Integration of Java Federations in HLA
Compliant Simulations Governed by CERTI

Andrej Pancik

Faculty of Informatics, Masaryk University,
Botanicka 68a, 602 00 Brno, Czech Republic

apancik@mail .muni.cz

Abstract. High Level Architecture constitutes a modern approach to
distributed simulation of complex systems. In this paper, we discuss ex-
tending CERTI, an open-source Run-Time Infrastructure, with binding
to previously unsupported Java language. In addition, we investigate
ways of simplifying the process of adding support for new languages by
using automated code generation. We test the extension by modificating
the OpenRADAR to use the Flight Gear simulator data while utilizing
the Virtual Air middleware.

Keywords: M&S, Modeling & Simulation, Distributed simulation, HLA,
High Level Architecture, RTI, Run-Time Infrastructure, CERTI, Java.

1 Introduction

Computer simulation has become a natural part of the system design process. It
is also commonly used to verificate and validate theories, to study the behavior
of complex systems and to analyze possible outcomes of strategies. [21] defines
simulation as “the process of designing a model of a real or imagined system
and conducting experiments with that model.”

This generally entails the representation of key characteristics and behaviors
with their subsequent analysis and evaluation. Increasing the interest in sim-
ulation brings up questions related to interoperability and portability. Several
standards are used to maintain these features in simulation applications.

In this paper we focus on a specific part of computer simulation called dis-
tributed simulation and practical aspects of adopting it in production environ-
ment. We address the issue of extending the existing software platform CERTI,
implementing High Level Architecture standard, with binding to previously un-
supported Java language. In addition, we explore ways of simplifying the process
of adding new language support by using automated code generation.

Following section describes foundations of the modern simulation techniques,
it also covers brief introduction to High Level Architecture and contains infor-
mation about CERTI architecture. Section 3 in turn examines the reasoning
behind the Java binding and its architecture design. Results of the testing are
presented in section 4 and final thoughts and remarks are located in section 5.

2 Foundations

2.1 Distributed Simulation and its Technologies

Demands of the modern science and business are shifting from simulation of
individual and isolated systems towards simulation of highly complex and/or
parallel systems often not running in real-time. This shift is reflected also by
architectures of simulation frameworks which focus on loosely coupled systems
executing units of simulation.

One of the reasons for such trend is that “every time we wish to build a
simulation to represent a complex activity, it makes sense to first build smaller
simulations to represent individual entities and then to make these smaller sim-
ulations interact with each other to create the desired larger simulation while
spreading the computational load. It also makes sense that if we build simulations
at a later date, then these simulations can interact with other existing simula-
tions as required.” [15] Assuring this kind of compatibility between simulations
is another important aspect. Standards related to interoperation' between them
emerged.

To sum up; “distributed simulation is concerned with the execution of simu-
lations on loosely coupled systems where interactions take much more time [...]
and occur less often.” [12] They are usually used to simulate system of systems
which is highly elaborated and the disadvantages of this complexity are com-
pensated with issuing standards allowing better interoperation and standardized
architecture.

2.2 High Level Architecture

Our work is focused on High Level Architecture (HLA) — one of the architectures
commonly used nowadays. “The HLA is a software architecture for creating
computer models or simulations out of component models or simulations. The
HLA has been adopted by the United States Department of Defense (DoD) for
use by all its modeling and simulation activities. The HLA is also increasingly
finding civilian application.” [13]

In other words, it is a general purpose architecture for distributed computer
simulation systems. In addition, it provides a flexible framework for creating
simulation and interfaces to live systems. It is also used to facilitate the in-
teroperability of different models and units of simulations. Likewise, HLA has
important role in reusability of the code implementing it.

There are several versions of HLA standard. To name the most important
ones: older HLA version 1.3 [19] and IEEE 1516 [1] with recently approved
revision 1516-2010 nicknamed “HLA Evolved”.

