FHSST Authors

The Free High School Science Texts: Textbooks for High School Students Studying the Sciences
Physics
Grades 10-12

Version 0
November 9, 2008

Copyright 2007 "Free High School Science Texts"
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

STOP!!!!

Did you notice the FREEDOMS we've granted you?

Our copyright license is different! It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use.

- We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally!
- Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide - we DARE you!
- Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want!
- Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents.
- So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair.
- These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community.

FHSST Core Team

Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton

FHSST Editors

Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield

FHSST Contributors

Rory Adams ; Prashant Arora; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ; Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ; Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ; Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ; Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek; Dr. Komal Maheshwari ; Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ; Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ; Tyrone Negus ; Thomas O'Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ; Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ; Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon; Mike Stringer ; Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ; Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal Yacoob ; Jean Youssef

Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource!
www.fhsst.org

Contents

I Introduction 1
1 What is Physics? 3
II Grade 10 - Physics 5
2 Units 9
2.1 Introduction 9
2.2 Unit Systems 9
2.2.1 SI Units 9
2.2.2 The Other Systems of Units 10
2.3 Writing Units as Words or Symbols 10
2.4 Combinations of SI Base Units 12
2.5 Rounding, Scientific Notation and Significant Figures 12
2.5.1 Rounding Off 12
2.5.2 Error Margins 13
2.5.3 Scientific Notation 13
2.5.4 Significant Figures 15
2.6 Prefixes of Base Units 15
2.7 The Importance of Units 17
2.8 How to Change Units 17
2.8.1 Two other useful conversions 19
2.9 A sanity test 19
2.10 Summary 19
2.11 End of Chapter Exercises 21
3 Motion in One Dimension - Grade 10 23
3.1 Introduction 23
3.2 Reference Point, Frame of Reference and Position 23
3.2.1 Frames of Reference 23
3.2.2 Position 25
3.3 Displacement and Distance 28
3.3.1 Interpreting Direction 29
3.3.2 Differences between Distance and Displacement 29
3.4 Speed, Average Velocity and Instantaneous Velocity 31
3.4.1 Differences between Speed and Velocity 35
3.5 Acceleration 38
3.6 Description of Motion 39
3.6.1 Stationary Object 40
3.6.2 Motion at Constant Velocity 41
3.6.3 Motion at Constant Acceleration 46
3.7 Summary of Graphs 48
3.8 Worked Examples 49
3.9 Equations of Motion 54
3.9.1 Finding the Equations of Motion 54
3.10 Applications in the Real-World 59
3.11 Summary 61
3.12 End of Chapter Exercises: Motion in One Dimension 62
4 Gravity and Mechanical Energy - Grade 10 67
4.1 Weight 67
4.1.1 Differences between Mass and Weight 68
4.2 Acceleration due to Gravity 69
4.2.1 Gravitational Fields 69
4.2.2 Free fall 69
4.3 Potential Energy 73
4.4 Kinetic Energy 75
4.4.1 Checking units 77
4.5 Mechanical Energy 78
4.5.1 Conservation of Mechanical Energy 78
4.5.2 Using the Law of Conservation of Energy 79
4.6 Energy graphs 82
4.7 Summary 83
4.8 End of Chapter Exercises: Gravity and Mechanical Energy 84
5 Transverse Pulses - Grade 10 87
5.1 Introduction 87
5.2 What is a medium? 87
5.3 What is a pulse? 87
5.3.1 Pulse Length and Amplitude 88
5.3.2 Pulse Speed 89
5.4 Graphs of Position and Velocity 90
5.4.1 Motion of a Particle of the Medium 90
5.4.2 Motion of the Pulse 92
5.5 Transmission and Reflection of a Pulse at a Boundary 96
5.6 Reflection of a Pulse from Fixed and Free Ends 97
5.6.1 Reflection of a Pulse from a Fixed End 97
5.6.2 Reflection of a Pulse from a Free End 98
5.7 Superposition of Pulses 99
5.8 Exercises - Transverse Pulses 102
6 Transverse Waves - Grade 10 105
6.1 Introduction 105
6.2 What is a transverse wave? 105
6.2.1 Peaks and Troughs 106
6.2.2 Amplitude and Wavelength 107
6.2.3 Points in Phase 109
6.2.4 Period and Frequency 110
6.2.5 Speed of a Transverse Wave 111
6.3 Graphs of Particle Motion 115
6.4 Standing Waves and Boundary Conditions 118
6.4.1 Reflection of a Transverse Wave from a Fixed End 118
6.4.2 Reflection of a Transverse Wave from a Free End 118
6.4.3 Standing Waves 118
6.4.4 Nodes and anti-nodes 122
6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends 122
6.4.6 Superposition and Interference 125
6.5 Summary 127
6.6 Exercises 127
7 Geometrical Optics - Grade 10 129
7.1 Introduction 129
7.2 Light Rays 129
7.2.1 Shadows 132
7.2.2 Ray Diagrams 132
7.3 Reflection 132
7.3.1 Terminology 133
7.3.2 Law of Reflection 133
7.3.3 Types of Reflection 135
7.4 Refraction 137
7.4.1 Refractive Index 139
7.4.2 Snell's Law 139
7.4.3 Apparent Depth 143
7.5 Mirrors 146
7.5.1 Image Formation 146
7.5.2 Plane Mirrors 147
7.5.3 Ray Diagrams 148
7.5.4 Spherical Mirrors 150
7.5.5 Concave Mirrors 150
7.5.6 Convex Mirrors 153
7.5.7 Summary of Properties of Mirrors 154
7.5.8 Magnification 154
7.6 Total Internal Reflection and Fibre Optics 156
7.6.1 Total Internal Reflection 156
7.6.2 Fibre Optics 161
7.7 Summary 163
7.8 Exercises 164
8 Magnetism - Grade 10 167
8.1 Introduction 167
8.2 Magnetic fields 167
8.3 Permanent magnets 169
8.3.1 The poles of permanent magnets 169
8.3.2 Magnetic attraction and repulsion 169
8.3.3 Representing magnetic fields 170
8.4 The compass and the earth's magnetic field 173
8.4.1 The earth's magnetic field 175
8.5 Summary 175
8.6 End of chapter exercises 176
9 Electrostatics - Grade 10 177
9.1 Introduction 177
9.2 Two kinds of charge 177
9.3 Unit of charge 177
9.4 Conservation of charge 177
9.5 Force between Charges 178
9.6 Conductors and insulators 181
9.6.1 The electroscope 182
9.7 Attraction between charged and uncharged objects 183
9.7.1 Polarisation of Insulators 183
9.8 Summary 184
9.9 End of chapter exercise 184
10 Electric Circuits - Grade 10 187
10.1 Electric Circuits 187
10.1.1 Closed circuits 187
10.1.2 Representing electric circuits 188
10.2 Potential Difference 192
10.2.1 Potential Difference 192
10.2.2 Potential Difference and Parallel Resistors 193
10.2.3 Potential Difference and Series Resistors 194
10.2.4 Ohm's Law 194
10.2.5 EMF 195
10.3 Current 198
10.3.1 Flow of Charge 198
10.3.2 Current 198
10.3.3 Series Circuits 199
10.3.4 Parallel Circuits 200
10.4 Resistance 202
10.4.1 What causes resistance? 202
10.4.2 Resistors in electric circuits 202
10.5 Instruments to Measure voltage, current and resistance 204
10.5.1 Voltmeter 204
10.5.2 Ammeter 204
10.5.3 Ohmmeter 204
10.5.4 Meters Impact on Circuit 205
10.6 Exercises - Electric circuits 205
III Grade 11 - Physics 209
11 Vectors 211
11.1 Introduction 211
11.2 Scalars and Vectors 211
11.3 Notation 211
11.3.1 Mathematical Representation 212
11.3.2 Graphical Representation 212
11.4 Directions 212
11.4.1 Relative Directions 212
11.4.2 Compass Directions 213
11.4.3 Bearing 213
11.5 Drawing Vectors 214
11.6 Mathematical Properties of Vectors 215
11.6.1 Adding Vectors 215
11.6.2 Subtracting Vectors 217
11.6.3 Scalar Multiplication 218
11.7 Techniques of Vector Addition 218
11.7.1 Graphical Techniques 218
11.7.2 Algebraic Addition and Subtraction of Vectors 223
11.8 Components of Vectors 228
11.8.1 Vector addition using components 231
11.8.2 Summary 235
11.8.3 End of chapter exercises: Vectors 236
11.8.4 End of chapter exercises: Vectors - Long questions 237
12 Force, Momentum and Impulse - Grade 11 239
12.1 Introduction 239
12.2 Force 239
12.2.1 What is a force? 239
12.2.2 Examples of Forces in Physics 240
12.2.3 Systems and External Forces 241
12.2.4 Force Diagrams 242
12.2.5 Free Body Diagrams 243
12.2.6 Finding the Resultant Force 244
12.2.7 Exercise 246
12.3 Newton's Laws 246
12.3.1 Newton's First Law 247
12.3.2 Newton's Second Law of Motion 249
12.3.3 Exercise 261
12.3.4 Newton's Third Law of Motion 263
12.3.5 Exercise 267
12.3.6 Different types of forces 268
12.3.7 Exercise 275
12.3.8 Forces in equilibrium 276
12.3.9 Exercise 279
12.4 Forces between Masses 282
12.4.1 Newton's Law of Universal Gravitation 282
12.4.2 Comparative Problems 284
12.4.3 Exercise 286
12.5 Momentum and Impulse 287
12.5.1 Vector Nature of Momentum 290
12.5.2 Exercise 291
12.5.3 Change in Momentum 291
12.5.4 Exercise 293
12.5.5 Newton's Second Law revisited 293
12.5.6 Impulse 294
12.5.7 Exercise 296
12.5.8 Conservation of Momentum 297
12.5.9 Physics in Action: Impulse 300
12.5.10 Exercise 301
12.6 Torque and Levers 302
12.6.1 Torque 302
12.6.2 Mechanical Advantage and Levers 305
12.6.3 Classes of levers 307
12.6.4 Exercise 308
12.7 Summary 309
12.8 End of Chapter exercises 310
13 Geometrical Optics - Grade 11 327
13.1 Introduction 327
13.2 Lenses 327
13.2.1 Converging Lenses 329
13.2.2 Diverging Lenses 340
