (x.png *.Jjpg *.jpeg x.eps *.gif x.bmp)'

>>> fileDescription('inp")

'Abaqus or CalCuliX input files (*.inp)'

>>> fileDescription('doc')

'DOC files (*.doc)'

>>> fileDescription('*.inp")

'x.inp'

>>> fileDescription('pgf', compr=True)

'pyFormex geometry files (x.pgf *.pgf.gz *.pgf.bz2)'

class utils.TempDir (suffix=None, prefix="pyf_’, dir=None)
A temporary directory that can be used as a context manager.

This is a wrapper around Python’s tempfile. TemporaryDirectory, with the following differences:
¢ the default value for prefix is set to pyf_,
* it has an extra attribute ‘.path’ returning the directory name as a Path,
* the context manager returns a Path instead of a str.

class utils.ChDir (dirname=None, create=True)
A context manager to temporarily change the working directory.

The context manager changes the current working directory and guarantees to come back to the previous, even

if an exception occurs.
Parameters

* dirname (path_like | None) — The relative or absolute path name of the directory to change
into. If the directory does not exist, it will be created, unless create=False was speci-
fied. If None, a temporary working directory will be created and used, and be deleted with
all its contents on leaving the contex.

* create (bool)-If True(default), the directory (including missing parents) will be created
if it does not exist. If False, and a path was specified for dirname, the directory should
exist and be accessible.

Returns context — A context manager object that can be used in a with statement. On entry , it
changes into the specified or temporary directory, and on exit it change back to the previous
working directory.

Raises OSError or subclass — If the specified path can no be changed into or can not be created.

Examples

>>> olddir = os.getcwd()
>>> with ChDir () as newdir:
print (os.getcwd () ==newdir, newdir!=olddir)
True True
>>> os.getcwd()==o0lddir
True

class utils.File (filename, mode, compr=None, level=5, delete_temp=True)
Transparent file compression.

6.2. Other pyFormex core modules

https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

This class is a context manager providing transparent file compression and decompression. It is commonly used
in a with statement, as follows:

with File('filename.ext','w') as f:
f.write('something")
f.write('something more')

This will create an uncompressed file with the specified name, write some things to the file, and close it. The
file can be read back similarly:

with File('filename.ext','r') as f:
for line in f:
print (f)

Because File is a context manager, the file is closed automatically when leaving the with block.

By specifying a filename ending with ‘.gz’ or ‘.bz2’, the file will be compressed (on writing) or decompressed
(on reading) automatically. The code can just stay the same as above.

Parameters

* filename (path_like) — Path of the file to open. If the filename ends with ‘.gz’ or *.bz2’,
transparent (de)compression will be used, with gzip or bzip2 compression algorithms re-
spectively.

* mode (st r) — File open mode: ‘t’ for read, ‘w’ for write or ‘a’ for append mode. See also
the Python documentation for the open () builtin function. For compressed files, append
mode is not yet available.

* compr ('gz' | 'bz2')-The compression algorithm to be used: gzip or bzip2. If not
provided and the file name ends with ‘.gz’ or “.bz2’, compr is set automatically from the
extension.

* level (int (1..9))—Compression levelfor gzip/bzip2. Higher values result in smaller
files, but require longer compression times. The default of 5 gives already a fairly good
compression ratio.

* delete_temp (bool) — If True (default), the temporary files needed to do the
(de)compression are deleted when the File instance is closed.

The File class can also be used outside a with statement. In that case the user has to open and close the File
himself. The following are more or less equivalent with the above examples (the with statement is better at
handling exceptions):

fil = File('filename.ext', 'w'")
f = fil.open()
f.write('something')

f.write ('something more')
fil.close()

This will create an uncompressed file with the specified name, write some things to the file, and close it. The
file can be read back similarly:

fil = File('filename.ext','r")
f = fil.open()
for line in f:
print (f)
fil.close ()

414

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

open ()
Open the File in the requested mode.

This can be used to open a File object outside a with statement. It returns a Python file object that can be
used to read from or write to the File. It performs the following:

¢ If no compression is used, ope the file in the requested mode.

* For reading a compressed file, decompress the file to a temporary file and open the temporary file for
reading.

