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Chapter 1

Introduction to Book

1.1 The Language of Mathematics

The purpose of any language, like English or Zulu, is to make it possible for people to commu-
nicate. All languages have an alphabet, which is a group of letters that are used to make up
words. There are also rules of grammar which explain how words are supposed to be used to
build up sentences. This is needed because when a sentence is written, the person reading the
sentence understands exactly what the writer is trying to explain. Punctuation marks (like a full
stop or a comma) are used to further clarify what is written.

Mathematics is a language, specifically it is the language of Science. Like any language, mathe-
matics has letters (known as numbers) that are used to make up words (known as expressions),
and sentences (known as equations). The punctuation marks of mathematics are the differ-
ent signs and symbols that are used, for example, the plus sign (+), the minus sign (-), the
multiplication sign (×), the equals sign (=) and so on. There are also rules that explain how
the numbers should be used together with the signs to make up equations that express some
meaning.
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Grade 10
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Chapter 2

Review of Past Work

2.1 Introduction

This chapter describes some basic concepts which you have seen in earlier grades, and lays the
foundation for the remainder of this book. You should feel confident with the content in this
chapter, before moving on with the rest of the book.

So try out your skills on the exercises throughout this chapter and ask your teacher for more
questions just like them. You can also try making up your own questions, solve them and try
them out on your classmates to see if you get the same answers.

Practice is the only way to get good at maths!

2.2 What is a number?

A number is a way to represent quantity. Numbers are not something that you can touch or
hold, because they are not physical. But you can touch three apples, three pencils, three books.
You can never just touch three, you can only touch three of something. However, you do not
need to see three apples in front of you to know that if you take one apple away, that there will
be two apples left. You can just think about it. That is your brain representing the apples in
numbers and then performing arithmetic on them.

A number represents quantity because we can look at the world around us and quantify it using
numbers. How many minutes? How many kilometers? How many apples? How much money?
How much medicine? These are all questions which can only be answered using numbers to tell
us “how much” of something we want to measure.

A number can be written many different ways and it is always best to choose the most appropriate
way of writing the number. For example, “a half” may be spoken aloud or written in words,
but that makes mathematics very difficult and also means that only people who speak the same
language as you can understand what you mean. A better way of writing “a half” is as a fraction
1
2 or as a decimal number 0,5. It is still the same number, no matter which way you write it.

In high school, all the numbers which you will see are called real numbers and mathematicians
use the symbol R to stand for the set of all real numbers, which simply means all of the real
numbers. Some of these real numbers can be written in a particular way and some cannot.
Different types of numbers are described in detail in Section 1.12.

2.3 Sets

A set is a group of objects with a well-defined criterion for membership. For example, the
criterion for belonging to a set of apples, is that it must be an apple. The set of apples can
then be divided into red apples and green apples, but they are all still apples. All the red apples
form another set which is a sub-set of the set of apples. A sub-set is part of a set. All the green
apples form another sub-set.

7



2.4 CHAPTER 2. REVIEW OF PAST WORK

Now we come to the idea of a union, which is used to combine things. The symbol for union
is ∪. Here we use it to combine two or more intervals. For example, if x is a real number such
that 1 < x ≤ 3 or 6 ≤ x < 10, then the set of all the possible x values is

(1,3] ∪ [6,10) (2.1)

where the ∪ sign means the union (or combination) of the two intervals. We use the set and
interval notation and the symbols described because it is easier than having to write everything
out in words.

2.4 Letters and Arithmetic

The simplest things that can be done with numbers is to add, subtract, multiply or divide them.
When two numbers are added, subtracted, multiplied or divided, you are performing arithmetic1.
These four basic operations can be performed on any two real numbers.

Mathematics as a language uses special notation to write things down. So instead of:

one plus one is equal to two

mathematicians write
1 + 1 = 2

In earlier grades, place holders were used to indicate missing numbers in an equation.

1 + � = 2

4 − � = 2

� + 3 − 2� = 2

However, place holders only work well for simple equations. For more advanced mathematical
workings, letters are usually used to represent numbers.

1 + x = 2

4 − y = 2

z + 3 − 2z = 2

These letters are referred to as variables, since they can take on any value depending on what
is required. For example, x = 1 in Equation 2.2, but x = 26 in 2 + x = 28.
A constant has a fixed value. The number 1 is a constant. The speed of light in a vacuum
is also a constant which has been defined to be exactly 299 792 458 m·s−1(read metres per
second). The speed of light is a big number and it takes up space to always write down the
entire number. Therefore, letters are also used to represent some constants. In the case of the
speed of light, it is accepted that the letter c represents the speed of light. Such constants
represented by letters occur most often in physics and chemistry.

Additionally, letters can be used to describe a situation, mathematically. For example, the
following equation

x + y = z (2.2)

can be used to describe the situation of finding how much change can be expected for buying
an item. In this equation, y represents the price of the item you are buying, x represents the
amount of change you should get back and z is the amount of money given to the cashier. So,
if the price is R10 and you gave the cashier R15, then write R15 instead of z and R10 instead
of y and the change is then x.

x + 10 = 15 (2.3)

We will learn how to “solve” this equation towards the end of this chapter.

1Arithmetic is derived from the Greek word arithmos meaning number.
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2.5 Addition and Subtraction

Addition (+) and subtraction (-) are the most basic operations between numbers but they are
very closely related to each other. You can think of subtracting as being the opposite of adding
since adding a number and then subtracting the same number will not change what you started
with. For example, if we start with a and add b, then subtract b, we will just get back to a again

a + b − b = a (2.4)

5 + 2 − 2 = 5

If we look at a number line, then addition means that we move to the right and subtraction
means that we move to the left.

The order in which numbers are added does not matter, but the order in which numbers are
subtracted does matter. This means that:

a + b = b + a (2.5)

a − b 6= b − a if a 6= b

The sign 6= means “is not equal to”. For example, 2 + 3 = 5 and 3 + 2 = 5, but 5 − 3 = 2 and
3 − 5 = −2. −2 is a negative number, which is explained in detail in Section 2.8.

Extension: Commutativity for Addition
The fact that a + b = b + a, is known as the commutative property for addition.

2.6 Multiplication and Division

Just like addition and subtraction, multiplication (×, ·) and division (÷, /) are opposites of each
other. Multiplying by a number and then dividing by the same number gets us back to the start
again:

a × b ÷ b = a (2.6)

5 × 4 ÷ 4 = 5

Sometimes you will see a multiplication of letters as a dot or without any symbol. Don’t worry,
its exactly the same thing. Mathematicians are lazy and like to write things in the shortest,
neatest way possible.

abc = a × b × c (2.7)

a · b · c = a × b × c

It is usually neater to write known numbers to the left, and letters to the right. So although 4x
and x4 are the same thing, it looks better to write 4x. In this case, the “4” is a constant that
is referred to as the coefficient of x.

Extension: Commutativity for Multiplication
The fact that ab = ba is known as the commutative property of multiplication.
Therefore, both addition and multiplication are described as commutative operations.

2.7 Brackets

Brackets2 in mathematics are used to show the order in which you must do things. This is
important as you can get different answers depending on the order in which you do things. For

2Sometimes people say “parenthesis” instead of “brackets”.
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example
(5 × 5) + 20 = 45 (2.8)

whereas
5 × (5 + 20) = 125 (2.9)

If there are no brackets, you should always do multiplications and divisions first and then additions
and subtractions3. You can always put your own brackets into equations using this rule to make
things easier for yourself, for example:

a × b + c ÷ d = (a × b) + (c ÷ d) (2.10)

5 × 5 + 20 ÷ 4 = (5 × 5) + (20 ÷ 4)

If you see a multiplication outside a bracket like this

a(b + c) (2.11)

3(4 − 3)

then it means you have to multiply each part inside the bracket by the number outside

a(b + c) = ab + ac (2.12)

3(4 − 3) = 3 × 4 − 3 × 3 = 12 − 9 = 3

unless you can simplify everything inside the bracket into a single term. In fact, in the above
example, it would have been smarter to have done this

3(4 − 3) = 3 × (1) = 3 (2.13)

It can happen with letters too

3(4a − 3a) = 3 × (a) = 3a (2.14)

Extension: Distributivity
The fact that a(b + c) = ab + ac is known as the distributive property.

If there are two brackets multiplied by each other, then you can do it one step at a time

(a + b)(c + d) = a(c + d) + b(c + d) (2.15)

= ac + ad + bc + bd

(a + 3)(4 + d) = a(4 + d) + 3(4 + d)

= 4a + ad + 12 + 3d

2.8 Negative Numbers

2.8.1 What is a negative number?

Negative numbers can be very confusing to begin with, but there is nothing to be afraid of. The
numbers that are used most often are greater than zero. These numbers are known as positive
numbers.

A negative number is simply a number that is less than zero. So, if we were to take a positive
number a and subtract it from zero, the answer would be the negative of a.

0 − a = −a

3Multiplying and dividing can be performed in any order as it doesn’t matter. Likewise it doesn’t matter which
order you do addition and subtraction. Just as long as you do any ×÷ before any +−.
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On a number line, a negative number appears to the left of zero and a positive number appears
to the right of zero.

-1-2-3 0 1 2 3

positive numbersnegative numbers

Figure 2.1: On the number line, numbers increase towards the right and decrease towards the
left. Positive numbers appear to the right of zero and negative numbers appear to the left of
zero.

2.8.2 Working with Negative Numbers

When you are adding a negative number, it is the same as subtracting that number if it were
positive. Likewise, if you subtract a negative number, it is the same as adding the number if it
were positive. Numbers are either positive or negative, and we call this their s ign. A positive
number has positive sign (+), and a negative number has a negative sign (-).

Subtraction is actually the same as adding a negative number.

In this example, a and b are positive numbers, but −b is a negative number

a − b = a + (−b) (2.16)

5 − 3 = 5 + (−3)

So, this means that subtraction is simply a short-cut for adding a negative number, and instead
of writing a + (−b), we write a − b. This also means that −b + a is the same as a − b. Now,
which do you find easier to work out?

Most people find that the first way is a bit more difficult to work out than the second way. For
example, most people find 12 − 3 a lot easier to work out than −3 + 12, even though they are
the same thing. So, a − b, which looks neater and requires less writing, is the accepted way of
writing subtractions.

Table 2.1 shows how to calculate the sign of the answer when you multiply two numbers together.
The first column shows the sign of the first number, the second column gives the sign of the
second number, and the third column shows what sign the answer will be. So multiplying or

a b a × b or a ÷ b

+ + +
+ - -
- + -
- - +

Table 2.1: Table of signs for multiplying or dividing two numbers.

dividing a negative number by a positive number always gives you a negative number, whereas
multiplying or dividing numbers which have the same sign always gives a positive number. For
example, 2 × 3 = 6 and −2 ×−3 = 6, but −2 × 3 = −6 and 2 ×−3 = −6.