13.2.3 Summary of Image Properties 343
13.3 The Human Eye 344
13.3.1 Structure of the Eye 345
13.3.2 Defects of Vision 346
13.4 Gravitational Lenses 347
13.5 Telescopes 347
13.5.1 Refracting Telescopes 347
13.5.2 Reflecting Telescopes 348
13.5.3 Southern African Large Telescope 348
13.6 Microscopes 349
13.7 Summary 351
13.8 Exercises 352
14 Longitudinal Waves - Grade 11 355
14.1 Introduction 355
14.2 What is a longitudinal wave? 355
14.3 Characteristics of Longitudinal Waves 356
14.3.1 Compression and Rarefaction 356
14.3.2 Wavelength and Amplitude 357
14.3.3 Period and Frequency 357
14.3.4 Speed of a Longitudinal Wave 358
14.4 Graphs of Particle Position, Displacement, Velocity and Acceleration 359
14.5 Sound Waves 360
14.6 Seismic Waves 361
14.7 Summary - Longitudinal Waves 361
14.8 Exercises - Longitudinal Waves 362
15 Sound - Grade 11 363
15.1 Introduction 363
15.2 Characteristics of a Sound Wave 363
15.2.1 Pitch 364
15.2.2 Loudness 364
15.2.3 Tone 364
15.3 Speed of Sound 365
15.4 Physics of the Ear and Hearing 365
15.4.1 Intensity of Sound 366
15.5 Ultrasound 367
15.6 SONAR 368
15.6.1 Echolocation 368
15.7 Summary 369
15.8 Exercises 369
16 The Physics of Music - Grade 11 373
16.1 Introduction 373
16.2 Standing Waves in String Instruments 373
16.3 Standing Waves in Wind Instruments 377
16.4 Resonance 382
16.5 Music and Sound Quality 384
16.6 Summary - The Physics of Music 385
16.7 End of Chapter Exercises 386
17 Electrostatics - Grade 11 387
17.1 Introduction 387
17.2 Forces between charges - Coulomb's Law 387
17.3 Electric field around charges 392
17.3.1 Electric field lines 393
17.3.2 Positive charge acting on a test charge 393
17.3.3 Combined charge distributions 394
17.3.4 Parallel plates 397
17.4 Electrical potential energy and potential 400
17.4.1 Electrical potential 400
17.4.2 Real-world application: lightning 402
17.5 Capacitance and the parallel plate capacitor 403
17.5.1 Capacitors and capacitance 403
17.5.2 Dielectrics 404
17.5.3 Physical properties of the capacitor and capacitance 404
17.5.4 Electric field in a capacitor 405
17.6 Capacitor as a circuit device 406
17.6.1 A capacitor in a circuit 406
17.6.2 Real-world applications: capacitors 407
17.7 Summary 407
17.8 Exercises - Electrostatics 407
18 Electromagnetism - Grade 11 413
18.1 Introduction 413
18.2 Magnetic field associated with a current 413
18.2.1 Real-world applications 418
18.3 Current induced by a changing magnetic field 420
18.3.1 Real-life applications 422
18.4 Transformers 423
18.4.1 Real-world applications 425
18.5 Motion of a charged particle in a magnetic field 425
18.5.1 Real-world applications 426
18.6 Summary 427
18.7 End of chapter exercises 427
19 Electric Circuits - Grade 11 429
19.1 Introduction 429
19.2 Ohm's Law 429
19.2.1 Definition of Ohm's Law 429
19.2.2 Ohmic and non-ohmic conductors 431
19.2.3 Using Ohm's Law 432
19.3 Resistance 433
19.3.1 Equivalent resistance 433
19.3.2 Use of Ohm's Law in series and parallel Circuits 438
19.3.3 Batteries and internal resistance 440
19.4 Series and parallel networks of resistors 442
19.5 Wheatstone bridge 445
19.6 Summary 447
19.7 End of chapter exercise 447
20 Electronic Properties of Matter - Grade 11 451
20.1 Introduction 451
20.2 Conduction 451
20.2.1 Metals 453
20.2.2 Insulator 453
20.2.3 Semi-conductors 454
20.3 Intrinsic Properties and Doping 454
20.3.1 Surplus 455
20.3.2 Deficiency 455
20.4 The p-n junction 457
20.4.1 Differences between p - and n -type semi-conductors 457
20.4.2 The p-n Junction 457
20.4.3 Unbiased 457
20.4.4 Forward biased 457
20.4.5 Reverse biased 458
20.4.6 Real-World Applications of Semiconductors 458
20.5 End of Chapter Exercises 459
IV Grade 12-Physics 461
21 Motion in Two Dimensions - Grade 12 463
21.1 Introduction 463
21.2 Vertical Projectile Motion 463
21.2.1 Motion in a Gravitational Field 463
21.2.2 Equations of Motion 464
21.2.3 Graphs of Vertical Projectile Motion 467
21.3 Conservation of Momentum in Two Dimensions 475
21.4 Types of Collisions 480
21.4.1 Elastic Collisions 480
21.4.2 Inelastic Collisions 485
21.5 Frames of Reference 490
21.5.1 Introduction 490
21.5.2 What is a frame of reference? 491
21.5.3 Why are frames of reference important? 491
21.5.4 Relative Velocity 491
21.6 Summary 494
21.7 End of chapter exercises 495
22 Mechanical Properties of Matter - Grade 12 503
22.1 Introduction 503
22.2 Deformation of materials 503
22.2.1 Hooke's Law 503
22.2.2 Deviation from Hooke's Law 506
22.3 Elasticity, plasticity, fracture, creep 508
22.3.1 Elasticity and plasticity 508
22.3.2 Fracture, creep and fatigue 508
22.4 Failure and strength of materials 509
22.4.1 The properties of matter 509
22.4.2 Structure and failure of materials 509
22.4.3 Controlling the properties of materials 509
22.4.4 Steps of Roman Swordsmithing 510
22.5 Summary 511
22.6 End of chapter exercise 511
23 Work, Energy and Power - Grade 12 513
23.1 Introduction 513
23.2 Work 513
23.3 Energy 519
23.3.1 External and Internal Forces 519
23.3.2 Capacity to do Work 520
23.4 Power 525
23.5 Important Equations and Quantities 529
23.6 End of Chapter Exercises 529
24 Doppler Effect - Grade 12 533
24.1 Introduction 533
24.2 The Doppler Effect with Sound and Ultrasound 533
24.2.1 Ultrasound and the Doppler Effect 537
24.3 The Doppler Effect with Light 537
24.3.1 The Expanding Universe 538
24.4 Summary 539
24.5 End of Chapter Exercises 539
25 Colour - Grade 12 541
25.1 Introduction 541
25.2 Colour and Light 541
25.2.1 Dispersion of white light 544
25.3 Addition and Subtraction of Light 544
25.3.1 Additive Primary Colours 544
25.3.2 Subtractive Primary Colours 545
25.3.3 Complementary Colours 546
25.3.4 Perception of Colour 546
25.3.5 Colours on a Television Screen 547
25.4 Pigments and Paints 548
25.4.1 Colour of opaque objects 548
25.4.2 Colour of transparent objects 548
25.4.3 Pigment primary colours 549
25.5 End of Chapter Exercises 550
26 2D and 3D Wavefronts - Grade 12 553
26.1 Introduction 553
26.2 Wavefronts 553
26.3 The Huygens Principle 554
26.4 Interference 556
26.5 Diffraction 557
26.5.1 Diffraction through a Slit 558
26.6 Shock Waves and Sonic Booms 562
26.6.1 Subsonic Flight 563
26.6.2 Supersonic Flight 563
26.6.3 Mach Cone 566
26.7 End of Chapter Exercises 568
27 Wave Nature of Matter - Grade 12 571
27.1 Introduction 571
27.2 de Broglie Wavelength 571
27.3 The Electron Microscope 574
27.3.1 Disadvantages of an Electron Microscope 577
27.3.2 Uses of Electron Microscopes 577
27.4 End of Chapter Exercises 578
28 Electrodynamics - Grade 12 579
28.1 Introduction 579
28.2 Electrical machines - generators and motors 579
28.2.1 Electrical generators 580
28.2.2 Electric motors 582
28.2.3 Real-life applications 582
28.2.4 Exercise - generators and motors 584
28.3 Alternating Current 585
28.3.1 Exercise - alternating current 586
28.4 Capacitance and inductance 586
28.4.1 Capacitance 586
28.4.2 Inductance 586
28.4.3 Exercise - capacitance and inductance 588
28.5 Summary 588
28.6 End of chapter exercise 589
29 Electronics - Grade 12 591
29.1 Introduction 591
29.2 Capacitive and Inductive Circuits 591
29.3 Filters and Signal Tuning 596
29.3.1 Capacitors and Inductors as Filters 596
29.3.2 LRC Circuits, Resonance and Signal Tuning 596
29.4 Active Circuit Elements 599
29.4.1 The Diode 599
29.4.2 The Light Emitting Diode (LED) 601
29.4.3 Transistor 603
29.4.4 The Operational Amplifier 607
29.5 The Principles of Digital Electronics 609
29.5.1 Logic Gates 610
29.6 Using and Storing Binary Numbers 616
29.6.1 Binary numbers 616
29.6.2 Counting circuits 617
29.6.3 Storing binary numbers 619
30 EM Radiation 625
30.1 Introduction 625
30.2 Particle/wave nature of electromagnetic radiation 625
30.3 The wave nature of electromagnetic radiation 626
30.4 Electromagnetic spectrum 626
30.5 The particle nature of electromagnetic radiation 629
30.5.1 Exercise - particle nature of EM waves 630
30.6 Penetrating ability of electromagnetic radiation 631
30.6.1 Ultraviolet(UV) radiation and the skin 631
30.6.2 Ultraviolet radiation and the eyes 632
30.6.3 X-rays 632
30.6.4 Gamma-rays 632
30.6.5 Exercise - Penetrating ability of EM radiation 633
30.7 Summary 633
30.8 End of chapter exercise 633
31 Optical Phenomena and Properties of Matter - Grade 12 635
31.1 Introduction 635
31.2 The transmission and scattering of light 635
31.2.1 Energy levels of an electron 635
31.2.2 Interaction of light with metals 636
31.2.3 Why is the sky blue? 637
31.3 The photoelectric effect 638
31.3.1 Applications of the photoelectric effect 640
31.3.2 Real-life applications 642
31.4 Emission and absorption spectra 643
31.4.1 Emission Spectra 643
31.4.2 Absorption spectra 644
31.4.3 Colours and energies of electromagnetic radiation 646
31.4.4 Applications of emission and absorption spectra 648
31.5 Lasers 650
31.5.1 How a laser works 652
31.5.2 A simple laser 654
31.5.3 Laser applications and safety 655
31.6 Summary 656
31.7 End of chapter exercise 657
V Exercises 659
32 Exercises 661
VI Essays 663
Essay 1: Energy and electricity. Why the fuss? 665
33 Essay: How a cell phone works 671
34 Essay: How a Physiotherapist uses the Concept of Levers 673
35 Essay: How a Pilot Uses Vectors 675A GNU Free Documentation License677