1 M&S Interoperability as defined by US Department of Defense — “The ability of a
model or simulation to provide services to and accept services from other models
and simulations, and to use the services so exchanged to enable them to operate
effectively together.” [22]

2.3 Components of HLA
There are three main components that comprise HLA:

— Framework and Rules [1]
— Object Model Template (OMT) Specification [3]
— Federate Interface Specification [2]

The Framework and Rules is the collection of rules that must be obeyed by
a HLA compliant simulation. Rules must be unchanged across all the simulation
units as they address the abstract behavior and define the overall architecture.
They include manners of the interaction, the design principles and responsibili-
ties of components.

The Object Model Template (OMT) Specification describes the structure of
the objects transferred between the units of simulation, all interactions managed
by the unit and visible outside the unit. [16]

The Federate Interface Specification addresses the interface by which the
federate is connected to Run-Time Infrastructure (RTI). RTT is the data dis-
tribution mechanism in HLA simulation described in greater detail in section
2.5.

2.4 Terminology

To properly define the structure of HLA powered simulation it is important to
mention the terminology commonly used in connection with HLA. This nomen-
clature is also used throughout this paper.

In HLA a federate is a single simulation — a basic unit, a component, of the
result system.“ A federate may take the form of an aircraft wing or missile or it
may take the form of a complete squadron. The level of aggregation of federates
is determined by the developer to meet the required need. A federate is also the
unit of software reuse.” [15]

There is no limitation on a purpose of the federates. They may be simulation
models, data collectors, simulators, autonomous agents or just passive viewers.
(23]

If we connect multiple federates via one RTI and use a common OMT the re-
sulting compound is called the federation. A session in which a group of federates
participate is then called federation execution.

During such execution objects and interactions are transferred between feder-
ates. Every object represents a collection of data fields called attributes which are
used for communication. Analogically every interaction representing the events
sent between simulation has data fields called parameters.

2.5 Run-Time Infrastructure

HLA itself is a high level standard. It is focused on describing the system from
the point of an architect which is different than that of a software engineer. It
does not describe the actual implementation details but more the abstract model

of the simulation. There is no network protocol specification, no message format
and no encoding details.

Software part of HLA is known as the Run-Time Infrastructure. It is a mid-
dleware that supports the HLA simulation with necessary services and it provides
essential building ground for the software developers. Currently there are several
RTTIs available both on commercial and non-commercial basis.

Most of the modern RTIs conform to IEEE 1516 [1] and/or HLA 1.3 [19]
interface specifications. However; it is always up to the developer to specify im-
plementation details. This loose definition is the reason why the interoperability
between different RTIs from different vendors is not guaranteed.

2.6 Dynamic Link Compatible API

The lack of common ground in the RTI implementations caused any potential
migration of an application to another RTI to be difficult. APIs were not fully
specified and switching RTI vendors also meant recompiling and relinking the
code. To address the problem SISO has developed in year 2004 a complementary
HLA APIT specification called Dynamic Link Compatible (DLC) API (1.3 version
is available at [19] whereas IEEE 1516 at [18]).

DLC defines several constraints on both RTI and the federate in order to
guarantee the possibility of switching RTI without recompiling the whole appli-
cation. Today, both major interface specifications exist in DLC flavor and thanks
to them the developers can build application independent on specific RTT.

2.7 CERTI

Our paper targets CERTI which is an open-source RTI distributed under GNU
General Public License 2 with libraries licensed with GNU Lesser General Public
License to allow use in proprietary applications [14]. Development started at
ONERA Laboratories in 1996 and the first version was available by the end of
year 1997. It is under active development since and it has attracted an active
community with the transformation to open-source development model in year
2002 [4].

CERTTI is partly compliant with both HLA 1.3 and HLA 1516 and currently
supports five language bindings specifically C++, Matlab, Fortran 90, Python
and Java. [4] The support of the last one is the main contribution of this pa-
per. Supported platforms contains various flavors of Linux, Microsoft Windows,
Solaris, FreeBSD and IRIX.

CERTI is designed in a very modular way. It follows the client-server ar-
chitecture as seen on figure 1. As a result, simulation using CERTTI is scalable
and can be easily distributed. All the main components communicate by sending
messages through sockets on TCP network.