Adding numbers works slightly differently, have a look at Table 2.2. The first column shows the
sign of the first number, the second column gives the sign of the second number, and the third
column shows what sign the answer will be.

a b a + b

+ + +
+ - ?
- + ?
- - -

Table 2.2: Table of signs for adding two numbers.
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If you add two positive numbers you will always get a positive number, but if you add two
negative numbers you will always get a negative number. If the numbers have different sign,
then the sign of the answer depends on which one is bigger.

2.8.3 Living Without the Number Line

The number line in Figure 2.1 is a good way to visualise what negative numbers are, but it can
get very inefficient to use it every time you want to add or subtract negative numbers. To keep
things simple, we will write down three tips that you can use to make working with negative
numbers a little bit easier. These tips will let you work out what the answer is when you add or
subtract numbers which may be negative and will also help you keep your work tidy and easier
to understand.

Negative Numbers Tip 1

If you are given an equation like −a+b, then it is easier to move the numbers around so that the
equation looks easier. For this case, we have seen that adding a negative number to a positive
number is the same as subtracting the number from the positive number. So,

−a + b = b − a (2.17)

−5 + 10 = 10 − 5 = 5

This makes equations easier to understand. For example, a question like “What is −7 + 11?”
looks a lot more complicated than “What is 11 − 7?”, even though they are exactly the same
question.

Negative Numbers Tip 2

When you have two negative numbers like −3−7, you can calculate the answer by simply adding
together the numbers as if they were positive and then putting a negative sign in front.

−c − d = −(c + d) (2.18)

−7 − 2 = −(7 + 2) = −9

Negative Numbers Tip 3

In Table 2.2 we saw that the sign of two numbers added together depends on which one is bigger.
This tip tells us that all we need to do is take the smaller number away from the larger one,
and remember to put a negative sign before the answer if the bigger number was subtracted to
begin with. In this equation, F is bigger than e.

e − F = −(F − e) (2.19)

2 − 11 = −(11 − 2) = −9

You can even combine these tips together, so for example you can use Tip 1 on −10 + 3 to get
3 − 10, and then use Tip 3 to get −(10 − 3) = −7.

Exercise: Negative Numbers

1. Calculate:
(a) (−5) − (−3) (b) (−4) + 2 (c) (−10) ÷ (−2)
(d) 11 − (−9) (e) −16 − (6) (f) −9 ÷ 3 × 2
(g) (−1) × 24 ÷ 8 × (−3) (h) (−2) + (−7) (i) 1 − 12
(j) 3 − 64 + 1 (k) −5 − 5 − 5 (l) −6 + 25
(m) −9 + 8 − 7 + 6 − 5 + 4 − 3 + 2 − 1
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2. Say whether the sign of the answer is + or -

(a) −5 + 6 (b) −5 + 1 (c) −5 ÷−5
(d) −5 ÷ 5 (e) 5 ÷−5 (f) 5 ÷ 5
(g) −5 ×−5 (h) −5 × 5 (i) 5 ×−5
(j) 5 × 5

2.9 Rearranging Equations

Now that we have described the basic rules of negative and positive numbers and what to do
when you add, subtract, multiply and divide them, we are ready to tackle some real mathematics
problems!

Earlier in this chapter, we wrote a general equation for calculating how much change (x) we can
expect if we know how much an item costs (y) and how much we have given the cashier (z).
The equation is:

x + y = z (2.20)

So, if the price is R10 and you gave the cashier R15, then write R15 instead of z and R10 instead
of y.

x + 10 = 15 (2.21)

Now, that we have written this equation down, how exactly do we go about finding what the
change is? In mathematical terms, this is known as solving an equation for an unknown (x in
this case). We want to re-arrange the terms in the equation, so that only x is on the left hand
side of the = sign and everything else is on the right.

The most important thing to remember is that an equation is like a set of weighing scales. In
order to keep the scales balanced, whatever, is done to one side, must be done to the other.

Method: Rearranging Equations

You can add, subtract, multiply or divide both sides of an equation by any number you want, as
long as you always do it to both sides.

So for our example we could subtract y from both sides

x + y = z (2.22)

x + y − y = z − y

x = z − y

x = 15 − 10

= 5

so now we can find the change is the price subtracted from the amount handed over to the
cashier. In the example, the change should be R5. In real life we can do this in our head, the
human brain is very smart and can do arithmetic without even knowing it.

When you subtract a number from both sides of an equation, it looks just like you moved a
positive number from one side and it became a negative on the other, which is exactly what
happened. Likewise if you move a multiplied number from one side to the other, it looks like it
changed to a divide. This is because you really just divided both sides by that number, and a

13
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x + y z

x + y − y z − y

divide the other side too.

Figure 2.2: An equation is like a set of weighing scales. In order to keep the scales balanced,
you must do the same thing to both sides. So, if you add, subtract, multiply or divide the one
side, you must add, subtract, multiply or
divide the other side too.

number divided by itself is just 1

a(5 + c) = 3a (2.23)

a(5 + c) ÷ a = 3a ÷ a
a

a
× (5 + c) = 3 × a

a
1 × (5 + c) = 3 × 1

5 + c = 3

c = 3 − 5 = −2

However you must be careful when doing this, as it is easy to make mistakes.

The following is the wrong thing to do

5a + c = 3a (2.24)

5 + c 6= 4 3a÷ a

Can you see why it is wrong? It is wrong because we did not divide the c term by a as well. The
correct thing to do is

5a + c = 3a (2.25)

5 + c ÷ a = 3

c ÷ a = 3 − 5 = −2

Exercise: Rearranging Equations
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1. If 3(2r − 5) = 27, then 2r − 5 = .....

2. Find the value for x if 0,5(x − 8) = 0,2x + 11

3. Solve 9 − 2n = 3(n + 2)

4. Change the formula P = A + Akt to A =

5. Solve for x: 1
ax

+ 1
bx

= 1

2.10 Fractions and Decimal Numbers

A fraction is one number divided by another number. There are several ways to write a number
divided by another one, such as a÷ b, a/b and a

b
. The first way of writing a fraction is very hard

to work with, so we will use only the other two. We call the number on the top, the numerator
and the number on the bottom the denominator. For example,

1

5

numerator = 1

denominator = 5
(2.26)

Extension: Definition - Fraction
The word fraction means part of a whole.

The reciprocal of a fraction is the fraction turned upside down, in other words the numerator
becomes the denominator and the denominator becomes the numerator. So, the reciprocal of 2

3
is 3

2 .
A fraction multiplied by its reciprocal is always equal to 1 and can be written

a

b
× b

a
= 1 (2.27)

This is because dividing by a number is the same as multiplying by its reciprocal.

Extension: Definition - Multiplicative Inverse
The reciprocal of a number is also known as the multiplicative inverse.

A decimal number is a number which has an integer part and a fractional part. The integer
and the fractional parts are separated by a decimal point, which is written as a comma in South
Africa. For example the number 3 14

100 can be written much more cleanly as 3,14.

All real numbers can be written as a decimal number. However, some numbers would take a
huge amount of paper (and ink) to write out in full! Some decimal numbers will have a number
which will repeat itself, such as 0,33333 . . . where there are an infinite number of 3’s. We can
write this decimal value by using a dot above the repeating number, so 0,3̇ = 0,33333 . . .. If
there are two repeating numbers such as 0,121212 . . . then you can place dots5 on each of the
repeated numbers 0,1̇2̇ = 0,121212 . . .. These kinds of repeating decimals are called recurring
decimals.

Table 2.3 lists some common fractions and their decimal forms.

5or a bar, like 0,12
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Fraction Decimal Form
1
20 0,05

1
16 0,0625

1
10 0,1

1
8 0,125

1
6 0,166̇

1
5 0,2

1
2 0,5

3
4 0,75

Table 2.3: Some common fractions and their equivalent decimal forms.

2.11 Scientific Notation

In science one often needs to work with very large or very small numbers. These can be written
more easily in scientific notation, which has the general form

a × 10m (2.28)

where a is a decimal number between 0 and 10 that is rounded off to a few decimal places. The
m is an integer and if it is positive it represents how many zeros should appear to the right of
a. If m is negative then it represents how many times the decimal place in a should be moved
to the left. For example 3,2 × 103 represents 32000 and 3,2 × 10−3 represents 0,0032.

If a number must be converted into scientific notation, we need to work out how many times
the number must be multiplied or divided by 10 to make it into a number between 1 and 10
(i.e. we need to work out the value of the exponent m) and what this number is (the value of
a). We do this by counting the number of decimal places the decimal point must move.

For example, write the speed of light which is 299 792 458 ms−1 in scientific notation, to two
decimal places. First, determine where the decimal point must go for two decimal places (to
find a) and then count how many places there are after the decimal point to determine m.

In this example, the decimal point must go after the first 2, but since the number after the 9 is
a 7, a = 3,00.

So the number is 3,00 × 10m, where m = 8, because there are 8 digits left after the decimal
point. So the speed of light in scientific notation, to two decimal places is 3,00 × 108ms−1.

As another example, the size of the HI virus is around 120 × 10−9 m. This is equal to 120 ×
0,000000001 m which is 0,00000012 m.

2.12 Real Numbers

Now that we have learnt about the basics of mathematics, we can look at what real numbers
are in a little more detail. The following are examples of real numbers and it is seen that each
number is written in a different way.

√
3, 1,2557878,

56

34
, 10, 2,1, − 5, − 6,35, − 1

90
(2.29)

Depending on how the real number is written, it can be further labelled as either rational,
irrational, integer or natural. A set diagram of the different number types is shown in Figure 2.3.
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RQZN

Figure 2.3: Set diagram of all the real numbers R, the rational numbers Q, the integers Z and
the natural numbers N. The irrational numbers are the numbers not inside the set of rational
numbers. All of the integers are also rational numbers, but not all rational numbers are integers.

Extension: Non-Real Numbers
All numbers that are not real numbers have imaginary components. We will not see
imaginary numbers in this book but you will see that they come from

√
−1. Since

we won’t be looking at numbers which are not real, if you see a number you can be
sure it is a real one.

2.12.1 Natural Numbers

The first type of numbers that are learnt about are the numbers that were used for counting.
These numbers are called natural numbers and are the simplest numbers in mathematics.

0, 1, 2, 3, 4 . . . (2.30)

Mathematicians use the symbol N to mean the set of all natural numbers. The natural numbers
are a subset of the real numbers since every natural number is also a real number.

2.12.2 Integers

The integers are all of the natural numbers and their negatives

. . . − 4,−3,−2,−1, 0, 1, 2, 3, 4 . . . (2.31)

Mathematicians use the symbol Z to mean the set of all integers. The integers are a subset of
the real numbers, since every integer is a real number.

2.12.3 Rational Numbers

The natural numbers and the integers are only able to describe quantities that are whole or
complete. For example you can have 4 apples, but what happens when you divide one apple
into 4 equal pieces and share it among your friends? Then it is not a whole apple anymore and
a different type of number is needed to describe the apples. This type of number is known as a
rational number.