Chapter 3

Motion in One Dimension - Grade 10

3.1 Introduction

This chapter is about how things move in a straight line or more scientifically how things move in one dimension. This is useful for learning how to describe the movement of cars along a straight road or of trains along straight railway tracks. If you want to understand how any object moves, for example a car on the freeway, a soccer ball being kicked towards the goal or your dog chasing the neighbour's cat, then you have to understand three basic ideas about what it means when something is moving. These three ideas describe different parts of exactly how an object moves. They are:

1. position or displacement which tells us exactly where the object is,
2. speed or velocity which tells us exactly how fast the object's position is changing or more familiarly, how fast the object is moving, and
3. acceleration which tells us exactly how fast the object's velocity is changing.

You will also learn how to use position, displacement, speed, velocity and acceleration to describe the motion of simple objects. You will learn how to read and draw graphs that summarise the motion of a moving object. You will also learn about the equations that can be used to describe motion and how to apply these equations to objects moving in one dimension.

3.2 Reference Point, Frame of Reference and Position

The most important idea when studying motion, is you have to know where you are. The word position describes your location (where you are). However, saying that you are here is meaningless, and you have to specify your position relative to a known reference point. For example, if you are 2 m from the doorway, inside your classroom then your reference point is the doorway. This defines your position inside the classroom. Notice that you need a reference point (the doorway) and a direction (inside) to define your location.

3.2.1 Frames of Reference

Definition: Frame of Reference

A frame of reference is a reference point combined with a set of directions.

A frame of reference is similar to the idea of a reference point. A frame of reference is defined as a reference point combined with a set of directions. For example, a boy is standing still inside
a train as it pulls out of a station. You are standing on the platform watching the train move from left to right. To you it looks as if the boy is moving from left to right, because relative to where you are standing (the platform), he is moving. According to the boy, and his frame of reference (the train), he is not moving.

From your frame of reference the boy is moving from left to right.

Figure 3.1: Frames of Reference

A frame of reference must have an origin (where you are standing on the platform) and at least a positive direction. The train was moving from left to right, making to your right positive and to your left negative. If someone else was looking at the same boy, his frame of reference will be different. For example, if he was standing on the other side of the platform, the boy will be moving from right to left.

For this chapter, we will only use frames of reference in the x-direction. Frames of reference will be covered in more detail in Grade 12.
$\xrightarrow[\begin{array}{c}\text { Where you are standing } \\ \text { on the platform }\end{array}]{\stackrel{\text { is moving from left to right }}{ }}$ positive direction (towards your right)

3.2.2 Position

Definition: Position

Position is a measurement of a location, with reference to an origin.

A position is a measurement of a location, with reference to an origin. Positions can therefore be negative or positive. The symbol x is used to indicate position. x has units of length for example cm, m or km . Figure 3.2 .2 shows the position of a school. Depending on what reference point we choose, we can say that the school is 300 m from Joan's house (with Joan's house as the reference point or origin) or 500 m from Joel's house (with Joel's house as the reference point or origin).

Figure 3.2: Illustration of position
The shop is also 300 m from Joan's house, but in the opposite direction as the school. When we choose a reference point, we have a positive direction and a negative direction. If we choose

Figure 3.3: The origin is at Joan's house and the position of the school is +300 m . Positions towards the left are defined as positive and positions towards the right are defined as negative.
the direction towards the school as positive, then the direction towards the shop is negative. A negative direction is always opposite to the direction chosen as positive.

Activity :: Discussion : Reference Points

Divide into groups of 5 for this activity. On a straight line, choose a reference point. Since position can have both positive and negative values, discuss the advantages and disadvantages of choosing

1. either end of the line,
2. the middle of the line.

This reference point can also be called "the origin".

Exercise: Position

1. Write down the positions for objects at A, B, D and E. Do not forget the units.

2. Write down the positions for objects at F, G, H and J. Do not forget the units.

3. There are 5 houses on Newton Street, A, B, C, D and E. For all cases, assume that positions to the right are positive.

(a) Draw a frame of reference with house A as the origin and write down the positions of houses $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
(b) You live in house C. What is your position relative to house E ?
(c) What are the positions of houses A, B and D, if house B is taken as the reference point?

3.3 Displacement and Distance

Definition: Displacement
Displacement is the change in an object's position.

The displacement of an object is defined as its change in position (final position minus initial position). Displacement has a magnitude and direction and is therefore a vector. For example, if the initial position of a car is x_{i} and it moves to a final position of x_{f}, then the displacement is:

$$
x_{f}-x_{i}
$$

However, subtracting an initial quantity from a final quantity happens often in Physics, so we use the shortcut Δ to mean final - initial. Therefore, displacement can be written:

$$
\Delta x=x_{f}-x_{i}
$$

Important: The symbol Δ is read out as delta. Δ is a letter of the Greek alphabet and is used in Mathematics and Science to indicate a change in a certain quantity, or a final value minus an initial value. For example, Δx means change in x while Δt means change in t.

Important: The words initial and final will be used very often in Physics. Initial will always refer to something that happened earlier in time and final will always refer to something that happened later in time. It will often happen that the final value is smaller than the initial value, such that the difference is negative. This is ok!

Figure 3.4: Illustration of displacement
Displacement does not depend on the path travelled, but only on the initial and final positions (Figure 3.4). We use the word distance to describe how far an object travels along a particular path. Distance is the actual distance that was covered. Distance (symbol d) does not have a direction, so it is a scalar. Displacement is the shortest distance from the starting point to the endpoint - from the school to the shop in the figure. Displacement has direction and is therefore a vector.

Figure 3.2.2 shows the five houses we discussed earlier. Jack walks to school, but instead of walking straight to school, he decided to walk to his friend Joel's house first to fetch him so that they can walk to school together. Jack covers a distance of 400 m to Joel's house and another 500 m to school. He covers a distance of 900 m . His displacement, however, is only 100 m towards the school. This is because displacement only looks at the starting position (his house) and the end position (the school). It does not depend on the path he travelled.

To calculate his distance and displacement, we need to choose a reference point and a direction. Let's choose Jack's house as the reference point, and towards Joel's house as the positive direction (which means that towards the school is negative). We would do the calculations as follows:

$$
\begin{aligned}
\text { Distance }(\mathrm{d}) & =\text { path travelled } \\
& =400 \mathrm{~m}+500 \mathrm{~m} \\
& =900 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Displacement}(\Delta \mathrm{x}) & =x_{f}-x_{i} \\
& =-100 \mathrm{~m}+0 \mathrm{~m} \\
& =-100 \mathrm{~m}
\end{aligned}
$$

Joel walks to school with Jack and after school walks back home. What is Joel's displacement and what distance did he cover? For this calculation we use Joel's house as the reference point. Let's take towards the school as the positive direction.

$$
\begin{aligned}
\text { Distance }(\mathrm{d}) & =\text { path travelled } \\
& =500 \mathrm{~m}+500 \mathrm{~m} \\
& =1000 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Displacement}(\Delta \mathrm{x}) & =x_{f}-x_{i} \\
& =0 \mathrm{~m}+0 \mathrm{~m} \\
& =0 \mathrm{~m}
\end{aligned}
$$

It is possible to have a displacement of 0 m and a distance that is not 0 m . This happens when an object completes a round trip back to its original position, like an athlete running around a track.

3.3.1 Interpreting Direction

Very often in calculations you will get a negative answer. For example, Jack's displacement in the example above, is calculated as -100 m . The minus sign in front of the answer means that his displacement is 100 m in the opposite direction (opposite to the direction chosen as positive in the beginning of the question). When we start a calculation we choose a frame of reference and a positive direction. In the first example above, the reference point is Jack's house and the positive direction is towards Joel's house. Therefore Jack's displacement is 100 m towards the school. Notice that distance has no direction, but displacement has.

3.3.2 Differences between Distance and Displacement

Definition: Vectors and Scalars

A vector is a physical quantity with magnitude (size) and direction. A scalar is a physical quantity with magnitude (size) only.

The differences between distance and displacement can be summarised as:

Distance	Displacement
1. depends on the path	1. independent of path taken
2. always positive	2. can be positive or negative
3. is a scalar	3. is a vector

Exercise: Point of Reference

1. Use Figure 3.2.2 to answer the following questions.
(a) Jill walks to Joan's house and then to school, what is her distance and displacement?
(b) John walks to Joan's house and then to school, what is his distance and displacement?
(c) Jack walks to the shop and then to school, what is his distance and displacement?
(d) What reference point did you use for each of the above questions?
2. You stand at the front door of your house (displacement, $\Delta x=0 \mathrm{~m}$). The street is 10 m away from the front door. You walk to the street and back again.
(a) What is the distance you have walked?
(b) What is your final displacement?
(c) Is displacement a vector or a scalar? Give a reason for your answer.

3.4 Speed, Average Velocity and Instantaneous Velocity

Definition: Velocity
Velocity is the rate of change of position.

Definition: Instantaneous velocity

Instantaneous velocity is the velocity of an accelerating body at a specific instant in time.

Definition: Average velocity

Average velocity is the total displacement of a body over a time interval.

Velocity is the rate of change of position. It tells us how much an object's position changes in time. This is the same as the displacement divided by the time taken. Since displacement is a vector and time taken is a scalar, velocity is also a vector. We use the symbol v for velocity. If we have a displacement of Δx and a time taken of $\Delta t, v$ is then defined as:

$$
\begin{aligned}
\text { velocity }\left(\text { in } \mathrm{m} \cdot \mathrm{~s}^{-1}\right) & =\frac{\text { change in displacement (in m) }}{\text { change in time (in s) }} \\
v & =\frac{\Delta x}{\Delta t}
\end{aligned}
$$

Velocity can be positive or negative. Positive values of velocity mean that the object is moving away from the reference point or origin and negative values mean that the object is moving towards the reference point or origin.

Important: An instant in time is different from the time taken or the time interval. It is therefore useful to use the symbol t for an instant in time (for example during the $4^{t h}$ second) and the symbol Δt for the time taken (for example during the first 5 seconds of the motion).

Average velocity (symbol v) is the displacement for the whole motion divided by the time taken for the whole motion. Instantaneous velocity is the velocity at a specific instant in time.
(Average) Speed (symbol s) is the distance travelled (d) divided by the time taken (Δt) for the journey. Distance and time are scalars and therefore speed will also be a scalar. Speed is calculated as follows:

$$
\begin{gathered}
\text { speed }\left(\text { in } \mathrm{m} \cdot \mathrm{~s}^{-1}\right)=\frac{\text { distance }(\text { in } \mathrm{m})}{\text { time }(\text { in } \mathrm{s})} \\
s=\frac{d}{\Delta t}
\end{gathered}
$$

Instantaneous speed is the magnitude of instantaneous velocity. It has the same value, but no direction.

Question: James walks 2 km away from home in 30 minutes. He then turns around and walks back home along the same path, also in 30 minutes. Calculate James' average speed and average velocity.

Answer

Step 1 : Identify what information is given and what is asked for

The question explicitly gives

- the distance and time out (2 km in 30 minutes)
- the distance and time back (2 km in 30 minutes)

Step 2: Check that all units are SI units.

The information is not in SI units and must therefore be converted.
To convert km to m , we know that:

$$
\begin{aligned}
1 \mathrm{~km} & =1000 \mathrm{~m} \\
\therefore \quad 2 \mathrm{~km} & =2000 \mathrm{~m} \quad \text { (multiply both sides by } 2, \text { because we want to convert } 2 \mathrm{~km} \text { to } \mathrm{m} . \text {) }
\end{aligned}
$$

Similarly, to convert 30 minutes to seconds,

$$
\begin{aligned}
1 \mathrm{~min} & =60 \mathrm{~s} \\
\therefore \quad 30 \mathrm{~min} & =1800 \mathrm{~s} \quad \text { (multiply both sides by } 30 \text {) }
\end{aligned}
$$

Step 3 : Determine James' displacement and distance.
James started at home and returned home, so his displacement is 0 m .

$$
\Delta x=0 \mathrm{~m}
$$

James walked a total distance of 4000 m (2000 m out and 2000 m back).

$$
d=4000 \mathrm{~m}
$$

Step 4 : Determine his total time.