* For writing a compressed file, open a tem[porary file for writing.
See the documentation for the Fi 1 e class for an example of its use.

close ()
Close the File.

This can be used to close the File if it was not opened using a with statement. It performs the following:
* The underlying file object is closed.
* If the file was opened in write or append mode and compression is requested, the file is compressed.
* If a temporary file was in use and delete_temp is True, the temporary file is deleted.

See the documentation for the 71 1 e class for an example of its use.

reopen (mode="r’")
Reopen the file, possibly in another mode.

This allows e.g. to read back data from a just saved file without having to destroy the File instance.
Returns the open file object.

class utils.NameSequence (name, ext="")
A class for autogenerating sequences of names.

Sequences of names are autogenerated by combining a fixed part with a numeric part. The latter is incremented
at each creation of a new name (by the next() function).

Parameters

* name (str) — Base of the names to be generated. The name is split in three parts (prefix,
numeric, suffix), where numeric only contains digits and suffix does not contain any digits.
Thus, numeric is the last numeric part in the string. The prefix and suffix are invariable
parts, while the numeric part will be incremented starting from the value in the provided
name. Use ext if the variable part is not the last numeric part of name. If name does not
contain any numeric part, it is split as a file name in stem and suffix, and ‘-0’ is appended to
the stem. If name is empty, it will be replaced with ‘0.

* ext (str, optional)-If provided, this is an invariable string added to the suffix from
name to construct the full name template. This may contain numeric parts, allowing the
variable numeric part at any place in the full template.

Examples

>>> N = NameSequence ('ob7j"')

>>> [next (N) for i in range(3)]
['obj-0"', 'obj-1', 'obj-2"']

>>> N.peek ()

'obj-3"

(continues on next page)

6.2. Other pyFormex core modules 415

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

(continued from previous page)

>>> next (N), next (N)
('obj-3', 'obj-4")
>>> N.template

'obj-%d"
>>> N = NameSequence ('obj-005")
>>> [next (N) for i in range(3)]

['obj-005", 'obj-006"', 'obj-007"]

>>> N = NameSequence ('abc.98")

>>> [next (N) for i in range(3)]

["abc.98', 'abc.99', 'abc.100']

>>> N = NameSequence ('abc-8x.png')

>>> [next (N) for i in range(3)]

["abc-8x.png', 'abc-9x.png', 'abc-10x.png']

>>> N.template

'abc—%01dx.png'

>>> N.glob ()

'abc—*x.png'

>>> next (NameSequence ('abc', ".png'))

'abc-0.png'

>>> next (NameSequence ('abc.png'))

'abc-0.png'

>>> N = NameSequence ('/home/user/abc23', '5.png'")
>>> [next (N) for i in range(2)]
['"/home/user/abc235.png', '/home/user/abc245.png']

>>> N = NameSequence ('"')
>>> next (N), next (N)
('O" 'l')

>>> N = NameSequence ('12")
>>> next (N), next (N)
(112v, '13')

next ()
Return the next name in the sequence

peek ()
Return the next name in the sequence without incrementing.

glob ()
Return a UNIX glob pattern for the generated names.

A NameSequence is often used as a generator for file names. The glob() method returns a pattern that can
be used in a UNIX-like shell command to select all the generated file names.

class utils.DictDiff (current_dict, past_dict)

A class to compute the difference between two dictionaries
Parameters

* current_dict (dict)—
e past_dict (dict)—
* differences are reported as sets of keys (The)-—
e items added (-) -
* items removed (-) -
* keys same in both but changed values (-)-—

* keys same in both and unchanged values (-) -

416

Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyFormex Documentation, Release 2.2

added ()
Return the keys in current_dict but not in past_dict

removed ()
Return the keys in past_dict but not in current_dict

changed ()
Return the keys for which the value has changed

unchanged ()
Return the keys with same value in both dicts

equal ()
Return True if both dicts are equivalent

report ()
Create a reports of the differences

Functions defined in module utils
utils.rev_lookup (dictionary, value, default=None)
Reverse lookup in a dict
Lookup a value in a dict, and return its key (the first match).
Parameters
* dictionary (dict) - The dict in which to lookup a value
* value (anything) — The value to lookup in the dict
* default (anything)— The key to return if the value was not found