A rational number is any number which can be written as:

a

b
(2.32)

where a and b are integers and b 6= 0.

The following are examples of rational numbers:

20

9
,

−1

2
,

20

10
,

3

15
(2.33)
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Extension: Notation Tip
Rational numbers are any number that can be expressed in the form a

b
; a, b ∈ Z; b 6= 0

which means “the set of numbers a
b

when a and b are integers”.

Mathematicians use the symbol Q to mean the set of all rational numbers. The set of rational
numbers contains all numbers which can be written as terminating or repeating decimals.

Extension: Rational Numbers
All integers are rational numbers with denominator 1.

You can add and multiply rational numbers and still get a rational number at the end, which is
very useful. If we have 4 integers, a, b, c and d, then the rules for adding and multiplying rational
numbers are

a

b
+

c

d
=

ad + bc

bd
(2.34)

a

b
× c

d
=

ac

bd
(2.35)

Extension: Notation Tip
The statement ”4 integers a, b, c and d” can be written formally as {a, b, c, d} ∈ Z

because the ∈ symbol means in and we say that a, b, c and d are in the set of integers.

Two rational numbers (a
b

and c
d
) represent the same number if ad = bc. It is always best

to simplify any rational number so that the denominator is as small as possible. This can be
achieved by dividing both the numerator and the denominator by the same integer. For example,
the rational number 1000/10000 can be divided by 1000 on the top and the bottom, which gives
1/10. 2

3 of a pizza is the same as 8
12 (Figure 2.4).

8
12

2
3

Figure 2.4: 8
12 of the pizza is the same as 2

3 of the pizza.

You can also add rational numbers together by finding a lowest common denominator and then
adding the numerators. Finding a lowest common denominator means finding the lowest number
that both denominators are a factor6 of. A factor of a number is an integer which evenly divides
that number without leaving a remainder. The following numbers all have a factor of 3

3, 6, 9, 12, 15, 18, 21, 24 . . .

and the following all have factors of 4

4, 8, 12, 16, 20, 24, 28 . . .

6Some people say divisor instead of factor.
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The common denominators between 3 and 4 are all the numbers that appear in both of these
lists, like 12 and 24. The lowest common denominator of 3 and 4 is the number that has both
3 and 4 as factors, which is 12.

For example, if we wish to add 3
4 + 2

3 , we first need to write both fractions so that their
denominators are the same by finding the lowest common denominator, which we know is 12.
We can do this by multiplying 3

4 by 3
3 and 2

3 by 4
4 . 3

3 and 4
4 are really just complicated ways of

writing 1. Multiplying a number by 1 doesn’t change the number.

3

4
+

2

3
=

3

4
× 3

3
+

2

3
× 4

4
(2.36)

=
3 × 3

4 × 3
+

2 × 4

3 × 4

=
9

12
+

8

12

=
9 + 8

12

=
17

12

Dividing by a rational number is the same as multiplying by its reciprocal, as long as neither the
numerator nor the denominator is zero:

a

b
÷ c

d
=

a

b
.
d

c
=

ad

bc
(2.37)

A rational number may be a proper or improper fraction.

Proper fractions have a numerator that is smaller than the denominator. For example,

−1

2
,

3

15
,
−5

−20

are proper fractions.

Improper fractions have a numerator that is larger than the denominator. For example,

−10

2
,
13

15
,
−53

−20

are improper fractions. Improper fractions can always be written as the sum of an integer and a
proper fraction.

Converting Rationals into Decimal Numbers

Converting rationals into decimal numbers is very easy.

If you use a calculator, you can simply divide the numerator by the denominator.

If you do not have a calculator, then you unfortunately have to use long division.

Since long division, was first taught in primary school, it will not be discussed here. If you have
trouble with long division, then please ask your friends or your teacher to explain it to you.

2.12.4 Irrational Numbers

An irrational number is any real number that is not a rational number. When expressed as
decimals these numbers can never be fully written out as they have an infinite number of
decimal places which never fall into a repeating pattern, for example

√
2 = 1,41421356 . . .,

π = 3,14159265 . . .. π is a Greek letter and is pronounced “pie”.

Exercise: Real Numbers
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1. Identify the number type (rational, irrational, real, integer) of each of the
following numbers:

(a) c
d

if c is an integer and if d is irrational.

(b) 3
2

(c) -25

(d) 1,525

(e)
√

10

2. Is the following pair of numbers real and rational or real and irrational? Explain.√
4; 18

2.13 Mathematical Symbols

The following is a table of the meanings of some mathematical signs and symbols that you should
have come across in earlier grades.

Sign or Symbol Meaning

> greater than
< less than
≥ greater than or equal to
≤ less than or equal to

So if we write x > 5, we say that x is greater than 5 and if we write x ≥ y, we mean that x
can be greater than or equal to y. Similarly, < means ‘is less than’ and ≤ means ‘is less than
or equal to’. Instead of saying that x is between 6 and 10, we often write 6 < 10. This directly
means ‘six is less than x which in turn is less than ten’.

Exercise: Mathematical Symbols

1. Write the following in symbols:

(a) x is greater than 1

(b) y is less than or equal to z

(c) a is greater than or equal to 21

(d) p is greater than or equal to 21 and p is less than or equal to 25

2.14 Infinity

Infinity (symbol ∞) is usually thought of as something like “the largest possible number” or “the
furthest possible distance”. In mathematics, infinity is often treated as if it were a number, but
it is clearly a very different type of “number” than the integers or reals.

When talking about recurring decimals and irrational numbers, the term infinite was used to
describe never-ending digits.
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2.15 End of Chapter Exercises

1. Calculate

(a) 18 − 6 × 2

(b) 10 + 3(2 + 6)

(c) 50 − 10(4 − 2) + 6

(d) 2 × 9 − 3(6 − 1) + 1

(e) 8 + 24 ÷ 4 × 2

(f) 30 − 3 × 4 + 2

(g) 36 ÷ 4(5 − 2) + 6

(h) 20 − 4 × 2 + 3

(i) 4 + 6(8 + 2) − 3

(j) 100 − 10(2 + 3) + 4

2. If p = q + 4r, then r = .....

3. Solve x−2
3 = x − 3
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Chapter 3

Rational Numbers - Grade 10

3.1 Introduction

As described in Chapter 2, a number is a way of representing quantity. The numbers that will
be used in high school are all real numbers, but there are many different ways of writing any
single real number.

This chapter describes rational numbers.

3.2 The Big Picture of Numbers

Real Numbers

Irrationals

Rationals

Integers

Whole
Natural

All numbers inside
the grey oval are ra-
tional numbers.

3.3 Definition

The following numbers are all rational numbers.

10

1
,

21

7
,

−1

−3
,

10

20
,

−3

6
(3.1)

You can see that all the denominators and all the numerators are integers1.

Definition: Rational Number
A rational number is any number which can be written as:

a

b
(3.2)

where a and b are integers and b 6= 0.

1Integers are the counting numbers (1, 2, 3, ...), their opposites (-1, -2, -3, ...), and 0.
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3.4 CHAPTER 3. RATIONAL NUMBERS - GRADE 10

Important: Only fractions which have a numerator and a denominator that are integers
are rational numbers.

This means that all integers are rational numbers, because they can be written with a denominator
of 1.

Therefore, while √
2

7
,

−1,33

−3
,

π

20
,

−3

6,39
(3.3)

are not examples of rational numbers, because in each case, either the numerator or the
denominator is not an integer.

Exercise: Rational Numbers

1. If a is an integer, b is an integer and c is not an integer, which of the following
are rational numbers:

(a) 5
6 (b) a

3 (c) b
2 (d) 1

c

2. If a
1 is a rational number, which of the following are valid values for a?

(a) 1 (b) −10 (c)
√

2 (d) 2,1

3.4 Forms of Rational Numbers

All integers and fractions with integer numerators and denominators are rational numbers. There
are two more forms of rational numbers.

Activity :: Investigation : Decimal Numbers
You can write the rational number 1

2 as the decimal number 0,5. Write the
following numbers as decimals:

1. 1
4

2. 1
10

3. 2
5

4. 1
100

5. 2
3

Do the numbers after the decimal comma end or do they continue? If they continue,
is there a repeating pattern to the numbers?

You can write a rational number as a decimal number. Therefore, you should be able to write a
decimal number as a rational number. Two types of decimal numbers can be written as rational
numbers:

1. decimal numbers that end or terminate, for example the fraction 4
10 can be written as 0,4.
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2. decimal numbers that have a repeating pattern of numbers, for example the fraction 1
3

can be written as 0,333333.

For example, the rational number 5
6 can be written in decimal notation as 0,83333, and similarly,

the decimal number 0,25 can be written as a rational number as 1
4 .

Important: Notation for Repeating Decimals

You can use a bar over the repeated numbers to indicate that the decimal is a repeating decimal.

3.5 Converting Terminating Decimals into Rational Num-

bers

A decimal number has an integer part and a fractional part. For example, 10,589 has an integer
part of 10 and a fractional part of 0,589 because 10 + 0,589 = 10,589. The fractional part can
be written as a rational number, i.e. with a numerator and a denominator that are integers.

Each digit after the decimal point is a fraction with denominator in increasing powers of ten.
For example:

• 1
10 is 0,1

• 1
100 is 0,01

This means that:

2,103 = 2 +
1

10
+

0

100
+

3

1000

= 2
103

1000

=
2103

1000

Exercise: Fractions

1. Write the following as fractions:

(a) 0,1 (b) 0,12 (c) 0,58 (d) 0,2589

3.6 Converting Repeating Decimals into Rational Numbers

When the decimal is a repeating decimal, a bit more work is needed to write the fractional part
of the decimal number as a fraction. We will explain by means of an example.

If we wish to write 0,3 in the form a
b

(where a and b are integers) then we would proceed as
follows

x = 0,33333 . . . (3.4)

10x = 3,33333 . . . multiply by 10 on both sides (3.5)

9x = 3 subtracting (3.4) from (3.5)

x =
3

9
=

1

3
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And another example would be to write 5,432 as a rational fraction

x = 5,432432432 . . . (3.6)

1000x = 5432,432432432 . . . multiply by 1000 on both sides (3.7)

999x = 5427 subtracting (3.6) from (3.7)

x =
5427

999
=

201

37

For the first example, the decimal number was multiplied by 10 and for the second example, the
decimal number was multiplied by 1000. This is because for the first example there was only
one number (i.e. 3) that recurred, while for the second example there were three numbers (i.e.
432) that recurred.

In general, if you have one number recurring, then multiply by 10, if you have two numbers
recurring, then multiply by 100, if you have three numbers recurring, then multiply by 1000. Can
you spot the pattern yet?

The number of zeros after the 1 is the same as the number of recurring numbers.

But not all decimal numbers can be written as rational numbers, because some decimal numbers
like

√
2 = 1,4142135... is an irrational number and cannot be written with an integer numerator

and an integer denominator. However, when possible, you should always use rational numbers
or fractions instead of decimals.