James took 1800 s to walk out and 1800 s to walk back.

$$
\Delta t=3600 \mathrm{~s}
$$

Step 5 : Determine his average speed

$$
\begin{aligned}
s & =\frac{d}{\Delta t} \\
& =\frac{4000 \mathrm{~m}}{3600 \mathrm{~s}} \\
& =1,11 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 6 : Determine his average velocity

$$
\begin{aligned}
v & =\frac{\Delta x}{\Delta t} \\
& =\frac{0 \mathrm{~m}}{3600 \mathrm{~s}} \\
& =0 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Question: A man runs around a circular track of radius 100 m . It takes him 120 s to complete a revolution of the track. If he runs at constant speed, calculate:

1. his speed,
2. his instantaneous velocity at point A,
3. his instantaneous velocity at point B,
4. his average velocity between points A and B,
5. his average speed during a revolution.

6 . his average velocity during a revolution.

Answer

Step 1 : Decide how to approach the problem

To determine the man's speed we need to know the distance he travels and how long it takes. We know it takes 120 s to complete one revolution of the track.(A revolution is to go around the track once.)

Step 2 : Determine the distance travelled

What distance is one revolution of the track? We know the track is a circle and we know its radius, so we can determine the distance around the circle. We start with the equation for the circumference of a circle

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \pi(100 \mathrm{~m}) \\
& =628,32 \mathrm{~m}
\end{aligned}
$$

Therefore, the distance the man covers in one revolution is $628,32 \mathrm{~m}$.

Step 3 : Determine the speed

We know that speed is distance covered per unit time. So if we divide the distance covered by the time it took we will know how much distance was covered for every unit of time. No direction is used here because speed is a scalar.

$$
\begin{aligned}
s & =\frac{d}{\Delta t} \\
& =\frac{628,32 \mathrm{~m}}{120 \mathrm{~s}} \\
& =5,24 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 4 : Determine the instantaneous velocity at A

Consider the point A in the diagram.
We know which way the man is running around the track and we know his speed. His velocity at point A will be his speed (the magnitude of the velocity) plus his direction of motion (the direction of his velocity). The instant that he arrives at A he is moving as indicated in the
 diagram.

His velocity will be $5,24 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ West.

Step 5 : Determine the instantaneous velocity at B

Consider the point B in the diagram.
We know which way the man is running around the track and we know his speed. His velocity at point B will be his speed (the magnitude of the velocity) plus his direction of motion (the direction of his velocity). The instant that he arrives at B he is moving as indicated in the diagram.

His velocity will be $5,24 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ South.

Step 6 : Determine the average velocity between A and B

To determine the average velocity between A and B, we need the change in displacement between A and B and the change in time between A and B. The displacement from A and B can be calculated by using the Theorem of Pythagoras:

$$
\begin{aligned}
(\Delta x)^{2} & =100^{2}+100^{2} \\
& =20000 \\
\Delta x & =141,42135 \ldots \mathrm{~m}
\end{aligned}
$$

The time for a full revolution is 120 s , therefore the time for a $\frac{1}{4}$ of a revolution is 30 s .

$$
\begin{aligned}
v_{A B} & =\frac{\Delta x}{\Delta t} \\
& =\frac{141,42 \ldots}{30 \mathrm{~s}} \\
& =4.71 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Velocity is a vector and needs a direction.
Triangle $A O B$ is isosceles and therefore angle $B A O=45^{\circ}$.
The direction is between west and south and is therefore southwest.
The final answer is: $v=4.71 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, southwest.

Step 7 : Determine his average speed during a revolution

Because he runs at a constant rate, we know that his speed anywhere around the track will be the same. His average speed is $5,24 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Step 8 : Determine his average velocity over a complete revolution

Important: Remember - displacement can be zero even when distance travelled is not!

To calculate average velocity we need his total displacement and his total time. His displacement is zero because he ends up where he started. His time is 120 s . Using these we can calculate his average velocity:

$$
\begin{aligned}
v & =\frac{\Delta x}{\Delta t} \\
& =\frac{0 \mathrm{~m}}{120 \mathrm{~s}} \\
& =0 \mathrm{~s}
\end{aligned}
$$

3.4.1 Differences between Speed and Velocity

The differences between speed and velocity can be summarised as:

Speed	Velocity
1. depends on the path taken	1. independent of path taken
2. always positive	2. can be positive or negative
3. is a scalar	3. is a vector
4. no dependence on direction and so is only positive	4. direction can be guessed from the sign (i.e. positive or negative)

Additionally, an object that makes a round trip, i.e. travels away from its starting point and then returns to the same point has zero velocity but travels a non-zero speed.

Exercise: Displacement and related quantities

1. Theresa has to walk to the shop to buy some milk. After walking 100 m , she realises that she does not have enough money, and goes back home. If it took her two minutes to leave and come back, calculate the following:
(a) How long was she out of the house (the time interval Δt in seconds)?
(b) How far did she walk (distance (d))?
(c) What was her displacement (Δx) ?
(d) What was her average velocity (in $\mathrm{m} \cdot \mathrm{s}^{-1}$)?
(e) What was her average speed (in $\mathrm{m} \cdot \mathrm{s}^{-1}$)?

2. Desmond is watching a straight stretch of road from his classroom window. He can see two poles which he earlier measured to be 50 m apart. Using his stopwatch, Desmond notices that it takes 3 s for most cars to travel from the one pole to the other.
(a) Using the equation for velocity $\left(v=\frac{\Delta x}{\Delta t}\right.$), show all the working needed to calculate the velocity of a car travelling from the left to the right.
(b) If Desmond measures the velocity of a red Golf to be $-16,67 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, in which direction was the Gold travelling?
Desmond leaves his stopwatch running, and notices that at $t=5,0 \mathrm{~s}$, a taxi passes the left pole at the same time as a bus passes the right pole. At time $\mathrm{t}=7,5 \mathrm{~s}$ the taxi passes the right pole. At time $\mathrm{t}=9,0 \mathrm{~s}$, the bus passes the left pole.
(c) How long did it take the taxi and the bus to travel the distance between the poles? (Calculate the time interval (Δt) for both the taxi and the bus).
(d) What was the velocity of the taxi and the bus?
(e) What was the speed of the taxi and the bus?
(f) What was the speed of taxi and the bus in $\mathrm{km} \cdot \mathrm{h}^{-1}$?

3. After a long day, a tired man decides not to use the pedestrian bridge to cross over a freeway, and decides instead to run across. He sees a car 100 m away travelling towards him, and is confident that he can cross in time.
(a) If the car is travelling at $120 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, what is the car's speed in $\mathrm{m} \cdot \mathrm{s}^{-1}$.
(b) How long will it take the a car to travel 100 m ?
(c) If the man is running at $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, what is his speed in $\mathrm{m} \cdot \mathrm{s}^{-1}$?
(d) If the freeway has 3 lanes, and each lane is 3 m wide, how long will it take for the man to cross all three lanes?
(e) If the car is travelling in the furthermost lane from the man, will he be able to cross all 3 lanes of the freeway safely?

Activity :: Investigation: An Exercise in Safety

Divide into groups of 4 and perform the following investigation. Each group will be performing the same investigation, but the aim for each group will be different.

1. Choose an aim for your investigation from the following list and formulate a hypothesis:

- Do cars travel at the correct speed limit?
- Is is safe to cross the road outside of a pedestrian crossing?
- Does the colour of your car determine the speed you are travelling at?
- Any other relevant question that you would like to investigate.

2. On a road that you often cross, measure out 50 m along a straight section, far away from traffic lights or intersections.
3. Use a stopwatch to record the time each of 20 cars take to travel the 50 m section you measured.
4. Design a table to represent your results. Use the results to answer the question posed in the aim of the investigation. You might need to do some more measurements for your investigation. Plan in your group what else needs to be done.
5. Complete any additional measurements and write up your investigation under the following headings:

- Aim and Hypothesis
- Apparatus
- Method
- Results
- Discussion
- Conclusion

6. Answer the following questions:
(a) How many cars took less than 3 seconds to travel 50 m ?
(b) What was the shortest time a car took to travel 50 m ?
(c) What was the average time taken by the 20 cars?
(d) What was the average speed of the 20 cars?
(e) Convert the average speed to $\mathrm{km} \cdot \mathrm{h}^{-1}$.

3.5 Acceleration

Definition: Acceleration
 Acceleration is the rate of change of velocity.

Acceleration (symbol a) is the rate of change of velocity. It is a measure of how fast the velocity of an object changes in time. If we have a change in velocity (Δv) over a time interval (Δt), then the acceleration (a) is defined as:

$$
\begin{gathered}
\text { acceleration }\left(\text { in } \mathrm{m} \cdot \mathrm{~s}^{-2}\right)=\frac{\text { change in velocity }\left(\text { in } \mathrm{m} \cdot \mathrm{~s}^{-1}\right)}{\text { change in time (in s) }} \\
a=\frac{\Delta v}{\Delta t}
\end{gathered}
$$

Since velocity is a vector, acceleration is also a vector. Acceleration does not provide any information about a motion, but only about how the motion changes. It is not possible to tell how fast an object is moving or in which direction from the acceleration.
Like velocity, acceleration can be negative or positive. We see that when the sign of the acceleration and the velocity are the same, the object is speeding up. If both velocity and acceleration are positive, the object is speeding up in a positive direction. If both velocity and acceleration are negative, the object is speeding up in a negative direction. If velocity is positive and acceleration is negative, then the object is slowing down. Similarly, if the velocity is negative and the acceleration is positive the object is slowing down. This is illustrated in the following worked example.

Worked Example 7: Acceleration

Question: A car accelerates uniformly from and initial velocity of $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to a final velocity of $10 \mathrm{~m} \cdot \mathrm{~s}^{1}$ in 8 seconds. It then slows down uniformly to a final velocity of 4 $\mathrm{m} \cdot \mathrm{s}^{-1}$ in 6 seconds. Calculate the acceleration of the car during the first 8 seconds and during the last 6 seconds.

Answer

Step 9 : Identify what information is given and what is asked for:

Consider the motion of the car in two parts: the first 8 seconds and the last 6 seconds.

For the first 8 seconds:

$$
\begin{aligned}
v_{i} & =2 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
v_{f} & =10 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
t_{i} & =0 \mathrm{~s} \\
t_{f} & =8 \mathrm{~s}
\end{aligned}
$$

Step 10 : Calculate the acceleration.
For the first 8 seconds:

$$
\begin{aligned}
a & =\frac{\Delta v}{\Delta t} \\
& =\frac{10-2}{8-0} \\
& =1 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

For the last 6 seconds:

$$
\begin{aligned}
v_{i} & =10 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
v_{f} & =4 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
t_{i} & =8 \mathrm{~s} \\
t_{f} & =14 \mathrm{~s}
\end{aligned}
$$

For the next 6 seconds:

$$
\begin{aligned}
a & =\frac{\Delta v}{\Delta t} \\
& =\frac{4-10}{14-8} \\
& =-1 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

During the first 8 seconds the car had a positive acceleration. This means that its velocity increased. The velocity is positive so the car is speeding up. During the next 6 seconds the car had a negative acceleration. This means that its velocity decreased. The velocity is positive so the car is slowing down.