Returns key (anything) — The first key in the dict whose value matches the given value, or
default if no match was found.

utils.warningCategory (category)
Return a warning category and its alias

The input can be a category or an alias. Returns both as a tuple (alias, category). Invalid values return the default
category (‘“W’, Warning).

utils.warningAction (action)
Return a warning action and its alias

The input can be an action string or an alias. Returns both as a tuple (alias, action). Invalid values return the
default action (‘1’, ‘ignore’).

utils.filterWarning (message, module=", category="U’, action="i’, save=False)
Add a warning message to the warnings filter.

category can be a Warning subclass or a key in the _warn_category dict
If save is True, the filter is saved in the user settings for future sessions.

utils.resetWarningFilters ()
Reset the warning filters

Reset the warning filters to the Python defaults plus the ones listed in the ‘warnings/filters’ configuration vari-
able.

utils.warning (message, level=<class 'UserWarning’>, stacklevel=3)
Decorator to add a warning to a function.

6.2. Other pyFormex core modules 417

https://docs.python.org/3/library/stdtypes.html#dict

pyFormex Documentation, Release 2.2

Adding this decorator to a function will warn the user with the supplied message when the decorated function
gets executed for the first time in a session. An option is provided to switch off this warning in future sessions.

Decorating a function is done as follows:

Qutils.warning('This is the message shown to the user')
def function (args):

utils.deprecated (message, stacklevel=4)
Decorator to deprecate a function

This is like warning (), but the level is set to FutureWarning.

utils.deprecated_ by (old, new, stacklevel=4)
Decorator to deprecate a function by another one.

Adding this decorator to a function will warn the user with a message that the old function is deprecated in favor
of new, at the first execution of old.

See also: deprecated ().

utils.deprecated_future ()
Decorator to warn that a function may be deprecated in future.

See also: deprecated ().

utils.system (args, * wait=True, verbose=False, **kargs)
Execute a command through the operating system.

This is a wrapper around the process.run and process.start functions, aimed particularly at the pyFormex GUI
user:

¢ there is a common interface for both functions,
* the verbose option provides effortless extra feedback,

¢ the outcome of the last command is saved for later consultation.

Parameters

* args (string or sequence of program arguments.)— The command to be
executed. It is passed together with **kargs to process.run or process.start.

* wait (bool) —If True (default) the command is executed by process.run, waiting for the
outcome. If False, the command is executed by process.start, returning immediately and not
waiting for the result

e verbose (bool) — If True, the command and (in case of failure, timeout or error exit) a
report of its outcome, are written to stdout.

* xxkargs (keyword arguments)— Any keyword arguments accepted by process.
run () (if wait is True) or process. start () (if wait is False). See the Python docu-
mentation for subprocess.run () for full info.

Returns DoneProcess or subprocess.Popen — If wait is True, returns a DoneProcess with the
ourcome of the command. If wait is False, returns a subprocess.Popen which can be used to
communicate with the started subprocess.

See also:

process.run () run acommand and wait for its outcome

418 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/subprocess.html#subprocess.run

pyFormex Documentation, Release 2.2

process.start () start a subprocess but do not wait for its outcome

command () call system () with some other defaults

Examples

>>> P = system("pwd")

>>> P.stdout.strip('\n') == os.getcwd()

True

>>> P = system('true')

>>> P

DoneProcess (args=["'true'], returncode=0, stdout='"', stderr='")
>>> P = system('false', capture_output=False)
>>> P

DoneProcess (args=["'false'], returncode=1l)

>>> P = system('False', verbose=True)

Running command: False
DoneProcess report
args: ['False']
Command failed to run!
returncode: 127
<BLANKLINE>

>>> P = system("sleep 5", timeout=1, verbose=True)
Running command: sleep 5

DoneProcess report

args: ['sleep', '5']

returncode: -1

timedout: True

<BLANKLINE>

utils.command (cmd, verbose=True, check=True, **kargs)
Run an external command in a user friendly way.

This is equivalent with the system () function but has verbose=True option on by default.

utils.killProcesses (pids, signal=15)
Send the specified signal to the processes in list

Parameters
* pids (1ist of int)-Listof process ids to be killed.