2.8 CERTI Components

LibRTI is a library linked with each federate using DLC interface (for description
of DLC see section 2.6). Purpose of LibRTT is to transform HLA service calls into

RTI Gateway
TCP Socket ! 1
RTI RTI RTI
Ambassador Ambassador Ambassador
TCP Socket
LibRTI LibRTI LibRTI
Language
sp.ecmc Ilb-rary Y eseres | | |
linked with
user code Federate 1 Federate 2 Federate3

Fig. 1. Architecture of CERTI

messages sent to RTT Ambassador (RTTA) and receive responses in form of call-
backs. Obviously the LibRTT needs to contain all the necessary implementation
of data structures and logic for sending and parsing messages.

Each federate connects to an RTTA. It is a process which exists in one in-
stance for each federate. Its role is to satisfy some requests immediately, while
forwarding some requests to RTI Gateway (RTIG) [11].

Last main component of CERTT architecture is RTIG. RTIG is responsible
for administering the simulation and routing messages between federates. There
is only one instance of RTIG in simulation and it is also the central point. This
simplifies the implementation of some HLA services such as the creation and
destruction of federation execution or maintaining distribution of object classes.
Single RTIG may handle several federations but the federation itself must be
linked to single RTT.

3 Contribution

In this section we address the necessity of extending CERTI with new language
bindings and analyze the process of their creation. Moreover, we propose an
architecture of such binding on concrete implementation of Java LibRTT.

To utilize the CERTI framework in the federate one needs to use LibRTI.
Implementing it in non-supported language is a non-trivial task. Considering
large amount of HLA services or messages sent between LibRTI and RTTA one
must take a fair amount of effort.

However, it is very important to support multiple languages as it gives free-
dom to developers of federates. Every language has advantages and disadvan-
tages and the final choice must consider them with the purpose of the federate

in the scope. What is more, the code on which the federate is based is very of-
ten already existent. Developer has to use existing libraries, portions of code or
sometimes just architectures and concept that are not present in all languages.
All in all, there is a strong motivation to implement LibRTI in multiple
languages. CERTT is programmed mostly in C+4 and it has existing bindings
to other languages. We decided to explore the possible ways of simplifying the
process of adding new language support and to add a new binding to Java.

3.1 Analysis of the Problem

An important part of the new language support development is an analysis of
possible routes. There were two main paradigms that had to be analyzed in order
to fully evaluate their outcomes.

One obvious option is to implement a simple wrapper around existing C++
version of LibRTI. This can be done with some automation using specialized
tools i.e. SWIG [9]. This approach has several advantages. There is variety of
supported target languages out of the box after some initial work on specifi-
cation. On the other hand, wrapping has reported some performance issues in
several languages. Other than that, generated code does not comply without
some additional work to any specific DLC.

Another way to approach the support of a new language is to recreate a
part of the CERTT from the scratch. There are obviously no setbacks related to
performance as it runs as fast as possible when properly programmed. In addi-
tion, the resulting code is clean and it respects the coding style associated with
the language. However, other problems arise from decentralization of the code.
There is a unique set of bugs for each new implementation, difficult distribution
of changes in network protocols, etc.

During the development process the pros and cons of each of the paradigm
were carefully reviewed and we decided to follow the latter one. The challenge
was to compensate drawbacks of this approach. We explored the possible ways
to cope with this issue and we describe our solution, the message generator, in
section 3.4.

3.2 Java SISO DLC 1.3

Another very important task was compliance with standard SISO DLC version
1.3 [19]. It consists of interfaces describing the data structures and RTT ambas-
sador specification. As a result Java application using DLC does not have to
be recompiled when switching RTI. During the implementation this behavior
was highly valued and breaking it was not an option since it was the main rea-
son of choosing the use of DLC. Therefore, our effort was to keep the binary
compatibility with other RTIs.

3.3 Architecture of Java LibRTI

Java LibRTT was designed in a modular way to support maintainability and allow
generated code to be easily deployed. Overall architecture is shown in figure 2.