Important: Acceleration does not tell us about the direction of the motion. Acceleration only tells us how the velocity changes.

Important: Deceleration

Avoid the use of the word deceleration to refer to a negative acceleration. This word usually means slowing down and it is possible for an object to slow down with both a positive and negative acceleration, because the sign of the velocity of the object must also be taken into account to determine whether the body is slowing down or not.

Exercise: Acceleration

1. An athlete is accelerating uniformly from an initial velocity of $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to a final velocity of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in 2 seconds. Calculate his acceleration. Let the direction that the athlete is running in be the positive direction.
2. A bus accelerates uniformly from an initial velocity of $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to a final velocity of $7 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in 4 seconds. Calculate the acceleration of the bus. Let the direction of motion of the bus be the positive direction.
3. An aeroplane accelerates uniformly from an initial velocity of $200 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to a velocity of $100 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in 10 seconds. It then accelerates uniformly to a final velocity of $240 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in 20 seconds. Let the direction of motion of the aeroplane be the positive direction.
(a) Calculate the acceleration of the aeroplane during the first 10 seconds of the motion.
(b) Calculate the acceleration of the aeroplane during the next 14 seconds of its motion.
(c) Calculate the acceleration of the aeroplane during the whole 24 seconds of its motion.

3.6 Description of Motion

The purpose of this chapter is to describe motion, and now that we understand the definitions of displacement, distance, velocity, speed and acceleration, we are ready to start using these ideas to describe how an object is moving. There are many ways of describing motion:

1. words
2. diagrams
3. graphs

These methods will be described in this section.
We will consider three types of motion: when the object is not moving (stationary object), when the object is moving at a constant velocity (uniform motion) and when the object is moving at a constant acceleration (motion at constant acceleration).

3.6.1 Stationary Object

The simplest motion that we can come across is that of a stationary object. A stationary object does not move and so its position does not change, for as long as it is standing still. An example of this situation is when someone is waiting for something without moving. The person remains in the same position.

Lesedi is waiting for a taxi. He is standing two metres from a stop street at $t=0 \mathrm{~s}$. After one minute, at $t=60 \mathrm{~s}$, he is still 2 metres from the stop street and after two minutes, at $t=120 \mathrm{~s}$, also 2 metres from the stop street. His position has not changed. His displacement is zero (because his position is the same), his velocity is zero (because his displacement is zero) and his acceleration is also zero (because his velocity is not changing).

$$
\begin{aligned}
& \text { displacement }=0 \mathrm{~m} \\
& \text { velocity }=0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& \text { acceleration }=0 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

We can now draw graphs of position vs.time (x vs. t), velocity vs.time (v vs. t) and acceleration vs.time (a vs. t) for a stationary object. The graphs are shown in Figure 3.5. Lesedi's position is 2 metres from the stop street. If the stop street is taken as the reference point, his position remains at 2 metres for 120 seconds. The graph is a horisontal line at 2 m . The velocity and acceleration graphs are also shown. They are both horisontal lines on the x-axis. Since his position is not changing, his velocity is $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and since velocity is not changing acceleration is $0 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.

Figure 3.5: Graphs for a stationary object (a) position vs. time (b) velocity vs. time (c) acceleration vs. time.

Definition: Gradient

The gradient of a line can be calculated by dividing the change in the y-value by the change in the x-value.
$\mathrm{m}=\frac{\Delta y}{\Delta x}$

Since we know that velocity is the rate of change of position, we can confirm the value for the velocity vs. time graph, by calculating the gradient of the x vs. t graph.

If we calculate the gradient of the x vs. t graph for a stationary object we get:

$$
\begin{aligned}
v & =\frac{\Delta x}{\Delta t} \\
& =\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& =\frac{2 \mathrm{~m}-2 \mathrm{~m}}{120 \mathrm{~s}-60 \mathrm{~s}} \quad \text { (initial position }=\text { final position) } \\
& =0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad \text { (for the time that Lesedi is stationary) }
\end{aligned}
$$

Similarly, we can confirm the value of the acceleration by calculating the gradient of the velocity vs. time graph.

Important: The gradient of a velocity vs. time graph gives the acceleration.

If we calculate the gradient of the v vs. t graph for a stationary object we get:

$$
\begin{aligned}
a & =\frac{\Delta v}{\Delta t} \\
& =\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \\
& =\frac{0 \mathrm{~m} \cdot \mathrm{~s}^{-1}-0 \mathrm{~m} \cdot \mathrm{~s}^{-1}}{120 \mathrm{~s}-60 \mathrm{~s}} \\
& =0 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

Additionally, because the velocity vs. time graph is related to the position vs. time graph, we can use the area under the velocity vs. time graph to calculate the displacement of an object.

Important: The area under the velocity vs. time graph gives the displacement.

The displacement of the object is given by the area under the graph, which is 0 m . This is obvious, because the object is not moving.

3.6.2 Motion at Constant Velocity

Motion at a constant velocity or uniform motion means that the position of the object is changing at the same rate.
Assume that Lesedi takes 100 s to walk the 100 m to the taxi-stop every morning. If we assume that Lesedi's house is the origin, then Lesedi's velocity is:

$$
\begin{aligned}
v & =\frac{\Delta x}{\Delta t} \\
& =\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& =\frac{100 \mathrm{~m}-0 \mathrm{~m}}{100 \mathrm{~s}-0 \mathrm{~s}} \\
& =1 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Lesedi's velocity is $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. This means that he walked 1 m in the first second, another metre in the second second, and another in the third second, and so on. For example, after 50 s he will be 50 m from home. His position increases by 1 m every 1 s . A diagram of Lesedi's position is shown in Figure 3.6.

We can now draw graphs of position vs.time (x vs. t), velocity vs.time (v vs. t) and acceleration vs.time (a vs. t) for Lesedi moving at a constant velocity. The graphs are shown in Figure 3.7.

Figure 3.6: Diagram showing Lesedi's motion at a constant velocity of $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Figure 3.7: Graphs for motion at constant velocity (a) position vs. time (b) velocity vs. time (c) acceleration vs. time. The area of the shaded portion in the v vs. t graph corresponds to the object's displacement.

In the evening Lesedi walks 100 m from the bus stop to his house in 100 s . Assume that Lesedi's house is the origin. The following graphs can be drawn to describe the motion.

Figure 3.8: Graphs for motion with a constant negative velocity (a) position vs. time (b) velocity vs. time (c) acceleration vs. time. The area of the shaded portion in the v vs.t graph corresponds to the object's displacement.

We see that the v vs. t graph is a horisontal line. If the velocity vs. time graph is a horisontal line, it means that the velocity is constant (not changing). Motion at a constant velocity is known as uniform motion.

We can use the x vs. t to calculate the velocity by finding the gradient of the line.

$$
\begin{aligned}
v & =\frac{\Delta x}{\Delta t} \\
& =\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& =\frac{0 \mathrm{~m}-100 \mathrm{~m}}{100 \mathrm{~s}-0 \mathrm{~s}} \\
& =-1 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& 42
\end{aligned}
$$

Lesedi has a velocity of $-1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, or $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ towards his house. You will notice that the v vs. t graph is a horisontal line corresponding to a velocity of $-1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The horisontal line means that the velocity stays the same (remains constant) during the motion. This is uniform velocity.

We can use the v vs. t to calculate the acceleration by finding the gradient of the line.

$$
\begin{aligned}
a & =\frac{\Delta v}{\Delta t} \\
& =\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \\
& =\frac{1 \mathrm{~m} \cdot \mathrm{~s}^{-1}-1 \mathrm{~m} \cdot \mathrm{~s}^{-1}}{100 \mathrm{~s}-0 \mathrm{~s}} \\
& =0 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

Lesedi has an acceleration of $0 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. You will notice that the graph of $a \mathrm{vs} . t$ is a horisontal line corresponding to an acceleration value of $0 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. There is no acceleration during the motion because his velocity does not change.

We can use the v vs. t to calculate the displacement by finding the area under the graph.

$$
\begin{aligned}
v & =\text { Area under graph } \\
& =\ell \times b \\
& =100 \times(-1) \\
& =-100 \mathrm{~m}
\end{aligned}
$$

Exercise: Velocity and acceleration

1. Use the graphs in Figure 3.7 to calculate each of the following:
(a) Calculate Lesedi's velocity between 50 s and 100 s using the x vs. t graph. Hint: Find the gradient of the line.
(b) Calculate Lesedi's acceleration during the whole motion using the v vs. t graph.
(c) Calculate Lesedi's displacement during the whole motion using the v vs. t graph.
2. Thandi takes 200 s to walk 100 m to the bus stop every morning. Draw a graph of Thandi's position as a function of time (assuming that Thandi's home is the reference point). Use the gradient of the x vs. t graph to draw the graph of velocity vs. time. Use the gradient of the v vs. t graph to draw the graph of acceleration vs. time.
3. In the evening Thandi takes 200 s to walk 100 m from the bus stop to her home. Draw a graph of Thandi's position as a function of time (assuming that Thandi's home is the origin). Use the gradient of the x vs. t graph to draw the graph of velocity vs. time. Use the gradient of the v vs. t graph to draw the graph of acceleration vs. time.
4. Discuss the differences between the two sets of graphs in questions 2 and 3 .

Activity :: Experiment : Motion at constant velocity

Aim:

To measure the position and time during motion at constant velocity and determine the average velocity as the gradient of a "Position vs. Time" graph.

Apparatus:

A battery operated toy car, stopwatch, meter stick or measuring tape.

Method:

1. Work with a friend. Copy the table below into your workbook.
2. Complete the table by timing the car as it travels each distance.
3. Time the car twice for each distance and take the average value as your accepted time.
4. Use the distance and average time values to plot a graph of "Distance vs. Time" onto graph paper. Stick the graph paper into your workbook. (Remember that "A vs. B" always means " y vs. x ").
5. Insert all axis labels and units onto your graph.
6. Draw the best straight line through your data points.
7. Find the gradient of the straight line. This is the average velocity.

Results:

Distance (m)	Time (s)		
	1	2	Ave.
0			
0,5			
1,0			
1,5			
2,0			
2,5			
3,0			
44			

Conclusions:

Answer the following questions in your workbook.

Questions:

1. Did the car travel with a constant velocity?
2. How can you tell by looking at the "Distance vs. Time" graph if the velocity is constant?
3. How would the "Distance vs. Time" look for a car with a faster velocity?
4. How would the "Distance vs. Time" look for a car with a slower velocity?

3.6.3 Motion at Constant Acceleration

The final situation we will be studying is motion at constant acceleration. We know that acceleration is the rate of change of velocity. So, if we have a constant acceleration, this means that the velocity changes at a constant rate.

Let's look at our first example of Lesedi waiting at the taxi stop again. A taxi arrived and Lesedi got in. The taxi stopped at the stop street and then accelerated as follows: After 1 s the taxi covered a distance of $2,5 \mathrm{~m}$, after 2 s it covered 10 m , after 3 seconds it covered $22,5 \mathrm{~m}$ and after 4 s it covered 40 m . The taxi is covering a larger distance every second. This means that it is accelerating.