Exercise: Repeated Decimal Notation

1. Write the following using the repeated decimal notation:

(a) 0,11111111 . . .

(b) 0,1212121212 . . .

(c) 0,123123123123 . . .

(d) 0,11414541454145 . . .

2. Write the following in decimal form, using the repeated decimal notation:

(a) 2
3

(b) 1 3
11

(c) 4 5
6

(d) 2 1
9 . . .

3. Write the following decimals in fractional form:

(a) 0,6333 . . .

(b) 5,313131

(c) 11,570571 . . .

(d) 0,999999 . . .

3.7 Summary

The following are rational numbers:

• Fractions with both denominator and numerator as integers.

• Integers.

• Decimal numbers that end.

• Decimal numbers that repeat.
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3.8 End of Chapter Exercises

1. If a is an integer, b is an integer and c is not an integer, which of the following are rational
numbers:

(a) 5
6

(b) a
3

(c) b
2

(d) 1
c

2. Write each decimal as a simple fraction:

(a) 0,5

(b) 0,12

(c) 0,6

(d) 1,59

(e) 12,277

3. Show that the decimal 3,21̇8̇ is a rational number.

4. Showing all working, express 0,78̇ as a fraction a
b

where a, b ∈ Z.
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Chapter 4

Exponentials - Grade 10

4.1 Introduction

In this chapter, you will learn about the short-cuts to writing 2 × 2 × 2 × 2. This is known as
writing a number in exponential notation.

4.2 Definition

Exponential notation is a short way of writing the same number multiplied by itself many times.
For example, instead of 5 × 5 × 5, we write 53 to show that the number 5 is multiplied by itself
3 times and we say “5 to the power of 3”. Likewise 52 is 5× 5 and 35 is 3× 3× 3× 3× 3. We
will now have a closer look at writing numbers using exponential notation.

Definition: Exponential Notation
Exponential notation means a number written like

an

when n is an integer and a can be any real number. a is called the base and n is called the
exponent.

The nth power of a is defined as:

an = 1 × a × a × . . . × a (n times) (4.1)

with a multiplied by itself n times.

We can also define what it means if we have a negative index, −n. Then,

a−n = 1 ÷ a ÷ a ÷ . . . ÷ a (n times) (4.2)

Important: Exponentials

If n is an even integer, then an will always be positive for any non-zero real number a. For
example, although −2 is negative, (−2)2 = 1 × −2 × −2 = 4 is positive and so is (−2)−2 =
1 ÷−2 ÷−2 = 1

4 .
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4.3 Laws of Exponents

There are several laws we can use to make working with exponential numbers easier. Some of
these laws might have been seen in earlier grades, but we will list all the laws here for easy
reference, but we will explain each law in detail, so that you can understand them, and not only
remember them.

a0 = 1 (4.3)

am × an = am+n (4.4)

a−n =
1

an
(4.5)

am ÷ an = am−n (4.6)

(ab)n = anbn (4.7)

(am)n = amn (4.8)

4.3.1 Exponential Law 1: a0 = 1

Our definition of exponential notation shows that

a0 = 1, (a 6= 0) (4.9)

For example, x0 = 1 and (1 000 000)0 = 1.

Exercise: Application using Exponential Law 1: a0 = 1, (a 6= 0)

1. 160 = 1

2. 16a0 = 16

3. (16 + a)0 = 1

4. (−16)0 = 1

5. −160 = −1

4.3.2 Exponential Law 2: am × an = am+n

Our definition of exponential notation shows that

am × an = 1 × a × . . . × a (m times) (4.10)

×1 × a × . . . × a (n times)

= 1 × a × . . . × a (m + n times)

= am+n

For example,

27 × 23 = (2 × 2 × 2 × 2 × 2 × 2 × 2) × (2 × 2 × 2)

= 210

= 27+3

30



CHAPTER 4. EXPONENTIALS - GRADE 10 4.3

Interesting

Fact

teresting

Fact
This simple law is the reason why exponentials were originally invented. In the
days before calculators, all multiplication had to be done by hand with a pencil
and a pad of paper. Multiplication takes a very long time to do and is very
tedious. Adding numbers however, is very easy and quick to do. If you look at
what this law is saying you will realise that it means that adding the exponents
of two exponential numbers (of the same base) is the same as multiplying the two
numbers together. This meant that for certain numbers, there was no need to
actually multiply the numbers together in order to find out what their multiple
was. This saved mathematicians a lot of time, which they could use to do
something more productive.

Exercise: Application using Exponential Law 2: am × an = am+n

1. x2.x5 = x7

2. 2x3y × 5x2y7 = 10x5y8

3. 23.24 = 27 [Take note that the base (2) stays the same.]

4. 3 × 32a × 32 = 32a+3

4.3.3 Exponential Law 3: a−n = 1
an

, a 6= 0

Our definition of exponential notation for a negative exponent shows that

a−n = 1 ÷ a ÷ . . . ÷ a (n times) (4.11)

=
1

1 × a × · · · × a
(n times)

=
1

an

This means that a minus sign in the exponent is just another way of writing that the whole
exponential number is to be divided instead of multiplied.

For example,

2−7 =
1

2 × 2 × 2 × 2 × 2 × 2 × 2

=
1

27

Exercise: Application using Exponential Law 3: a−n = 1
an , a 6= 0

1. 2−2 = 1
22 = 1

4

2. 2−2

32 = 1
22.32 = 1

36

3. (2
3 )−3 = (3

2 )3 = 27
8
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4. m
n−4 = mn4

5. a−3.x4

a5.x−2 = x4.x2

a3.a5 = x6

a8

4.3.4 Exponential Law 4: am ÷ an = am−n

We already realised with law 3 that a minus sign is another way of saying that the exponential
number is to be divided instead of multiplied. Law 4 is just a more general way of saying the
same thing. We can get this law by just multiplying law 3 by am on both sides and using law 2.

am

an
= ama−n (4.12)

= am−n

For example,

27 ÷ 23 =
2 × 2 × 2 × 2 × 2 × 2 × 2

2 × 2 × 2
= 2 × 2 × 2 × 2

= 24

= 27−3

Exercise: Exponential Law 4: am ÷ an = am−n

1. a6

a2 = a6−2 = a4

2. 32

36 = 32−6 = 3−4 = 1
34 [Always give final answer with positive index]

3. 32a2

4a8 = 8a−6 = 8
a6

4. a3x

a4 = a3x−4

4.3.5 Exponential Law 5: (ab)n = anbn

The order in which two real numbers are multiplied together does not matter. Therefore,

(ab)n = a × b × a × b × . . . × a × b (n times) (4.13)

= a × a × . . . × a (n times)

×b × b × . . . × b (n times)

= anbn

For example,

(2 · 3)4 = (2 · 3) × (2 · 3) × (2 · 3) × (2 · 3)

= (2 × 2 × 2 × 2) × (3 × 3 × 3 × 3)

= (24) × (34)

= 2434
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Exercise: Exponential Law 5: (ab)n = anbn

1. (2x2y)3 = 23x2×3y5 = 8x6y5

2. (7a
b3

)2 = 49a2

b6

3. (5an−4)3 = 125a3n−12

4.3.6 Exponential Law 6: (am)n = amn

We can find the exponential of an exponential just as well as we can for a number. After all, an
exponential number is a real number.

(am)n = am × am × . . . × am (n times) (4.14)

= a × a × . . . × a (m × n times)

= amn

For example,

(22)3 = (22) × (22) × (22)

= (2 × 2) × (2 × 2) × (2 × 2)

= (26)

= 2(2×3)

Exercise: Exponential Law 6: (am)n = amn

1. (x3)4 = x12

2. [(a4)3]2 = a24

3. (3n+3)2 = 32n+6

Worked Example 1: Simlifying indices

Question: Simplify: 52x−1.9x−2

152x−3

Answer
Step 1 : Factorise all bases into prime factors:

=
52x−1.(32)x−2

(5.3)2x−3

=
52x−1.32x−4

52x−3.32x−3

Step 2 : Add and subtract the indices of the sam bases as per laws 2 and 4:
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= 52x−1−2x−3.32x−4−2x+3

= 52.3−1

Step 3 : Write simplified answer with positive indices:

=
25

3

Activity :: Investigation : Exponential Numbers
Match the answers to the questions, by filling in the correct answer into the

Answer column. Possible answers are: 3
2 , 1, -1, -3, 8.

Question Answer

23

73−3

(2
3 )−1

87−6

(−3)−1

(−1)23

4.4 End of Chapter Exercises

1. Simplify as far as possible:

(a) 3020 (b) 10 (c) (xyz)0 (d) [(3x4y7z12)5(−5x9y3z4)2]0

(e) (2x)3 (f) (−2x)3 (g) (2x)4 (h) (−2x)4

2. Simplify without using a calculator. Leave your answers with positive exponents.

(a) 3x−3

(3x)2

(b) 5x0 + 8−2 − (1
2 )−2.1x

(c) 5b−3

5b+1

3. Simplify, showing all steps:

(a) 2a−2.3a+3

6a

(b) a2m+n+p

am+n+p.am

(c) 3n.9n−3

27n−1

(d) (2x2a

y−b )3
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(e) 23x−1.8x+1

42x−2

(f) 62x.112x

222x−1.32x

4. Simplify, without using a calculator:

(a) (−3)−3.(−3)2

(−3)−4 .

(b) (3−1 + 2−1)−1

(c) 9n−1.273−2n

812−n

(d) 23n+2.8n−3

43n−2
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Chapter 5

Estimating Surds - Grade 10

5.1 Introduction

You should known by now what the nth root of a number means. If the nth root of a number
cannot be simplified to a rational number, we call it a surd. For example,

√
2 and 3

√
6 are surds,

but
√

4 is not a surd because it can be simplified to the rational number 2.

In this chapter we will only look at surds that look like n
√

a, where a is any positive number, for
example

√
7 or 3

√
5. It is very common for n to be 2, so we usually do not write 2

√
a. Instead we

write the surd as just
√

a, which is much easier to read.

It is sometimes useful to know the approximate value of a surd without having to use a calculator.
For example, we want to be able to guess where a surd like

√
3 is on the number line. So how

do we know where surds lie on the number line? From a calculator we know that
√

3 is equal to
1,73205.... It is easy to see that

√
3 is above 1 and below 2. But to see this for other surds like√

18 without using a calculator, you must first understand the following fact:

Interesting

Fact

teresting

Fact
If a and b are positive whole numbers, and a < b, then n

√
a < n

√
b. (Challenge:

Can you explain why?)

If you don’t believe this fact, check it for a few numbers to convince yourself it is true.

How do we use this fact to help us guess what
√

18 is? Well, you can easily see that 18 < 25?
Using our rule, we also know that

√
18 <

√
25. But we know that 52 = 25 so that

√
25 = 5.

Now it is easy to simplify to get
√

18 < 5. Now we have a better idea of what
√

18 is.