* signal (int) — Signal to be send to the processes. The default (15) will try to terminate
the process in a friendly way. See man kill for more values.

utils.execSource (script, glob={})
Execute Python code in another thread.

Parameters
* script (str)— A string containing some executable Python/pyFormex code.

* glob(dict, optional)- A dict with globals specifying the environment in which the
source code is executed.

utils.matchMany (regexps, target)
Return multiple regular expression matches of the same target string.

6.2. Other pyFormex core modules 419

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

pyFormex Documentation, Release 2.2

utils.matchCount (regexps, target)
Return the number of matches of target to regexps.

utils.matchAny (regexps, target)
Check whether target matches any of the regular expressions.

utils.matchNone (regexps, target)
Check whether target matches none of the regular expressions.

utils.matchAll (regexps, target)
Check whether targets matches all of the regular expressions.

utils.fileDescription (ftype, compr=False)
Return a description of the specified file type(s).

Parameters ftype (str or list of str)-— The file type (or types) for which a description
is requested. The case of the string(s) is ignored: it is converted to lower case.

Returns

str of list of str — The file description(s) corresponding with the specified file type(s). The return
value(s) depend(s) on the value of the input string(s) in the the following way (see Examples
below):

e ifitisakeyinthe file_description dict, the corresponding value is returned;

« if it is a string of only alphanumerical characters: it is interpreted as a file extension and the
corresponding return value is FTYPE files (x.ftype);

* any other string is returned as as: this allows the user to compose his filters himself.

Examples

>>> fileDescription('img')

'Images (x.png *.Jjpg *.jpeg x.eps *.gif *.bmp)'
>>> fileDescription(['stl','all'"])

['"STL files (x.stl)', 'All files (*)']

>>> fileDescription('inp')

'Abaqus or CalCuliX input files (*.inp)'

>>> fileDescription('doc"')

'DOC files (*.doc)'

>>> fileDescription('Video (x.mp4 *.ogv)")
'Video (*.mp4 x.ogv)'

>>> fileDescription('pgf', compr=True)

'pyFormex geometry files (x.pgf *.pgf.gz *.pgf.bz2)'

utils.fileTypes (ftype, compr=False)
Return the list of file extension types for a given type.

Parameters
» ftype (str)—The file type (see fileDescription ().
* compr (bool, optional)—If True, the compressed file types are automatically added.

Returns list of str — A list of the normalized matching extensions for this type. Normalized extension
do not have the leading dot and are lower case only.

420 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

Examples

>>> fileTypes ('pgf")

['pgf']

>>> fileTypes ('pgf', compr=True)
['pgf', 'pgf.gz', 'pgf.bz2']

utils.fileTypesFromFilter (fdesc)
Extract the filetypes from a file type descriptor.

A file type descriptor is a string consisting of an initial part followed by a second part enclosed in parentheses.
The second part is a space separated list of glob patterns. An example file descriptor is ‘file type text (*.extl
*.ext2)’. This is the format as returned by F'i IeType.desc ().

Parameters
* fdesc (str)— A file descriptor string.

* compr (bool, optional)—If True, the compressed file types are automatically added.

Returns
* desc (str) — The file type description text.

o ext (list of str) — A list of the matching extensions for this type. Each string starts with a *.".

Examples

>>> fileTypesFromFilter (FileTypes|['img'].desc())

['png', 'Jjpg', 'Jpeg', 'eps', 'gif', 'bmp']

>>> fileTypesFromFilter (FileTypes|['pgf'].desc (compr=True))
['pgf', 'pgf.gz', 'pgf.bz2']

utils.okURL (url)
Check that an URL is displayable in the browser.

Parameters url (URL) — The URL to be checked.

Returns bool — True if url starts with a protocol that is either ‘http:’, ‘https:” or ‘file:’; else False

utils.projectName (fnn)
Derive a project name from a file name.

The project name is the basename of the file without the extension. It is equivalent with Path(fn).stem

Examples

>>> projectName ('aa/bb/cc.dd")
lccl

>>> projectName ('cc.dd")

ICCI

>>> projectName ('cc')

Tt

utils.findIcon (name)
Return the file name for an icon with given name.