To calculate the velocity of the taxi you need to calculate the gradient of the line at each second:

$$
\begin{array}{rlrl}
v_{1 s} & =\frac{\Delta x}{\Delta t} & v_{2 s} & =\frac{\Delta x}{\Delta t} \\
& =\frac{x_{f}-x_{i}}{t_{f}-t_{i}} & & =\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& =\frac{5 \mathrm{~m}-0 \mathrm{~m}}{1,5 \mathrm{~s}-0,5 \mathrm{~s}} & & =\frac{\Delta x}{\Delta t} \\
& =5 \mathrm{~m} \cdot \mathrm{~s}^{-1} & & \frac{15 \mathrm{~m}-5 \mathrm{~m}}{2,5 \mathrm{~s}-1,5 \mathrm{~s}} \\
t_{f}-t_{i} \\
\hline
\end{array}
$$

From these velocities, we can draw the velocity-time graph which forms a straight line.
The acceleration is the gradient of the v vs. t graph and can be calculated as follows:

$$
\begin{aligned}
a & =\frac{\Delta v}{\Delta t} \\
& =\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \\
& =\frac{15 \mathrm{~m} \cdot \mathrm{~s}^{-1}-5 \mathrm{~m} \cdot \mathrm{~s}^{-1}}{3 \mathrm{~s}-1 \mathrm{~s}} \\
& =5 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

The acceleration does not change during the motion (the gradient stays constant). This is motion at constant or uniform acceleration.

The graphs for this situation are shown in Figure 3.9.

Velocity from Acceleration vs. Time Graphs

Just as we used velocity vs. time graphs to find displacement, we can use acceleration vs. time graphs to find the velocity of an object at a given moment in time. We simply calculate the area under the acceleration vs. time graph, at a given time. In the graph below, showing an object at a constant positive acceleration, the increase in velocity of the object after 2 seconds corresponds to the shaded portion.

$$
\begin{aligned}
v=\text { area of rectangle } & =a \times \Delta t \\
& =5 \mathrm{~m} \cdot \mathrm{~s}^{-2} \times 2 \mathrm{~s} \\
& =10 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Figure 3.9: Graphs for motion with a constant acceleration (a) position vs. time (b) velocity vs. time (c) acceleration vs. time.

The velocity of the object at $t=2 \mathrm{~s}$ is therefore $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. This corresponds with the values obtained in Figure 3.9.

Exercise: Graphs

1. A car is parked 10 m from home for 10 minutes. Draw a displacement-time, velocity-time and acceleration-time graphs for the motion. Label all the axes.
2. A bus travels at a constant velocity of $12 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for 6 seconds. Draw the displacement-time, velocity-time and acceleration-time graph for the motion. Label all the axes.
3. An athlete runs with a constant acceleration of $1 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ for 4 s . Draw the acceleration-time, velocity-time and displacement time graphs for the motion. Accurate values are only needed for the acceleration-time and velocity-time graphs.
4. The following velocity-time graph describes the motion of a car. Draw the displacement-time graph and the acceleration-time graph and explain the motion of the car according to the three graphs.

5. The following velocity-time graph describes the motion of a truck. Draw the displacement-time graph and the acceleration-time graph and explain the motion of the truck according to the three graphs.

3.7 Summary of Graphs

The relation between graphs of position, velocity and acceleration as functions of time is summarised in Figure 3.10.
Uniform Mo-

$a\left(\mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$

Stationary
Object
tion

$a\left(\mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$

$t(\mathrm{~s})$

 constant acceleration

Figure 3.10: Position-time, velocity-time and acceleration-time graphs.

Important: Often you will be required to describe the motion of an object that is presented as a graph of either position, velocity or acceleration as functions of time. The description of the motion represented by a graph should include the following (where possible):

1. whether the object is moving in the positive or negative direction
2. whether the object is at rest, moving at constant velocity or moving at constant positive acceleration (speeding up) or constant negative acceleration (slowing down)

You will also often be required to draw graphs based on a description of the motion in words or from a diagram. Remember that these are just different methods of presenting the same information. If you keep in mind the general shapes of the graphs for the different types of motion, there should not be any difficulty with explaining what is happening.

3.8 Worked Examples

The worked examples in this section demonstrate the types of questions that can be asked about graphs.

Worked Example 8: Description of motion based on a position-time graph

Question: The position vs. time graph for the motion of a car is given below. Draw the corresponding velocity vs. time and acceleration vs. time graphs, and then describe the motion of the car.

Answer

Step 1 : Identify what information is given and what is asked for
The question gives a position vs. time graph and the following three things are required:

1. Draw a v vs. t graph.
2. Draw an a vs. t graph.
3. Describe the motion of the car.

To answer these questions, break the motion up into three sections: 0-2 seconds, 2-4 seconds and 4-6 seconds.

Step 2 : Velocity vs. time graph for $\mathbf{0 - 2}$ seconds

For the first 2 seconds we can see that the displacement remains constant - so the object is not moving, thus it has zero velocity during this time. We can reach this conclusion by another path too: remember that the gradient of a displacement vs. time graph is the velocity. For the first 2 seconds we can see that the displacement vs. time graph is a horizontal line, ie. it has a gradient of zero. Thus the velocity during this time is zero and the object is stationary.

Step 3 : Velocity vs. time graph for 2-4 seconds

For the next 2 seconds, displacement is increasing with time so the object is moving. Looking at the gradient of the displacement graph we can see that it is not constant. In fact, the slope is getting steeper (the gradient is increasing) as time goes on. Thus, remembering that the gradient of a displacement vs. time graph is the velocity, the velocity must be increasing with time during this phase.

Step 4 : Velocity vs. time graph for 4-6 seconds

For the final 2 seconds we see that displacement is still increasing with time, but this time the gradient is constant, so we know that the object is now travelling at a constant velocity, thus the velocity vs. time graph will be a horizontal line during this stage. We can now draw the graphs:

So our velocity vs. time graph looks like this one below. Because we haven't been given any values on the vertical axis of the displacement vs. time graph, we cannot figure out what the exact gradients are and therefore what the values of the velocities are. In this type of question it is just important to show whether velocities are positive or negative, increasing, decreasing or constant.

Once we have the velocity vs. time graph its much easier to get the acceleration vs. time graph as we know that the gradient of a velocity vs. time graph is the just the acceleration.

Step 5 : Acceleration vs. time graph for 0-2 seconds

For the first 2 seconds the velocity vs. time graph is horisontal and has a value of zero, thus it has a gradient of zero and there is no acceleration during this time. (This makes sense because we know from the displacement time graph that the object is stationary during this time, so it can't be accelerating).

Step 6 : Acceleration vs. time graph for 2-4 seconds

For the next 2 seconds the velocity vs. time graph has a positive gradient. This gradient is not changing (i.e. its constant) throughout these 2 seconds so there must be a constant positive acceleration.

Step 7 : Acceleration vs. time graph for 4-6 seconds

For the final 2 seconds the object is traveling with a constant velocity. During this time the gradient of the velocity vs. time graph is once again zero, and thus the object is not accelerating. The acceleration vs. time graph looks like this:

Step 8 : A description of the object's motion

A brief description of the motion of the object could read something like this: At $t=0 \mathrm{~s}$ and object is stationary at some position and remains stationary until $t=2 \mathrm{~s}$ when it begins accelerating. It accelerates in a positive direction for 2 seconds until $t=4 \mathrm{~s}$ and then travels at a constant velocity for a further 2 seconds.

Worked Example 9: Calculations from a velocity vs. time graph

Question: The velocity vs. time graph of a truck is plotted below. Calculate the distance and displacement of the truck after 15 seconds.

Answer

Step 1: Decide how to tackle the problem

We are asked to calculate the distance and displacement of the car. All we need to remember here is that we can use the area between the velocity vs. time graph and the time axis to determine the distance and displacement.

Step 2 : Determine the area under the velocity vs. time graph Break the motion up: 0-5 seconds, 5-12 seconds, 12-14 seconds and 14-15 seconds.

For $0-5$ seconds: The displacement is equal to the area of the triangle on the left:

$$
\begin{aligned}
\text { Area } \triangle & =\frac{1}{2} b \times h \\
& =\frac{1}{2} \times 5 \times 4 \\
& =10 \mathrm{~m}
\end{aligned}
$$

For 12-14 seconds the displacement is equal to the area of the triangle above the time axis on the right:

$$
\begin{aligned}
\text { Area } \triangle & =\frac{1}{2} b \times h \\
& =\frac{1}{2} \times 2 \times 4 \\
& =4 \mathrm{~m}
\end{aligned}
$$

For 5-12 seconds: The displacement is equal to the area of the rectangle:

$$
\begin{aligned}
\text { Area } \square & =\ell \times b \\
& =7 \times 4 \\
& =28 \mathrm{~m}
\end{aligned}
$$

For 14-15 seconds the displacement is equal to the area of the triangle below the time axis:

$$
\begin{aligned}
\text { Area } \triangle & =\frac{1}{2} b \times h \\
& =\frac{1}{2} \times 1 \times 2 \\
& =1 \mathrm{~m}
\end{aligned}
$$

Step 3 : Determine the total distance of the car
Now the total distance of the car is the sum of all of these areas:

$$
\begin{aligned}
\Delta x & =10+28+4+1 \\
& =43 \mathrm{~m} \\
& 51
\end{aligned}
$$

Step 4 : Determine the total displacement of the car

Now the total displacement of the car is just the sum of all of these areas. HOWEVER, because in the last second (from $t=14 \mathrm{~s}$ to $t=15 \mathrm{~s}$) the velocity of the car is negative, it means that the car was going in the opposite direction, i.e. back where it came from! So, to find the total displacement, we have to add the first 3 areas (those with positive displacements) and subtract the last one (because it is a displacement in the opposite direction).

$$
\begin{aligned}
\Delta x & =10+28+4-1 \\
& =41 \mathrm{~m} \text { in the positive direction }
\end{aligned}
$$

Worked Example 10: Velocity from a position vs. time graph

Question: The position vs. time graph below describes the motion of an athlete.

1. What is the velocity of the athlete during the first 4 seconds?
2. What is the velocity of the athlete from $t=4 \mathrm{~s}$ to $t=7 \mathrm{~s}$?

Answer

Step 1: The velocity during the first 4 seconds

The velocity is given by the gradient of a position vs. time graph. During the first 4 seconds, this is

$$
\begin{aligned}
v & =\frac{\Delta x}{\Delta t} \\
& =\frac{4-0}{4-0} \\
& =1 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 2: The velocity during the last 3 seconds
For the last 3 seconds we can see that the displacement stays constant. The graph shows a horisontal line and therefore the gradient is zero. Thus $v=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Worked Example 11: Drawing a v vs. t graph from an a vs. t graph

Question: The acceleration vs. time graph for a car starting from rest, is given below. Calculate the velocity of the car and hence draw the velocity vs. time graph.