Now we know that
√

18 is less than 5, but this is only half the story. We can use the same trick
again, but this time with 18 on the right-hand side. You will agree that 16 < 18. Using our
rule again, we also know that

√
16 <

√
18. But we know that 16 is a perfect square, so we can

simplify
√

16 to 4, and so we get 4 <
√

18!

Can you see now that we now have shown that
√

18 is between 4 and 5? If we check on our
calculator, we can see that

√
18 = 4,1231..., and we see that our idea was right! You will notice

that our idea used perfect squares that were close to the number 18. We found the closest
perfect square underneath 18, which was 42 = 16, and the closest perfect square above 18,
which was 52 = 25. Here is a quick summary of what a perfect square or cube is:

Interesting

Fact

teresting

Fact
A perfect square is the number obtained when an integer is squared. For example,
9 is a perfect square since 32 = 9. Similarly, a perfect cube is a number which is
the cube of an integer. For example, 27 is a perfect cube, because 33 = 27.
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To make it easier to use our idea, we will create a list of some of the perfect squares and perfect
cubes. The list is shown in Table 5.1.

Table 5.1: Some perfect squares and perfect cubes
Integer Perfect Square Perfect Cube

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Similarly, when given the surd 3
√

52 you should be able to tell that it lies somewhere between 3
and 4, because 3

√
27 = 3 and 3

√
64 = 4 and 52 is between 27 and 64. In fact 3

√
52 = 3,73 . . .

which is indeed between 3 and 4.

5.2 Drawing Surds on the Number Line (Optional)

How can we accurately draw a surd like
√

5 on the number line? Well, we could use a calculator
to find

√
5 = 2,2360... and measure the distance along the number line using a ruler. But for

some surds, there is a much easier way.

Let us call the surd we are working with
√

a. Sometimes, we can write a as the sum of two
perfect squares, so a = b2 + c2. We know from Pythagoras’ theorem that

√
a =

√
b2 + c2 is

the length of the hypotenuse of a triangle that has sides that have lengths of b and c. So if we
draw a triangle on the number line with sides of length b and c, we can use a compass to draw
a circle from the top of the hypotenuse down to the number line. The intersection will be the
point

√
b on the number line!

Interesting

Fact

teresting

Fact
Not all numbers can be written as the sum of two squares. See if you can find a
pattern of the numbers that can.

Worked Example 2: Estimating Surds

Question: Find the two consecutive integers such that
√

26 lies between them.
(Remember that consecutive numbers that are two numbers one after the other, like
5 and 6 or 8 and 9.)
Answer
Step 1 : From the table find the largest perfect square below 26
This is 52 = 25. Therefore 5 <

√
26.
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Step 2 : From the table find smallest perfect square above 26
This is 62 = 36. Therefore

√
26 < 6.

Step 3 : Put the inequalities together
Our answer is 5 <

√
26 < 6.

Worked Example 3: Estimating Surds

Question: 3
√

49 lies between: (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 4 and 5
Answer
Step 1 : Consider (a) as the solution
If 1 < 3

√
49 < 2 then cubing all terms gives 1 < 49 < 23. Simplifying gives

1 < 49 < 8 which is false. So 3
√

49 does not lie between 1 and 2.
Step 2 : Consider (b) as the solution
If 2 < 3

√
49 < 3 then cubing all terms gives 23 < 49 < 33. Simplifying gives

8 < 49 < 27 which is false. So 3
√

49 does not lie between 2 and 3.
Step 3 : Consider (c) as the solution
If 3 < 3

√
49 < 4 then cubing all terms gives 33 < 49 < 43. Simplifying gives

27 < 49 < 64 which is true. So 3
√

49 lies between 3 and 4.

5.3 End of Chapter Excercises

1.
√

5 lies between (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 4 and 5

2.
√

10 lies between (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 4 and 5

3.
√

20 lies between (a) 2 and 3 (b) 3 and 4 (c) 4 and 5 (d) 5 and 6

4.
√

30 lies between (a) 3 and 4 (b) 4 and 5 (c) 5 and 6 (d) 6 and 7

5. 3
√

5 lies between (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 4 and 5

6. 3
√

10 lies between (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 4 and 5

7. 3
√

20 lies between (a) 2 and 3 (b) 3 and 4 (c) 4 and 5 (d) 5 and 6

8. 3
√

30 lies between (a) 3 and 4 (b) 4 and 5 (c) 5 and 6 (d) 6 and 7
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Chapter 6

Irrational Numbers and Rounding
Off - Grade 10

6.1 Introduction

You have seen that repeating decimals may take a lot of paper and ink to write out. Not only
is that impossible, but writing numbers out to many decimal places or a high accuracy is very
inconvenient and rarely gives better answers. For this reason we often estimate the number to
a certain number of decimal places or to a given number of significant figures, which is even
better.

6.2 Irrational Numbers

Activity :: Investigation : Irrational Numbers
Which of the following cannot be written as a rational number?
Remember: A rational number is a fraction with numerator and denominator as

integers. Terminating decimal numbers or repeating decimal numbers are rational.

1. π = 3,14159265358979323846264338327950288419716939937510 . . .

2. 1,4

3. 1,618 033 989 . . .

4. 100

Irrational numbers are numbers that cannot be written as a rational number. You should know
that a rational number can be written as a fraction with the numerator and denominator as
integers. This means that any number that is not a terminating decimal number or a repeating
decimal number are irrational. Examples of irrational numbers are:

√
2,

√
3,

3
√

4, π,

1 +
√

5

2
≈ 1,618 033 989

Important: When irrational numbers are written in decimal form, they go on forever and
there is no repeated pattern of digits.
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Important: Irrational Numbers

If you are asked to identify whether a number is rational or irrational, first write the number in
decimal form. If the number is terminated then it is rational. If it goes on forever, then look for
a repeated pattern of digits. If there is no repeated pattern, then the number is irrational.

When you write irrational numbers in decimal form, you may (if you have a lot of time and
paper!) continue writing them for many, many decimal places. However, this is not convenient
and it is often necessary to round off.

6.3 Rounding Off

Rounding off or approximating a decimal number to a given number of decimal places is the
quickest way to approximate a number. For example, if you wanted to round-off 2,6525272 to
three decimal places then you would first count three places after the decimal.

2,652|5272

All numbers to the right of | are ignored after you determine whether the number in the third
decimal place must be rounded up or rounded down. You round up the final digit if the first
digit after the | was greater or equal to 5 and round down (leave the digit alone) otherwise.

So, since the first digit after the | is a 5, we must round up the digit in the third decimal place
to a 3 and the final answer of 2,6525272 rounded to three decimal places is

2,653

Worked Example 4: Rounding-Off

Question: Round-off the following numbers to the indicated number of decimal
places:

1. 120
99 = 1,2121212121̇2̇ to 3 decimal places

2. π = 3,141592654 . . . to 4 decimal places

3.
√

3 = 1,7320508 . . . to 4 decimal places

Answer
Step 1 : Determine the last digit that is kept and mark the cut-off point with
|.

1. 120
99 = 1,212|1212121̇2̇

2. π = 3,1415|92654 . . .

3.
√

3 = 1,7320|508 . . .

Step 2 : Determine whether the last digit is rounded up or down.

1. The last digit of 120
99 = 1,212|1212121̇2̇ must be rounded-down.

2. The last digit of π = 3,1415|92654 . . . must be rounded-up.

3. The last digit of
√

3 = 1,7320|508 . . . must be rounded-up.

Step 3 : Write the final answer.

1. 120
99 = 1,212 rounded to 3 decimal places

2. π = 3,1416 rounded to 4 decimal places

3.
√

3 = 1,7321 rounded to 4 decimal places
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6.4 End of Chapter Exercises

1. Write the following rational numbers to 2 decimal places:

(a) 1
2

(b) 1

(c) 0,111111

(d) 0,999991

2. Write the following irrational numbers to 2 decimal places:

(a) 3,141592654 . . .

(b) 1,618 033 989 . . .

(c) 1,41421356 . . .

(d) 2,71828182845904523536 . . .

3. Use your calculator and write the following irrational numbers to 3 decimal places:

(a)
√

2

(b)
√

3

(c)
√

5

(d)
√

6

4. Use your calculator (where necessary) and write the following irrational numbers to 5
decimal places:

(a)
√

8

(b)
√

768

(c)
√

100

(d)
√

0,49

(e)
√

0,0016

(f)
√

0,25

(g)
√

36

(h)
√

1960

(i)
√

0,0036

(j) −8
√

0,04

(k) 5
√

80

5. Write the following irrational numbers to 3 decimal places and then write them as a rational
number to get an approximation to the irrational number. For example,

√
3 = 1,73205 . . ..

To 3 decimal places,
√

3 = 1,732. 1,732 = 1 732
1000 = 1 183

250 . Therefore,
√

3 is approximately
1 183

250 .

(a) 3,141592654 . . .

(b) 1,618 033 989 . . .

(c) 1,41421356 . . .

(d) 2,71828182845904523536 . . .
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Chapter 7

Number Patterns - Grade 10

In earlier grades you saw patterns in the form of pictures and numbers. In this chapter we learn
more about the mathematics of patterns.Patterns are recognisable regularities in situations such
as in nature, shapes, events, sets of numbers. For example, spirals on a pineapple, snowflakes,
geometric designs on quilts or tiles, the number sequence 0, 4, 8, 12, 16,....

Activity :: Investigation : Patterns
Can you spot any patterns in the following lists of numbers?

1. 2; 4; 6; 8; 10; . . .

2. 1; 2; 4; 7; 11; . . .

3. 1; 4; 9; 16; 25; . . .

4. 5; 10; 20; 40; 80; . . .

7.1 Common Number Patterns

Numbers can have interesting patterns. Here we list the most common patterns and how they
are made.

Examples:

1. 1, 4, 7, 10, 13, 16, 19, 22, 25, ...

This sequence has a difference of 3 between each number. The pattern is continued by
adding 3 to the last number each time.

2. 3, 8, 13, 18, 23, 28, 33, 38, ...

This sequence has a difference of 5 between each number. The pattern is continued by
adding 5 to the last number each time.

3. 2, 4, 8, 16, 32, 64, 128, 256, ...

This sequence has a factor of 2 between each number. The pattern is continued by
multiplying the last number by 2 each time.

4. 3, 9, 27, 81, 243, 729, 2187, ...

This sequence has a factor of 3 between each number. The pattern is continued by
multiplying the last number by 3 each time.
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7.1.1 Special Sequences

Triangular Numbers

1, 3, 6, 10, 15, 21, 28, 36, 45, ...

This sequence is generated from a pattern of dots which form a triangle. By adding another row
of dots and counting all the dots we can find the next number of the sequence.

Square Numbers

1, 4, 9, 16, 25, 36, 49, 64, 81, ...

The next number is made by squaring where it is in the pattern. The second number is 2 squared
(22 or 2 × 2) The seventh number is 7 squared (72 or 7 × 7) etc

Cube Numbers

1, 8, 27, 64, 125, 216, 343, 512, 729, ...