User
created
code

Federate Federate
Code Ambassador

DLC Interface

Message 1 Data struct. 1

Generic

Message

Message 2 Data struct. 2

il

Tl

Ambasador Data struct. 3

—
—/
o

Message 3

Message
Factory

Message N Data struct. N

faded

T

Message
Buffer

Fig. 2. LibRTTI architecture

Federate code communicates with RTI Ambassador which exports available
functions via HLA DLC 1.3 interface. RTT Ambassador processes the requests
and communicates with other parts of CERTI architecture. The process of dis-
tribution of these requests and can be observed on figure 3. To put it in the
nutshell parameters on DLC methods are converted into messages and then se-
rialized on buffer into the byte stream. After that the stream is sent to RTTA
process through the TCP socket. At that point when the response to the service
call is received, it is parsed and distributed back to the federate code.

Over time, RTT Ambassador receives callbacks from RTTA process and for-
wards them to federate ambassador. Federate ambassador is a part of federate
code and it is mainly responsible for processing callbacks with data.

For more detailed description and implementation aspects of our Java LibRTT
see [17].

3.4 Messages Generator

The number of messages transferred between the LibRTI and RTIA process is
as high as 144. However, the messages are very similar to each other and they
share the common base. They can be described by much simpler rules and a
very little amount of data such as the name and the type of a field transferred.

That is the main idea behind the generator: one writes the message specifica-
tion and let the script do the work and generate the actual code. This approach

RTI
Ambassador

Byte stream

RTIA ProcessJ RTIG Process

Mesage
buffer

Byte stream

Federate code

HLA Service Call

Fig. 3. HLA Service call distribution and transformation diagram

has one major advantage. To support a new language it is sufficient to just
write a simple generator and use the common message specification. Moreover,
the maintenance of the code is centralized and there is a proper distribution of
changes in message specifications so one does not have to change each language
separately.

We use the generator to generate the code of all messages in our LibRTI.
Overall architecture of the generator is inspired by the Google Protocol Buffers
which are “Google’s language-neutral, platform-neutral, extensible mechanism
for serializing structured data.” [6] However, our generator is lightweight and
suits our requirements well.

The base and C++ message file generator were written by Eric Noulard in
Python. They use the Python PLY module [8] to generate abstract syntax tree
(AST)? from the specification file. AST is then transformed into valid source
code.

4 Testing

To test the functionality of our Java LibRTI we decided to modify the Open-
RADAR [7], an open-source application using standard ATC symbolics, to use
the Flight Gear simulator data while utilizing the Virtual Air [10] middleware.
Simply put the OpenRADAR is virtual radar application used to visualize the
situation on Flight Gear Multiplayer Server (FGMS) [5].

Default behavior of OpenRADAR was to connect directly to FGMS. For
our purposes we replaced the FGMS data fetcher with our code that retrieved
the data from CERTI governed Virtual Air backbone and pushed them to the
visualization pipeline. The resulting demo simulation is captured in figure 4.

2 »The structure of an AST is basically a simplification of the underlying grammar
of the programming language, e.g., by generalization or by suppressing chain rules.”
(20]

| 4] OpenRadar (=[@] =]

Radar Plan View Display

j GENERAL TOOLBOX
RPVD FPREF

Fig. 4. Flight Gear simulator connected to modified OpenRADAR. Multiple black
dots next to the white arrow in the left part of image represent the history of plane
movements on virtual radar screen with KSFO airport overlay

5 Conclusions and Future Work

In this paper, we present a new approach to extending CERTT architecture with
previously unsupported language bindings. The method used supports fast and
manageable bug fixing and patch distribution across the whole architecture.
Using python based automated code generator makes it possible to introduce
new languages more efficiently than before.

The practical outcome of this paper is the publicly available Java LibRTT. Its
functionality was demonstrated by the modifications to the virtual radar screen
software that made interoperation with flight simulator possible.

While this paper is mainly aimed at High Level Architecture we believe that
the outcomes may be used across the modern architectures that are used in
distributed simulation nowadays.