Answer

Step 1 : Calculate the velocity values by using the area under each part of the graph.
The motion of the car can be divided into three time sections: 0-2 seconds; 2-4 seconds and $4-6$ seconds. To be able to draw the velocity vs. time graph, the velocity for each time section needs to be calculated. The velocity is equal to the area of the square under the graph:

For 0-2 seconds:

$$
\begin{aligned}
\text { Area } \square & =\ell \times b \\
& =2 \times 2 \\
& =4 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

For 2-4 seconds:

$$
\begin{aligned}
\text { Area } \square & =\ell \times b \\
& =2 \times 0 \\
& =0 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

The velocity of the car is $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at $\mathrm{t}=2 \mathrm{~s}$.

The velocity of the car is $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ from $t=2 \mathrm{~s}$ to $t=4 \mathrm{~s}$.

For 4-6 seconds:

$$
\begin{aligned}
\text { Area } \square & =\ell \times b \\
& =2 \times-2 \\
& =-4 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

The acceleration had a negative value, which means that the velocity is decreasing. It starts at a velocity of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and decreases to $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Step 2 : Now use the values to draw the velocity vs. time graph.

3.9 Equations of Motion

In this chapter we will look at the third way to describe motion. We have looked at describing motion in terms of graphs and words. In this section we examine equations that can be used to describe motion.

This section is about solving problems relating to uniformly accelerated motion. In other words, motion at constant acceleration.
The following are the variables that will be used in this section:

```
    \(v_{i}=\) initial velocity \(\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)\) at \(t=0 \mathrm{~s}\)
\(v_{f}=\) final velocity \(\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)\) at time \(t\)
\(\Delta x=\) displacement (m)
    \(t=\) time (s)
\(\Delta t=\) time interval (s)
    \(a=\) acceleration \(\left(\mathrm{m} \cdot \mathrm{s}^{-2}\right)\)
```

$$
\begin{align*}
v_{f} & =v_{i}+a t \tag{3.1}\\
\Delta x & =\frac{\left(v_{i}+v_{f}\right)}{2} t \tag{3.2}\\
\Delta x & =v_{i} t+\frac{1}{2} a t^{2} \tag{3.3}\\
v_{f}^{2} & =v_{i}^{2}+2 a \Delta x \tag{3.4}
\end{align*}
$$

The questions can vary a lot, but the following method for answering them will always work. Use this when attempting a question that involves motion with constant acceleration. You need any three known quantities ($v_{i}, v_{f}, \Delta x, t$ or a) to be able to calculate the fourth one.

1. Read the question carefully to identify the quantities that are given. Write them down.
2. Identify the equation to use. Write it down!!!
3. Ensure that all the values are in the correct unit and fill them in your equation.
4. Calculate the answer and fill in its unit.

Galileo Galilei of Pisa, Italy, was the first to determined the correct mathematical law for acceleration: the total distance covered, starting from rest, is proportional to the square of the time. He also concluded that objects retain their velocity unless a force - often friction - acts upon them, refuting the accepted Aristotelian hypothesis that objects "naturally" slow down and stop unless a force acts upon them. This principle was incorporated into Newton's laws of motion (1st law).

3.9.1 Finding the Equations of Motion

The following does not form part of the syllabus and can be considered additional information.

Derivation of Equation 3.1

According to the definition of acceleration:

$$
a=\frac{\Delta v}{t}
$$

where Δv is the change in velocity, i.e. $\Delta v=v_{f}-v_{i}$. Thus we have

$$
\begin{aligned}
a & =\frac{v_{f}-v_{i}}{t} \\
v_{f} & =v_{i}+a t
\end{aligned}
$$

Derivation of Equation 3.2

We have seen that displacement can be calculated from the area under a velocity vs. time graph. For uniformly accelerated motion the most complicated velocity vs. time graph we can have is a straight line. Look at the graph below - it represents an object with a starting velocity of v_{i}, accelerating to a final velocity v_{f} over a total time t.

To calculate the final displacement we must calculate the area under the graph - this is just the area of the rectangle added to the area of the triangle. This portion of the graph has been shaded for clarity.

$$
\begin{aligned}
\text { Area } \triangle & =\frac{1}{2} b \times h \\
& =\frac{1}{2} t \times\left(v_{f}-v_{i}\right) \\
& =\frac{1}{2} v_{f} t-\frac{1}{2} v_{i} t
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } \square & =\ell \times b \\
& =t \times v_{i} \\
& =v_{i} t
\end{aligned}
$$

$$
\begin{aligned}
\text { Displacement } & =\text { Area } \square+\text { Area } \triangle \\
\Delta x & =v_{i} t+\frac{1}{2} v_{f} t-\frac{1}{2} v_{i} t \\
\Delta x & =\frac{\left(v_{i}+v_{f}\right)}{2} t
\end{aligned}
$$

Derivation of Equation 3.3

This equation is simply derived by eliminating the final velocity v_{f} in equation 3.2. Remembering from equation 3.1 that

$$
v_{f}=v_{i}+a t
$$

then equation 3.2 becomes

$$
\begin{aligned}
\Delta x & =\frac{v_{i}+v_{i}+a t}{2} t \\
& =\frac{2 v_{i} t+a t^{2}}{2} \\
\Delta x & =v_{i} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Derivation of Equation 3.4

This equation is just derived by eliminating the time variable in the above equation. From Equation 3.1 we know

$$
t=\frac{v_{f}-v_{i}}{a}
$$

Substituting this into Equation 3.3 gives

$$
\begin{align*}
\Delta x & =v_{i}\left(\frac{v_{f}-v_{i}}{a}\right)+\frac{1}{2} a\left(\frac{v_{f}-v_{i}}{a}\right)^{2} \\
& =\frac{v_{i} v_{f}}{a}-\frac{v_{i}^{2}}{a}+\frac{1}{2} a\left(\frac{v_{f}^{2}-2 v_{i} v_{f}+v_{i}^{2}}{a^{2}}\right) \\
& =\frac{v_{i} v_{f}}{a}-\frac{v_{i}^{2}}{a}+\frac{v_{f}^{2}}{2 a}-\frac{v_{i} v_{f}}{a}+\frac{v_{i}^{2}}{2 a} \\
2 a \Delta x & =-2 v_{i}^{2}+v_{f}^{2}+v_{i}^{2} \\
v_{f}^{2} & =v_{i}^{2}+2 a \Delta x \tag{3.5}
\end{align*}
$$

This gives us the final velocity in terms of the initial velocity, acceleration and displacement and is independent of the time variable.

Worked Example 12: Equations of motion

Question: A racing car is travelling north. It accelerates uniformly covering a distance of 725 m in 10 s . If it has an initial velocity of $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, find its acceleration.

Answer

Step 1 : Identify what information is given and what is asked for
We are given:

$$
\begin{aligned}
v_{i} & =10 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\Delta x & =725 \mathrm{~m} \\
t & =10 \mathrm{~s} \\
a & =?
\end{aligned}
$$

Step 2 : Find an equation of motion relating the given information to the acceleration
If you struggle to find the correct equation, find the quantity that is not given and then look for an equation that does not have this quantity in it.
We can use equation 3.3

$$
\Delta x=v_{i} t+\frac{1}{2} a t^{2}
$$

Step 3 : Substitute your values in and find the answer

$$
\begin{aligned}
\Delta x & =v_{i} t+\frac{1}{2} a t^{2} \\
725 & =(10 \times 10)+\frac{1}{2} \mathrm{a} \times(10)^{2} \\
725-100 & =50 \mathrm{a} \\
a & =12,5 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

Step 4 : Quote the final answer

The racing car is accelerating at $12,5 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ north.

Worked Example 13: Equations of motion

Question: A motorcycle, travelling east, starts from rest, moves in a straight line with a constant acceleration and covers a distance of 64 m in 4 s . Calculate

- its acceleration
- its final velocity
- at what time the motorcycle had covered half the total distance
- what distance the motorcycle had covered in half the total time.

Answer

Step 1 : Identify what information is given and what is asked for We are given:

$$
\begin{aligned}
v_{i} & =0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { (because the object starts from rest.) } \\
\Delta x & =64 \mathrm{~m} \\
t & =4 \mathrm{~s} \\
a & =? \\
v_{f} & =? \\
t & =? \text { at half the distance } \Delta x=32 \mathrm{~m} . \\
\Delta x & =? \text { at half the time } t=2 \mathrm{~s}
\end{aligned}
$$

All quantities are in SI units.
Step 2 : Acceleration: Find a suitable equation to calculate the acceleration We can use equations 3.3

$$
\Delta x=v_{i} t+\frac{1}{2} a t^{2}
$$

Step 3 : Substitute the values and calculate the acceleration

$$
\begin{aligned}
\Delta x & =v_{i} t+\frac{1}{2} a t^{2} \\
64 & =(0 \times 4)+\frac{1}{2} a \times(4)^{2} \\
64 & =8 \mathrm{a} \\
a & =8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \text { east }
\end{aligned}
$$

Step 4 : Final velocity: Find a suitable equation to calculate the final velocity We can use equation 3.1 - remember we now also know the acceleration of the object.

$$
v_{f}=v_{i}+a t
$$

Step 5 : Substitute the values and calculate the final velocity

$$
\begin{aligned}
v_{f} & =v_{i}+a t \\
v_{f} & =0+(8)(4) \\
& =32 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { east }
\end{aligned}
$$

Step 6 : Time at half the distance: Find an equation to calculate the time We can use equation 3.3:

$$
\begin{aligned}
& \Delta x=v_{i}+\frac{1}{2} a t^{2} \\
& 32=(0) t+\frac{1}{2}(8)(t)^{2} \\
& 32=0+4 t^{2} \\
& 8=t^{2} \\
& t=2,83 \mathrm{~s} \\
& 58
\end{aligned}
$$

Step 7 : Distance at half the time: Find an equation to relate the distance and time
Half the time is 2 s , thus we have v_{i}, a and t-all in the correct units. We can use equation 3.3 to get the distance:

$$
\begin{aligned}
\Delta x & =v_{i} t+\frac{1}{2} a t^{2} \\
& =(0)(2)+\frac{1}{2}(8)(2)^{2} \\
& =16 \mathrm{~m} \text { east }
\end{aligned}
$$

Exercise: Acceleration

1. A car starts off at $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and accelerates at $1 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ for 10 s . What is its final velocity?
2. A train starts from rest, and accelerates at $1 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ for 10 s . How far does it move?
3. A bus is going $30 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and stops in 5 s . What is its stopping distance for this speed?
4. A racing car going at $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ stops in a distance of 20 m . What is its acceleration?
5. A ball has a uniform acceleration of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Assume the ball starts from rest. Determine the velocity and displacement at the end of 10 s .
6. A motorcycle has a uniform acceleration of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Assume the motorcycle has an initial velocity of $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Determine the velocity and displacement at the end of 12 s .
7. An aeroplane accelerates uniformly such that it goes from rest to $144 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ in 8 s . Calculate the acceleration required and the total distance that it has traveled in this time.

3.10 Applications in the Real-World

What we have learnt in this chapter can be directly applied to road safety. We can analyse the relationship between speed and stopping distance. The following worked example illustrates this application.