The next number is made by cubing where it is in the pattern. The second number is 2 cubed
(23 or 2 × 2 × 2) The seventh number is 7 cubed (73 or 7 × 7 × 7) etc

Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The next number is found by adding the two numbers before it together. The 2 is found by
adding the two numbers in front of it (1 + 1) The 21 is found by adding the two numbers in
front of it (8 + 13) The next number in the sequence above would be 55 (21 + 34)

Can you figure out the next few numbers?

7.2 Make your own Number Patterns

You can make your own number patterns using coins or matchsticks. Here is an example using
dots:

b

b b

b b

b
b

b b b

b b b

b b b

b

b

b

b

b

b

b b b b

b b b b

b b b b

b b b b

b

b

b

b

b

b

b

b

b

b

bb

b

1 dot 6 dots 15 dots 28 dots

Pattern 1 2 3 4

46



CHAPTER 7. NUMBER PATTERNS - GRADE 10 7.3

How many dots would you need for pattern 5 ? Can you make a formula that will tell you how
many coins are needed for any size pattern? For example if the pattern 20? The formula may
look something like

dots = pattern × pattern + ...

Worked Example 5: Study Table

Question: Say you and 3 friends decide to study for Maths, and you are seated at
a square table. A few minutes later, 2 other friends join you and would like to sit at
your table and help you study. Naturally, you move another table and add it to the
existing one. Now six of you sit at the table. Another two of your friends join your
table, and you take a third table and add it to the existing tables. Now 8 of you can
sit comfortably.

Figure 7.1: Two more people can be seated for each table added.

Examine how the number of people sitting is related to the number of tables.

Answer

Step 1 : Tabulate a few terms to see if there is a pattern

Number of Tables, n Number of people seated

1 4 = 4
2 4 + 2 = 6
3 4 + 2 + 2 = 8
4 4 + 2 + 2 + 2 = 10
...

...
n 4 + 2 + 2 + 2 + . . . + 2

Step 2 : Describe the pattern

We can see for 3 tables we can seat 8 people, for 4 tables we can seat 10 people and
so on. We started out with 4 people and added two the whole time. Thus, for each
table added, the number of persons increases by two.

7.3 Notation

A sequence does not have to follow a pattern but when it does we can often write down a formula
to calculate the nth-term, an. In the sequence

1; 4; 9; 16; 25; . . .

where the sequence consists of the squares of integers, the formula for the nth-term is

an = n2 (7.1)
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You can check this by looking at:

a1 = 12 = 1

a2 = 22 = 4

a3 = 32 = 9

a4 = 42 = 16

a5 = 52 = 25

. . .

Therefore, using (7.1), we can generate a pattern, namely squares of integers.

Worked Example 6: Study Table continued ....

Question: As before, you and 3 friends are studying for Maths, and you are seated
at a square table. A few minutes later, 2 other friends join you move another table
and add it to the existing one. Now six of you sit at the table. Another two of your
friends join your table, and you take a third table and add it to the existing tables.
Now 8 of you sit comfortably as illustrated:

Figure 7.2: Two more people can be seated for each table added.

Find the expression for the number of people seated at n tables. Then, use the
general formula to determine how many people can sit around 12 tables and how
many tables are needed for 20 people.
Answer
Step 1 : Tabulate a few terms to see if there is a pattern

Number of Tables, n Number of people seated Formula

1 4 = 4 = 4 + 2 · (0)
2 4 + 2 = 6 = 4 + 2 · (1)
3 4 + 2 + 2 = 8 = 4 + 2 · (2)
4 4 + 2 + 2 + 2 = 10 = 4 + 2 · (3)
...

...
...

n 4 + 2 + 2 + 2 + . . . + 2 = 4 + 2 · (n − 1)

Step 2 : Describe the pattern
The number of people seated at n tables is:

an = 4 + 2 · (n − 1)

Step 3 : Calculate the 12th term
Using the general formula (36.1) and considering the example from the previous
section, how many people can sit around, say, 12 tables? We are looking for a12,
that is, where n = 12:

an = a1 + d · (n − 1)

a12 = 4 + 2 · (12 − 1)

= 4 + 2(11)

= 4 + 22

= 26
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Step 4 : Calculate the number of terms if an = 20

an = a1 + d · (n − 1)

20 = 4 + 2 · (n − 1)

20 − 4 = 2 · (n − 1)

16 ÷ 2 = n − 1

8 + 1 = n

n = 9

Step 5 : Final Answer

26 people can be seated at 12 tables and 9 tables are needed to seat 20 people.

It is also important to note the difference between n and an. n can be compared to a place
holder, while an is the value at the place “held” by n. Like our “Study Table”-example above,
the first table (Table 1) holds 4 people. Thus, at place n = 1, the value of a1 = 4, and so on:

n 1 2 3 4 . . .
an 4 6 8 10 . . .

Activity :: Investigation : General Formula

1. Find the general formula for the following sequences and then find a10, a50 and
a100:

(a) 2, 5, 8, 11, 14, . . .

(b) 0, 4, 8, 12, 16, . . .

(c) 2,−1,−4,−7,−10, . . .

2. The general term has been given for each sequence below. Work out the missing
terms.

(a) 0; 3; ...; 15; 24 n2 − 1

(b) 3; 2; 1; 0; ...; 2 −n + 4

(c) 11; ...; 7; ...; 3 −13 + 2n

7.3.1 Patterns and Conjecture

In mathematics, a conjecture is a mathematical statement which appears to be true, but has
not been formally proven to be true under the rules of mathematics. Other words that have a
similar in meaning to conjecture are: hypothesis, theory, assumption and premise.
For example: Make a conjecture about the next number based on the pattern 2; 6; 11; 17 : ...
The numbers increase by 4, 5, and 6.
Conjecture: The next number will increase by 7. So, it will be 17 + 7 or 24.
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Worked Example 7: Number patterns

Question: Consider the following pattern.

12 + 1 = 22 − 2

22 + 2 = 32 − 3

32 + 3 = 42 − 4

42 + 4 = 52 − 5

1. Add another two rows to the end of the pattern.

2. Make a conjecture about this pattern. Write your conjecture in words.

3. Generalise your conjecture for this pattern (in other words, write your conjecture
algebraically).

4. Prove that your conjecture is true.

Answer
Step 1 : The next two rows

52 + 5 = 62 − 6

62 + 6 = 72 − 7

Step 2 : Conjecture
Squaring a number and adding the same number gives the same result as squaring
the next number and subtracting that number.
Step 3 : Generalise
We have chosen to use x here. You could choose any letter to generalise the pattern.

x2 + x = (x + 1)2 − (x + 1)

Step 4 : Proof

Left side : x2 + x

Right side : (x + 1)2 − (x + 1)

Right side = x2 + 2x + 1 − x − 1

= x2 + x

= left side

Therefore x2 + x = (x + 1)2 − (x + 1)

7.4 Exercises

1. Find the nth term for: 3, 7, 11, 15, . . .

2. Find the general term of the following sequences:
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(a) −2,1,4,7, . . .

(b) 11, 15, 19, 23, . . .

(c) x − 1,2x + 5,5x + 1, . . .

(d) sequence with a3 = 7 and a8 = 15

(e) sequence with a4 = −8 and a10 = 10

3. The seating in a section of a sports stadium can be arranged so the first row has 15 seats,
the second row has 19 seats, the third row has 23 seats and so on. Calculate how many
seats are in the row 25.

4. Consider the following pattern:

22 + 2 = 32 − 3

32 + 3 = 42 − 4

42 + 4 = 52 − 5

(a) Add at least two more rows to the pattern and check whether or not the pattern
continues to work.

(b) Describe in words any patterns that you have noticed.

(c) Try to generalise a rule using algebra i.e. find the general term for the pattern.

(d) Prove or disprove that this rule works for all values.

5. The profits of a small company for the last four years has been: R10 000, R15 000, R19 000
and R23 000. If the pattern continues, what is the expected profit in the 10 years (i.e. in
the 14th year of the company being in business)?

6. A single square is made from 4 matchsticks. Two squares in a row needs 7 matchsticks
and 3 squares in a row needs 10 matchsticks. Determine:

(a) the first term

(b) the common difference

(c) the formula for the general term

(d) how many matchsticks are in a row of 25 squares

7. You would like to start saving some money, but because you have never tried to save money
before, you have decided to start slowly. At the end of the first week you deposit R5 into
your bank account. Then at the end of the second week you deposit R10 into your bank
account. At the end of the third week you deposit R15. After how many weeks, do you
deposit R50 into your bank account?

8. A horizontal line intersects a piece of string at four points and divides it into five parts, as
shown below.

b b b b

1

2

3

4

5
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If the piece of string is intersected in this way by 19 parallel lines, each of which intersects
it at four points, find the number of parts into which the string will be divided.
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Chapter 8

Finance - Grade 10

8.1 Introduction

Should you ever find yourself stuck with a mathematics question on a television quiz show, you
will probably wish you had remembered the how many even prime numbers there are between 1
and 100 for the sake of R1 000 000. And who does not want to be a millionaire, right?

Welcome to the Grade 10 Finance Chapter, where we apply maths skills to everyday financial
situations that you are likely to face both now and along your journey to purchasing your first
private jet.

If you master the techniques in this chapter, you will grasp the concept of compound interest,
and how it can ruin your fortunes if you have credit card debt, or make you millions if you
successfully invest your hard-earned money. You will also understand the effects of fluctuating
exchange rates, and its impact on your spending power during your overseas holidays!

8.2 Foreign Exchange Rates

Is $500 (”500 US dollars”) per person per night a good deal on a hotel in New York City? The
first question you will ask is “How much is that worth in Rands?”. A quick call to the local bank
or a search on the Internet (for example on http://www.x-rates.com/) for the Dollar/Rand
exchange rate will give you a basis for assessing the price.

A foreign exchange rate is nothing more than the price of one currency in terms of another.
For example, the exchange rate of 6,18 Rands/US Dollars means that $1 costs R6,18. In other
words, if you have $1 you could sell it for R6,18 - or if you wanted $1 you would have to pay
R6,18 for it.

But what drives exchange rates, and what causes exchange rates to change? And how does this
affect you anyway? This section looks at answering these questions.

8.2.1 How much is R1 really worth?

We can quote the price of a currency in terms of any other currency, but the US Dollar, British
Pounds Sterling or even the Euro are often used as a market standard. You will notice that the
financial news will report the South African Rand exchange rate in terms of these three major
currencies.

So the South African Rand could be quoted on a certain date as 6,7040 ZAR per USD (i.e.
$1,00 costs R6,7040), or 12,2374 ZAR per GBP. So if I wanted to spend $1 000 on a holiday
in the United States of America, this would cost me R6 704,00; and if I wanted £1 000 for a
weekend in London it would cost me R12 237,40.