We see many possibilities for future work. For example, implementing LibRTT
in another language (i. e. .NET platform) would give developers the freedom to
choose appropriate language for their applications.

References

1. IEEE Std 1516-2000: “IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Framework and Rules”. 2000.

2. IEEFE Std 1516.1-2000: “IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Federate Interface Specification”. 2000.

3. IEEE Std 1516.2-2000: “IEEE Standard for Modeling and Simulation (ME&S) High
Level Architecture (HLA) - Object Model Template (OMT)”. 2000.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

CERTI Homepage. 2010. Available online at
https://savannah.nongnu.org/projects/certi/.

FlightGear. 2010. Available online at http://www.flightgear.org/.
Google Protocol Buffers. 2010. Available online at
http://code.google.com/apis/protocolbuffers/.

OpenRADAR. 2010. Available online at
http://mapserver.flightgear.org/git/?p=openradar;a=summary.

. PLY (Python Lexz-Yacc). 2010. Available online at http://www.dabeaz.com/ply.
. SWIG. 2010. Available online at http://www.swig.org/.

10.
11.

Virtual Air. 2010. Available online at http://virtualair.sourceforge.net/.

Benot Brhole and Pierre Siron. CERTI: Fvolutions of the ONERA RTI Prototype.
2002. Available online at

http://breholee.org/files/02F-SITW-018.pdf.

Richard M. Fujimoto. Parallel and distributed simulation systems. Simulation
Interoperability Standards Organization, 2001. Proceedings of the 2001 Winter
Simulation Conference.

R Dahmann I Kuhl, F Weatherly. Creating Computer Simulation Systems; An
Introduction to the High Level Architecture. Prentice Hall, 1999.

Eric Noulard, Jean-Yves Rousselot, and Pierre Siron. CERTI, an Open Source
RTI, why and how. 2009. Available online at
http://download.savannah.nongnu.org/releases/certi/papers/09S-SIW-015-
final.pdf.

Department of Defence Canberra. Distributed Simulation Guide. Australian De-
fence Simulation Office, 2004.

Department of Defense Defense Modeling and Simulation Office. RTI 1.3 — Next
Generation Programmers Guide Version 3.2. 2000.

Andrej Pancik. Integration of Java and C++ Federations in M&S HLA Simula-
tions. 2010. Bachelor’s thesis at Masaryk University.

Simulation Interoperability Standards Organization Dynamic Link Compatible
HLA API Product Development Group (PDG). Dynamic Link Compatible
HLA API Standard for the HLA Interface Specification (IEEE 1516.1 Ver-
sion). Simulation Interoperability Standards Organization, 2004. Available online
at http://www.sisostds.org/index.php?tg=fileman&idx=get&id=5&gr=Y &path=
SISO+ Products%2FSISO+Standards&file=SIS-STD-004.1-2004.zip.

Simulation Interoperability Standards Organization Dynamic Link Compati-
ble HLA API Product Development Group (PDG). Dynamic Link Com-
patible HLA API Standard for the HLA Interface Specification Version 1.3.
Simulation Interoperability Standards Organization, 2004. Available online
at http://www.sisostds.org/index.php?tg=fileman&idx=get&id=5&gr=Y &path=
SISO+Products%2FSISO+Standards&file=SISO-STD-004-2004-Final.pdf.
Jean-Francois Girard Rainer Koschke. An Intermediate Representation for Reverse
Engineering Analyses, Proc. WCRE, pp. 241-250, IEEE Computer Society. 1998.
Roger D. Smith. FEncyclopedia of Computer Science. Grove’s Dictionaries New
York, New York, 2000.

David Wilton. The Interoperability Of Military Simulation Systems In An AUS-
CANNZUKUS Context. Australian Defence Science and Technology Organisation,
2001.

Ramsey Hage Xiaojun Shen and Nicolas Georganas. Agent-aided Collaborative
Virtual Environments over HLA/RTI. Multimedia Communication Research Lab
(MCRLab) School of Information Technology and Engineering University of Ot-
tawa, 1999.