Parameters name (st r)— Name of the icon: this is the stem fof the filename.

6.2. Other pyFormex core modules 421

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pyFormex Documentation, Release 2.2

Returns str — The full path name of an icon file with the specified name, found in the pyFormex
icon folder, or the question mark icon file, if no match was found.

Examples

>>> print (findIcon('view-xr—-yu') .relative_to(pf.cfg['pyformexdir']))
icons/view—-xr—-yu.xpm

>>> print (findIcon('right') .relative_to(pf.cfg['pyformexdir']))
icons/64x64/right.png

>>> print (findIcon('xyz') .relative_to(pf.cfg['pyformexdir']))
icons/question.xpm

>>> print (findIcon('recording') .relative_to(pf.cfg['pyformexdir']))
icons/recording.gif

utils.listIconNames (dirs=None, types=None)
Return the list of available icons by their name.

Parameters

* dirs (1ist of paths, optional) — If specified, only return icons names from
these directories.

* types (list of strings, optional) — List of file suffixes, each starting with a
dot. If specified, Only names of icons having one of these suffixes are returned.

Returns list of str — A sorted list of the icon names available in the pyFormex icons folder.

Examples

>>> listIconNames () [:4]
["'clock', 'dist-angle', 'down', 'down']

>>> listIconNames ([pf.cfg['icondir'] / '64x64"'])[:4]
["down', 'ff', 'info', 'lamp']
>>> listIconNames (types=[".xpm']) [:4]

['clock', 'dist-angle', 'down', 'empty']

utils.sourceFiles (relative=False, symlinks=True, extended=False)
Return the list of pyFormex .py source files.

Parameters
* relative (bool)— If True, returned filenames are relative to the current directory.

* symlinks (bool) — If False, files that are symbolic links are retained in the list. The
default is to remove them.

* extended (bool) — If True, also return the .py files in all the paths in the configured
appdirs and scriptdirs.

Returns list of str — A list of filenames of .py files in the pyFormex source tree, and, if extended
is True, .py files in the configured app and script dirs as well.

utils.grepSource (pattern, options=", relative=True)
Finds pattern in the pyFormex source files.

Uses the grep program to find all occurrences of some specified pattern text in the pyFormex source .py files
(including the examples). Extra options can be passed to the grep command. See man grep for more info.

Returns the output of the grep command.

422 Chapter 6. pyFormex reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyFormex Documentation, Release 2.2

utils.modulelist (package="all’)
Return a list of all pyFormex modules in a subpackage.

This is like sourceFiles (), butreturns the files in a Python module syntax.

utils. findModuleSource (module)
Find the path of the source file of a module

module is either an imported module (pkg.mod) or a string with the module name (‘pkg.mod’), imported or
not. Returns the source file from which the module was/would be loaded when imported. Raises an error if the
module can not be imported or does not have a source file.

utils.diskSpace (path, units=None, ndigits=2)
Returns the amount of diskspace of a file system.

Parameters
* path (path_like) — A path name inside the file system to be probed.

* units (str) — If provided, results are reported in this units. See humanSize () for
possible values. The default is to return the number of bytes.

* ndigits (int)—If provided, and also units is provided, specifies the number of deci-
mal digits to report. See humanSize () for details.

Returns
* total (int | float) — The total disk space of the file system containing path.
* used (int | float) — The used disk space on the file system containing path.

» available (int | float) — The available disk space on the file system containing path.

Notes
The sum used + available does not necessarily equal total, because a file system may (and usually
does) have reserved blocks.

utils.humanSize (size, units, ndigits=-1)
Convert a number to a human size.

Large numbers are often represented in a more human readable form using k, M, G prefixes. This function
returns the input size as a number with the specified prefix.

Parameters
e size (int or float)— A number to be converted to human readable form.

* units (str) — A string specifying the target units. The first character should be one of
kK KM,G,T,PE,Z)Y. ‘’k’ and ‘K’ are equivalent. A second character ‘i’ can be added to use
binary (K=1024) prefixes instead of decimal (k=1000).