This seems obvious, but let us see how we calculated that: The rate is given as ZAR per USD,
or ZAR/USD such that $1,00 buys R6,7040. Therefore, we need to multiply by 1 000 to get the
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Table 8.1: Abbreviations and symbols for some common currencies.

Currency Abbreviation Symbol

South African Rand ZAR R
United States Dollar USD $
British Pounds Sterling GBP £

Euro EUR e

number of Rands per $1 000.

Mathematically,

$1,00 = R6,0740

∴ 1 000 × $1,00 = 1 000 × R6,0740

= R6 074,00

as expected.

What if you have saved R10 000 for spending money for the same trip and you wanted to use
this to buy USD? How much USD could you get for this? Our rate is in ZAR/USD but we want
to know how many USD we can get for our ZAR. This is easy. We know how much $1,00 costs
in terms of Rands.

$1,00 = R6,0740

∴
$1,00

6,0740
=

R6,0740

6,0740

$
1,00

6,0740
= R1,00

R1,00 = $
1,00

6,0740

= $0,164636

As we can see, the final answer is simply the reciprocal of the ZAR/USD rate. Therefore, R10 000
will get:

R1,00 = $
1,00

6,0740

∴ 10 000 × R1,00 = 10 000 × $
1,00

6,0740

= $1 646,36

We can check the answer as follows:

$1,00 = R6,0740

∴ 1 646,36× $1,00 = 1 646,36× R6,0740

= R10 000,00

Six of one and half a dozen of the other

So we have two different ways of expressing the same exchange rate: Rands per Dollar (ZAR/USD)
and Dollar per Rands (USD/ZAR). Both exchange rates mean the same thing and express the
value of one currency in terms of another. You can easily work out one from the other - they
are just the reciprocals of the other.

If the South African Rand is our Domestic (or home) Currency, we call the ZAR/USD rate a
“direct” rate, and we call a USD/ZAR rate an “indirect” rate.

In general, a direct rate is an exchange rate that is expressed as units of Home Currency per
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units of Foreign Currency, i.e., Domestic Currency / Foreign Currency.

The Rand exchange rates that we see on the news are usually expressed as Direct Rates, for
example you might see:

Table 8.2: Examples of exchange rates

Currency Abbreviation Exchange Rates

1 USD R6,9556
1 GBP R13,6628
1 EUR R9,1954

The exchange rate is just the price of each of the Foreign Currencies (USD, GBP and EUR) in
terms of our Domestic Currency, Rands.

An indirect rate is an exchange rate expressed as units of Foreign Currency per units of Home
Currency, i.e. Foreign Currency / Domestic Currency

Defining exchange rates as direct or indirect depends on which currency is defined as the Domestic
Currency. The Domestic Currency for an American investor would be USD which is the South
African investor’s Foreign Currency. So direct rates from the perspective of the American investor
(USD/ZAR) would be the same as the indirect rate from the perspective of the South Africa
investor.

Terminology

Since exchange rates are simple prices of currencies, movements in exchange rates means that
the price or value of the currency changed. The price of petrol changes all the time, so does the
price of gold, and currency prices also move up and down all the time.

If the Rand exchange rate moved from say R6,71 per USD to R6,50 per USD, what does this
mean? Well, it means that $1 would now cost only R6,50 instead of R6,71. The Dollar is now
cheaper to buy, and we say that the Dollar has depreciated (or weakened) against the Rand.
Alternatively we could say that the Rand has appreciated (or strengthened) against the Dollar.

What if we were looking at indirect exchange rates, and the exchange rate moved from $0,149
per ZAR (= 1

6,71 ) to $0,1538 per ZAR (= 1
6,50 ).

Well now we can see that the R1,00 cost $0,149 at the start, and then cost $0,1538 at the end.
The Rand has become more expensive (in terms of Dollars), and again we can say that the Rand
has appreciated.

Regardless of which exchange rate is used, we still come to the same conclusions.

In general,

• for direct exchange rates, the home currency will appreciate (depreciate) if the exchange
rate falls (rises)

• For indirect exchange rates, the home currency will appreciate (depreciate) if the exchange
rate rises (falls)

As with just about everything in this chapter, do not get caught up in memorising these formulae
- that is only going to get confusing. Think about what you have and what you want - and it
should be quite clear how to get the correct answer.

Activity :: Discussion : Foreign Exchange Rates
In groups of 5, discuss:

1. Why might we need to know exchange rates?

2. What happens if one countries currency falls drastically vs another countries
currency?
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3. When might you use exchange rates?

8.2.2 Cross Currency Exchange Rates

We know that the exchange rates are the value of one currency expressed in terms of another
currency, and we can quote exchange rates against any other currency. The Rand exchange rates
we see on the news are usually expressed against the major currency, USD, GBP and EUR.

So if for example, the Rand exchange rates were given as 6,71 ZAR/USD and 12,71 ZAR/GBP,
does this tell us anything about the exchange rate between USD and GBP?

Well I know that if $1 will buy me R6,71, and if £1.00 will buy me R12,71, then surely the GBP
is stronger than the USD because you will get more Rands for one unit of the currency, and we
can work out the USD/GBP exchange rate as follows:

Before we plug in any numbers, how can we get a USD/GBP exchange rate from the ZAR/USD
and ZAR/GBP exchange rates?

Well,
USD/GBP = USD/ZAR × ZAR/GBP.

Note that the ZAR in the numerator will cancel out with the ZAR in the denominator, and we
are left with the USD/GBP exchange rate.

Although we do not have the USD/ZAR exchange rate, we know that this is just the reciprocal
of the ZAR/USD exchange rate.

USD/ZAR =
1

ZAR/USD

Now plugging in the numbers, we get:

USD/GBP = USD/ZAR × ZAR/GBP

=
1

ZAR/USD
× ZAR/GBP

=
1

6,71
× 12,71

= 1,894

Important: Sometimes you will see exchange rates in the real world that do not appear to
work exactly like this. This is usually because some financial institutions add other costs
to the exchange rates, which alter the results. However, if you could remove the effect of
those extra costs, the numbers would balance again.

Worked Example 8: Cross Exchange Rates

Question: If $1 = R 6,40, and £1 = R11,58 what is the $/£ exchange rate (i.e.
the number of US$ per £)?
Answer
Step 1 : Determine what is given and what is required
The following are given:

• ZAR/USD rate = R6,40

• ZAR/GBP rate = R11,58
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The following is required:
• USD/GBP rate

Step 2 : Determine how to approach the problem
We know that:

USD/GBP = USD/ZAR × ZAR/GBP.

Step 3 : Solve the problem

USD/GBP = USD/ZAR × ZAR/GBP

=
1

ZAR/USD
× ZAR/GBP

=
1

6,40
× 11,58

= 1,8094

Step 4 : Write the final answer
$1,8094 can be bought for £1.

Activity :: Investigation : Cross Exchange Rates - Alternate Method
If $1 = R 6,40, and £1 = R11,58 what is the $/£ exchange rate (i.e. the number

of US$ per £)?
Overview of problem
You need the $/£ exchange rate, in other words how many dollars must you pay

for a pound. So you need £1. From the given information we know that it would
cost you R11,58 to buy £1 and that $ 1 = R6,40.

Use this information to:
1. calculate how much R1 is worth in $.

2. calculate how much R11,58 is worth in $.
Do you get the same answer as in the worked example?

8.2.3 Enrichment: Fluctuating exchange rates

If everyone wants to buy houses in a certain suburb, then house prices are going to go up - because
the buyers will be competing to buy those houses. If there is a suburb where all residents want
to move out, then there are lots of sellers and this will cause house prices in the area to fall -
because the buyers would not have to struggle as much to find an eager seller.

This is all about supply and demand, which is a very important section in the study of Economics.
You can think about this is many different contexts, like stamp-collecting for example. If there
is a stamp that lots of people want (high demand) and few people own (low supply) then that
stamp is going to be expensive.

And if you are starting to wonder why this is relevant - think about currencies. If you are going
to visit London, then you have Rands but you need to “buy” Pounds. The exchange rate is the
price you have to pay to buy those Pounds.

Think about a time where lots of South Africans are visiting the United Kingdom, and other
South Africans are importing goods from the United Kingdom. That means there are lots of
Rands (high supply) trying to buy Pounds. Pounds will start to become more expensive (compare
this to the house price example at the start of this section if you are not convinced), and the
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exchange rate will change. In other words, for R1 000 you will get fewer Pounds than you would
have before the exchange rate moved.

Another context which might be useful for you to understand this: consider what would happen
if people in other countries felt that South Africa was becoming a great place to live, and that
more people were wanting to invest in South Africa - whether in properties, businesses - or just
buying more goods from South Africa. There would be a greater demand for Rands - and the
“price of the Rand” would go up. In other words, people would need to use more Dollars, or
Pounds, or Euros ... to buy the same amount of Rands. This is seen as a movement in exchange
rates.

Although it really does come down to supply and demand, it is interesting to think about what
factors might affect the supply (people wanting to “sell” a particular currency) and the demand
(people trying to “buy” another currency). This is covered in detail in the study of Economics,
but let us look at some of the basic issues here.

There are various factors affect exchange rates, some of which have more economic rationale
than others:

• economic factors (such as inflation figures, interest rates, trade deficit information, mon-
etary policy and fiscal policy)

• political factors (such as uncertain political environment, or political unrest)

• market sentiments and market behaviour (for example if foreign exchange markets per-
ceived a currency to be overvalued and starting selling the currency, this would cause the
currency to fall in value - a self fulfilling expectation).

Exercise: Foreign Exchange

1. I want to buy an IPOD that costs £100, with the exchange rate currently at
£1 = R14. I believe the exchange rate will reach R12 in a month.

(a) How much will the MP3 player cost in Rands, if I buy it now?

(b) How much will I save if the exchange rate drops to R12?

(c) How much will I lose if the exchange rate moves to R15?

2. Study the following exchange rate table:

Country Currency Exchange Rate
United Kingdom (UK) Pounds(£) R14,13
United States (USA) Dollars ($) R7,04

(a) In South Africa the cost of a new Honda Civic is R173 400. In England the
same vehicle costs £12 200 and in the USA $ 21 900. In which country is
the car the cheapest if you compare it to the South African Rand ?

(b) Sollie and Arinda are waiters in a South African Restaurant attracting many
tourists from abroad. Sollie gets a £6 tip from a tourist and Arinda gets
$ 12. How many South African Rand did each one get ?

8.3 Being Interested in Interest

If you had R1 000, you could either keep it in your wallet, or deposit it in a bank account. If it
stayed in your wallet, you could spend it any time you wanted. If the bank looked after it for
you, then they could spend it, with the plan of making profit off it. The bank usually “pays” you
to deposit it into an account, as a way of encouraging you to bank it with them, This payment
is like a reward, which provides you with a reason to leave it with the bank for a while, rather
than keeping the money in your wallet.
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We call this reward ”interest”.