Worked Example 14: Stopping distance

Question: A truck is travelling at a constant velocity of $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ when the driver sees a child 50 m in front of him in the road. He hits the brakes to stop the truck. The truck accelerates at a rate of $-1.25 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. His reaction time to hit the brakes is 0,5 seconds. Will the truck hit the child?

Answer

Step 1 : Analyse the problem and identify what information is given

It is useful to draw a timeline like this one:

We need to know the following:

- What distance the driver covers before hitting the brakes.
- How long it takes the truck to stop after hitting the brakes.
- What total distance the truck covers to stop.

Step 2 : Calculate the distance AB

Before the driver hits the brakes, the truck is travelling at constant velocity. There is no acceleration and therefore the equations of motion are not used. To find the distance traveled, we use:

$$
\begin{aligned}
v & =\frac{d}{t} \\
10 & =\frac{d}{0,5} \\
d & =5 \mathrm{~m}
\end{aligned}
$$

The truck covers 5 m before the driver hits the brakes.

Step 3 : Calculate the time BC

We have the following for the motion between B and C :

$$
\begin{aligned}
v_{i} & =10 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
v_{f} & =0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
a & =-1,25 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
t & =?
\end{aligned}
$$

We can use equation 3.1

$$
\begin{aligned}
v_{f} & =v_{i}+a t \\
0 & =10+(-1,25) t \\
-10 & =-1,25 t \\
t & =8 \mathrm{~s}
\end{aligned}
$$

Step 4 : Calculate the distance BC

For the distance we can use equation 3.2 or equation 3.3. We will use equation 3.2:

$$
\begin{aligned}
\Delta x & =\frac{\left(v_{i}+v_{f}\right)}{2} t \\
\Delta x & =\frac{10+0}{s}(8) \\
\Delta x & =40 \mathrm{~m}
\end{aligned}
$$

Step 5 : Write the final answer

The total distance that the truck covers is $d_{A B}+d_{B C}=5+40=45$ meters. The child is 50 meters ahead. The truck will not hit the child.

3.11 Summary

- A reference point is a point from where you take your measurements.
- A frame of reference is a reference point with a set of directions.
- Your position is where you are located with respect to your reference point.
- The displacement of an object is how far it is from the reference point. It is the shortest distance between the object and the reference point. It has magnitude and direction because it is a vector.
- The distance of an object is the length of the path travelled from the starting point to the end point. It has magnitude only because it is a scalar.
- A vector is a physical quantity with magnitude and direction.
- A scalar is a physical quantity with magnitude only.
- Speed (s) is the distance covered (d) divided by the time taken $(\Delta \mathrm{t})$:

$$
s=\frac{d}{\Delta t}
$$

- Average velocity (v) is the displacement (Δx) divided by the time taken $(\Delta \mathrm{t})$:

$$
v=\frac{\Delta x}{\Delta t}
$$

- Instantaneous speed is the speed at a specific instant in time.
- Instantaneous velocity is the velocity at a specific instant in time.
- Acceleration (a) is the change in velocity $(\Delta \mathrm{x})$ over a time interval $(\Delta \mathrm{t})$:

$$
a=\frac{\Delta v}{\Delta t}
$$

- The gradient of a position - time graph (x vs. t) give the velocity.
- The gradient of a velocity - time graph (v vs. t) give the acceleration.
- The area under a velocity - time graph (v vs. t) give the displacement.
- The area under an acceleration - time graph (a vs. t) gives the velocity.
- The graphs of motion are summarised in figure 3.10.
- The equations of motion are used where constant acceleration takes place:

$$
\begin{aligned}
v_{f} & =v_{i}+a t \\
\Delta x & =\frac{\left(v_{i}+v_{f}\right)}{2} t \\
\Delta x & =v_{i} t+\frac{1}{2} a t^{2} \\
v_{f}^{2} & =v_{i}^{2}+2 a \Delta x
\end{aligned}
$$

3.12 End of Chapter Exercises: Motion in One Dimension

1. Give one word/term for the following descriptions.
(a) The shortest path from start to finish.
(b) A physical quantity with magnitude and direction.
(c) The quantity defined as a change in velocity over a time period.
(d) The point from where you take measurements.
(e) The distance covered in a time interval.
(f) The velocity at a specific instant in time.
2. Choose an item from column B that match the description in column A. Write down only the letter next to the question number. You may use an item from column B more than once.

Column A	Column B
a. The area under a velocity - time graph	gradient
b. The gradient of a velocity - time graph	area
c. The area under an acceleration - time graph	velocity
d. The gradient of a displacement - time graph	displacement acceleration slope

3. Indicate whether the following statements are TRUE or FALSE. Write only 'true' or 'false'. If the statement is false, write down the correct statement.
(a) A scalar is the displacement of an object over a time interval.
(b) The position of an object is where it is located.
(c) The sign of the velocity of an object tells us in which direction it is travelling.
(d) The acceleration of an object is the change of its displacement over a period in time.
4. [SC 2003/11] A body accelerates uniformly from rest for t_{0} seconds after which it continues with a constant velocity. Which graph is the correct representation of the body's motion?

(a)

(b)

(c)

(d)
5. [SC 2003/11] The velocity-time graphs of two cars are represented by P and Q as shown

The difference in the distance travelled by the two cars (in m) after 4 s is ...
(a) 12
(b) 6
(c) 2
(d) 0
6. [IEB 2005/11 HG] The graph that follows shows how the speed of an athlete varies with time as he sprints for 100 m .

Which of the following equations can be used to correctly determine the time t for which he accelerates?
(a) $100=(10)(11)-\frac{1}{2}(10) t$
(b) $100=(10)(11)+\frac{1}{2}(10) t$
(c) $100=10 t+\frac{1}{2}(10) t^{2}$
(d) $100=\frac{1}{2}(0) t+\frac{1}{2}(10) t^{2}$
7. [SC 2002/03 HG1] In which one of the following cases will the distance covered and the magnitude of the displacement be the same?
(a) A girl climbs a spiral staircase.
(b) An athlete completes one lap in a race.
(c) A raindrop falls in still air.
(d) A passenger in a train travels from Cape Town to Johannesburg.
8. [SC 2003/11] A car, travelling at constant velocity, passes a stationary motor cycle at a traffic light. As the car overtakes the motorcycle, the motorcycle accelerates uniformly from rest for 10 s . The following displacement-time graph represents the motions of both vehicles from the traffic light onwards.

(a) Use the graph to find the magnitude of the constant velocity of the car.
(b) Use the information from the graph to show by means of calculation that the magnitude of the acceleration of the motorcycle, for the first 10 s of its motion is 7,5 $\mathrm{m} \cdot \mathrm{s}^{-2}$.
(c) Calculate how long (in seconds) it will take the motorcycle to catch up with the car (point X on the time axis).
(d) How far behind the motorcycle will the car be after 15 seconds?
9. [IEB 2005/11 HG] Which of the following statements is true of a body that accelerates uniformly?
(a) Its rate of change of position with time remains constant.
(b) Its position changes by the same amount in equal time intervals.
(c) Its velocity increases by increasing amounts in equal time intervals.
(d) Its rate of change of velocity with time remains constant.
10. [IEB 2003/11 HG1] The velocity-time graph for a car moving along a straight horizontal road is shown below.

Which of the following expressions gives the magnitude of the average velocity of the car?
(a) $\frac{A r e a A}{t}$
(b) $\frac{\text { AreaA }+ \text { AreaB }}{t}$
(c) $\frac{A r e a B}{t}$
(d) $\frac{\text { AreaA }- \text { AreaB }}{t}$
11. [SC 2002/11 SG] A car is driven at $25 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in a municipal area. When the driver sees a traffic officer at a speed trap, he realises he is travelling too fast. He immediately applies the brakes of the car while still 100 m away from the speed trap.
(a) Calculate the magnitude of the minimum acceleration which the car must have to avoid exceeding the speed limit, if the municipal speed limit is $16.6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
(b) Calculate the time from the instant the driver applied the brakes until he reaches the speed trap. Assume that the car's velocity, when reaching the trap, is $16.6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
12. A traffic officer is watching his speed trap equipment at the bottom of a valley. He can see cars as they enter the valley 1 km to his left until they leave the valley 1 km to his right. Nelson is recording the times of cars entering and leaving the valley for a school project. Nelson notices a white Toyota enter the valley at 11:01:30 and leave the valley at 11:02:42. Afterwards, Nelson hears that the traffic officer recorded the Toyota doing 140 $\mathrm{km} \cdot \mathrm{hr}^{-1}$.
(a) What was the time interval (Δt) for the Toyota to travel through the valley?
(b) What was the average speed of the Toyota?
(c) Convert this speed to $\mathrm{km} \cdot \mathrm{hr}^{-1}$.
(d) Discuss whether the Toyota could have been travelling at $140 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ at the bottom of the valley.
(e) Discuss the differences between the instantaneous speed (as measured by the speed trap) and average speed (as measured by Nelson).
13. [IEB $2003 / 11 \mathrm{HG}$] A velocity-time graph for a ball rolling along a track is shown below. The graph has been divided up into 3 sections, A, B and C for easy reference. (Disregard any effects of friction.)

(a) Use the graph to determine the following:
i. the speed 5 s after the start
ii. the distance travelled in Section A
iii. the acceleration in Section C
(b) At time t_{1} the velocity-time graph intersects the time axis. Use an appropriate equation of motion to calculate the value of time t_{1} (in s).
(c) Sketch a displacement-time graph for the motion of the ball for these 12 s . (You do not need to calculate the actual values of the displacement for each time interval, but do pay attention to the general shape of this graph during each time interval.)
14. In towns and cities, the speed limit is $60 \mathrm{~km} \cdot \mathrm{hr}^{-1}$. The length of the average car is 3.5 m , and the width of the average car is 2 m . In order to cross the road, you need to be able to walk further than the width of a car, before that car reaches you. To cross safely, you should be able to walk at least 2 m further than the width of the car (4 m in total), before the car reaches you.
(a) If your walking speed is $4 \mathrm{~km} \cdot \mathrm{hr}{ }^{-1}$, what is your walking speed in $\mathrm{m} \cdot \mathrm{s}^{-1}$?
(b) How long does it take you to walk a distance equal to the width of the average car?
(c) What is the speed in $\mathrm{m} \cdot \mathrm{s}^{-1}$ of a car travelling at the speed limit in a town?
(d) How many metres does a car travelling at the speed limit travel, in the same time that it takes you to walk a distance equal to the width of car?
(e) Why is the answer to the previous question important?
(f) If you see a car driving toward you, and it is 28 m away (the same as the length of 8 cars), is it safe to walk across the road?
(g) How far away must a car be, before you think it might be safe to cross? How many car-lengths is this distance?
15. A bus on a straight road starts from rest at a bus stop and accelerates at $2 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ until it reaches a speed of $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Then the bus travels for 20 s at a constant speed until the driver sees the next bus stop in the distance. The driver applies the brakes, stopping the bus in a uniform manner in 5 s .
(a) How long does the bus take to travel from the first bus stop to the second bus stop?
(b) What is the average velocity of the bus during the trip?

Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright (c) 2000, 2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, $A T_{E} X$ input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the
actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