* ndigits (int, optional) - If provided and >=0, the result will be rounded to this
number of decimal digits.

Returns float — The input value in the specified units and possibly rounded to ndigits.

Examples

6.2. Other pyFormex core modules 423

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pyFormex Documentation, Release 2.2

>>> humanSize (1234567890, 'k")
1234567.89

>>> humanSize (1234567890,
1235.0

>>> humanSize (1234567890,
1.235

>>> humanSize (1234567890, 'Gi'", 3)
1.15

M, 0)

G',3)

utils.TempFile (*args, **kargs)
Return a temporary file that can be used as a context manager.

This is a wrapper around Python’s tempfile. NamedTemporaryFile, with the difference that the returned object
has an extra attribute ‘.path’, returning the file name as a Path.

utils.zipList (filename)
List the files in a zip archive

Returns a list of file names

utils.zipExtract (filename, members=None)
Extract the specified member(s) from the zip file.

The default extracts all.

utils.setSaneLocale (localestring="")
Set a sane local configuration for LC_NUMERIC.

localestring is the locale string to be set, e.g. ‘en_US.UTF-8 or ‘C’ for no locale.

Sets the LC_ALL locale to the specified string if that is not empty, and (always) sets LC_NUMERIC and
LC_COLLATE to ‘C’.

Changing the LC_NUMERIC setting is a very bad idea! It makes floating point values to be read or written with
a comma instead of a the decimal point. Of course this makes input and output files completely incompatible.
You will often not be able to process these files any further and create a lot of troubles for yourself and other
people if you use an LC_NUMERIC setting different from the standard.

Because we do not want to help you shoot yourself in the foot, this function always sets LC_NUMERIC back to
a sane ‘C’ value and we call this function when pyFormex is starting up.

utils.to_str(s)
Silently convert bytes to str.

The input is either str or bytes. The output is always str.

utils.strNorm(s)
Normalize a string.

Text normalization removes all ‘&’ characters and converts it to lower case.

>>> strNorm("&Menultem")
'menuitem’'

utils.slugify (fext, delim="-")
Convert a string into a URL-ready readable ascii text.

Example: >>> slugify(“http://example.com/blog/{[}Some] _ Article’s Title-") ‘http-example-com-blog-some-
article-s-title” >>> slugify(“&Menultem”) ‘menuitem’

utils.convertText (text, format="")
Convert a text to a format recognized by Qt.

424 Chapter 6. pyFormex reference manual

http://example.com/blog/{[}Some

pyFormex Documentation, Release 2.2

Input text format is plain, html or reStructuredText. Output text format is plain or html, with reStructuredText
being converted to html.

Parameters

* text (str) — A multiline string in one of the supported formats: plain text, html or re-
Structured Text.

* format (str, optional)- The format of the text: one of ‘plain’, ‘html’ ot ‘rest’. The
default ©’ will autorecognize the supported formats.

Returns text (str) — The converted text, being either plain or html.

Notes

For the conversion of reStructuredText to work, the Python docutils have to be installed on the system.

Examples

>>> convertText ('''..
Header
"""y .startswith ('<?xml")
True

utils.forceReST (text, underline=False)
Convert a text string to have it recognized as reStructuredText.

Returns the text with two lines prepended: a line with ‘..” and a blank line. The text display functions will then
recognize the string as being reStructuredText. Since the ..” starts a comment in reStructuredText, it will not be
displayed.

Furthermore, if underline is set True, the first line of the text will be underlined to make it appear as a header.

utils.underlineHeader (s, char="-")
Underline the first line of a text.

Adds a new line of text below the first line of s. The new line has the same length as the first, but all characters
are equal to the specified char.

>>> print (underlineHeader ("Hello World"))
Hello World

utils.framedText (fext, padding=[0, 2, 0, 2], border=[1, 2, 1, 2], margin=[0, 0, 0, 0], border-

char="####, cornerchar=None, width=None, adjust="l")
Create a text with a frame around it.

* adjust: ‘I’, ‘c’ or ‘r’: makes the text lines be adjusted to the left, center or right.

>>> print (framedText ("Hello World, \nThis is me calling",adjust="c"'))
[EE T LT EEEEEEE]
#4 Hello