If you deposit money into a bank account, you are effectively lending money to the bank - and
you can expect to receive interest in return. Similarly, if you borrow money from a bank (or from
a department store, or a car dealership, for example) then you can expect to have to pay interest
on the loan. That is the price of borrowing money.

The concept is simple, yet it is core to the world of finance. Accountants, actuaries and bankers,
for example, could spend their entire working career dealing with the effects of interest on
financial matters.

In this chapter you will be introduced to the concept of financial mathematics - and given the
tools to cope with even advanced concepts and problems.

Important: Interest

The concepts in this chapter are simple - we are just looking at the same idea, but from many
different angles. The best way to learn from this chapter is to do the examples yourself, as you
work your way through. Do not just take our word for it!

8.4 Simple Interest

Definition: Simple Interest
Simple interest is where you earn interest on the initial amount that you invested, but not
interest on interest.

As an easy example of simple interest, consider how much you will get by investing R1 000 for
1 year with a bank that pays you 5% simple interest. At the end of the year, you will get an
interest of:

Interest = R1 000 × 5%

= R1 000 × 5

100
= R1 000 × 0,05

= R50

So, with an “opening balance” of R1 000 at the start of the year, your “closing balance” at the
end of the year will therefore be:

Closing Balance = Opening Balance + Interest

= R1 000 + R50

= R1 050

We sometimes call the opening balance in financial calculations Principal, which is abbreviated
as P (R1 000 in the example). The interest rate is usually labelled i (5% in the example), and
the interest amount (in Rand terms) is labelled I (R50 in the example).

So we can see that:
I = P × i (8.1)

and

Closing Balance = Opening Balance + Interest

= P + I

= P + (P × i)

= P (1 + i)
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This is how you calculate simple interest. It is not a complicated formula, which is just as well
because you are going to see a lot of it!

Not Just One

You might be wondering to yourself:

1. how much interest will you be paid if you only leave the money in the account for 3 months,
or

2. what if you leave it there for 3 years?

It is actually quite simple - which is why they call it Simple Interest.

1. Three months is 1/4 of a year, so you would only get 1/4 of a full year’s interest, which
is: 1/4 × (P × i). The closing balance would therefore be:

Closing Balance = P + 1/4 × (P × i)

= P (1 + (1/4)i)

2. For 3 years, you would get three years’ worth of interest, being: 3 × (P × i). The closing
balance at the end of the three year period would be:

Closing Balance = P + 3 × (P × i)

= P × (1 + (3)i)

If you look carefully at the similarities between the two answers above, we can generalise the
result. In other words, if you invest your money (P ) in an account which pays a rate of interest
(i) for a period of time (n years), then, using the symbol (A) for the Closing Balance:

Closing Balance,(A) = P (1 + i · n) (8.2)

As we have seen, this works when n is a fraction of a year and also when n covers several years.

Important: Interest Calculation

Annual Rates means Yearly rates. and p.a.(per annum) = per year

Worked Example 9: Simple Interest

Question: If I deposit R1 000 into a special bank account which pays a Simple
Interest of 7% for 3 years, how much will I get back at the end?
Answer
Step 1 : Determine what is given and what is required

• opening balance, P = R1 000

• interest rate, i = 7%

• period of time, n = 3 years
We are required to find the closing balance (A).
Step 2 : Determine how to approach the problem
We know from (8.2) that:

Closing Balance,(A) = P (1 + i · n)
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Step 3 : Solve the problem

A = P (1 + i · n)

= R1 000(1 + 3 × 7%)

= R1 210

Step 4 : Write the final answer

The closing balance after 3 years of saving R1 000 at an interest rate of 7% is R1 210.

Worked Example 10: Calculating n

Question: If I deposit R30 000 into a special bank account which pays a Simple
Interest of 7.5% ,for how many years must I invest this amount to generate R45 000

Answer

Step 1 : Determine what is given and what is required

• opening balance, P = R30 000

• interest rate, i = 7,5%

• closing balance, A = R45 000

We are required to find the number of years.

Step 2 : Determine how to approach the problem

We know from (8.2) that:

Closing Balance (A) = P (1 + i · n)

Step 3 : Solve the problem

Closing Balance (A) = P (1 + i · n)

R45 000 = R30 000(1 + n × 7,5%)

(1 + 0,075 × n) =
45000

30000
0,075× n = 1,5 − 1

n =
0,5

0,075
n = 6,6666667

Step 4 : Write the final answer

n has to be a whole number, therefore n = 7.
The period is 7 years for R30 000 to generate R45 000 at a simple interest rate of
7,5%.

8.4.1 Other Applications of the Simple Interest Formula
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Worked Example 11: Hire-Purchase

Question: Troy is keen to buy an addisional hard drive for his laptop advertised for
R 2 500 on the internet. There is an option of paying a 10% deposit then making
24 monthly payments using a hire-purchase agreement where interest is calculated
at 7,5% p.a. simple interest. Calculate what Troy’s monthly payments will be.
Answer
Step 1 : Determine what is given and what is required
A new opening balance is required, as the 10% deposit is paid in cash.

• 10% of R 2 500 = R250

• new opening balance, P = R2 500 − R250 = R2 250

• interest rate, i = 7,5% = 0,075pa

• period of time, n = 2 years

We are required to find the closing balance (A) and then the montly payments.
Step 2 : Determine how to approach the problem
We know from (8.2) that:

Closing Balance,(A) = P (1 + i · n)

Step 3 : Solve the problem

A = P (1 + i · n)

= R2 250(1 + 2 × 7,5%)

= R2 587,50

Monthly payment = 2587,50÷ 24

= R107,81

Step 4 : Write the final answer
Troy’s monthly payments = R 107,81

Worked Example 12: Depreciation

Question: Seven years ago, Tjad’s drum kit cost him R12 500. It has now been
valued at R2 300. What rate of simple depreciation does this represent ?
Answer
Step 1 : Determine what is given and what is required

• opening balance, P = R12 500

• period of time, n = 7 years

• closing balance, A = R2 300

We are required to find the rate(i).
Step 2 : Determine how to approach the problem
We know from (8.2) that:

Closing Balance,(A) = P (1 + i · n)

Therefore, for depreciation the formula will change to:

Closing Balance,(A) = P (1 − i · n)
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Step 3 : Solve the problem

A = P (1 − i · n)

R2 300 = R12 500(1− 7 × i)

i = 0,11657...

Step 4 : Write the final answer
Therefore the rate of depreciation is 11,66%

Exercise: Simple Interest

1. An amount of R3 500 is invested in a savings account which pays simple interest
at a rate of 7,5% per annum. Calculate the balance accumulated by the end
of 2 years.

2. Calculate the simple interest for the following problems.

(a) A loan of R300 at a rate of 8% for l year.

(b) An investment of R225 at a rate of 12,5% for 6 years.

3. I made a deposit of R5 000 in the bank for my 5 year old son’s 21st birthday.
I have given him the amount of R 18 000 on his birtday. At what rate was the
money invested, if simple interest was calculated ?

4. Bongani buys a dining room table costing R 8 500 on Hire Purchase. He is
charged simple interest at 17,5% per annum over 3 years.

(a) How much will Bongani pay in total ?

(b) How much interest does he pay ?

(c) What is his montly installment ?

8.5 Compound Interest

To explain the concept of compound interest, the following example is discussed:

Worked Example 13: Using Simple Interest to lead to the concept Com-

pound Interest
Question: If I deposit R1 000 into a special bank account which pays a Simple
Interest of 7%. What if I empty the bank account after a year, and then take the
principal and the interest and invest it back into the same account again. Then I
take it all out at the end of the second year, and then put it all back in again? And
then I take it all out at the end of 3 years?
Answer
Step 1 : Determine what is given and what is required

• opening balance, P = R1 000

• interest rate, i = 7%
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• period of time, 1 year at a time, for 3 years
We are required to find the closing balance at the end of three years.
Step 2 : Determine how to approach the problem
We know that:

Closing Balance = P (1 + i · n)

Step 3 : Determine the closing balance at the end of the first year

Closing Balance = P (1 + i · n)

= R1 000(1 + 1 × 7%)

= R1 070

Step 4 : Determine the closing balance at the end of the second year
After the first year, we withdraw all the money and re-deposit it. The opening
balance for the second year is therefore R1 070, because this is the balance after the
first year.

Closing Balance = P (1 + i · n)

= R1 070(1 + 1 × 7%)

= R1 144,90

Step 5 : Determine the closing balance at the end of the third year
After the second year, we withdraw all the money and re-deposit it. The opening
balance for the third year is therefore R1 144,90, because this is the balance after
the first year.

Closing Balance = P (1 + i · n)

= R1 144,90(1 + 1 × 7%)

= R1 225,04

Step 6 : Write the final answer
The closing balance after withdrawing the all the money and re-depositing each year
for 3 years of saving R1 000 at an interest rate of 7% is R1 225,04.

In the two worked examples using simple interest, we have basically the same problem because
P=R1 000, i=7% and n=3 years for both problems. Except in the second situation, we end up
with R1 225,04 which is more than R1 210 from the first example. What has changed?

In the first example I earned R70 interest each year - the same in the first, second and third year.
But in the second situation, when I took the money out and then re-invested it, I was actually
earning interest in the second year on my interest (R70) from the first year. (And interest on
the interest on my interest in the third year!)

This more realistically reflects what happens in the real world, and is known as Compound
Interest. It is this concept which underlies just about everything we do - so we will look at more
closely next.

Definition: Compound Interest
Compound interest is the interest payable on the principal and its accumulated interest.

Compound interest is a double edged sword, though - great if you are earning interest on cash
you have invested, but crippling if you are stuck having to pay interest on money you have
borrowed!

In the same way that we developed a formula for Simple Interest, let us find one for Compound
Interest.
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If our opening balance is P and we have an interest rate of i then, the closing balance at the
end of the first year is:

Closing Balance after 1 year = P (1 + i)

This is the same as Simple Interest because it only covers a single year. Then, if we take that
out and re-invest it for another year - just as you saw us doing in the worked example above -
then the balance after the second year will be:

Closing Balance after 2 years = [P (1 + i)] × (1 + i)

= P (1 + i)2

And if we take that money out, then invest it for another year, the balance becomes:

Closing Balance after 3 years = [P (1 + i)2] × (1 + i)

= P (1 + i)3

We can see that the power of the term (1 + i) is the same as the number of years. Therefore,

Closing Balance after n years = P (1 + i)n (8.3)

8.5.1 Fractions add up to the Whole

It is easy to show that this formula works even when n is a fraction of a year. For example, let
us invest the money for 1 month, then for 4 months, then for 7 months.

Closing Balance after 1 month = P (1 + i)
1
12

Closing Balance after 5 months = Closing Balance after 1 month invested for 4 months more

= [P (1 + i)
1
12 ]

4
12

= P (1 + i)
1
12

+ 4
12

= P (1 + i)
5
12

Closing Balance after 12 months = Closing Balance after 5 month invested for 7 months more

= [P (1 + i)
5
12 ]

7
12

= P (1 + i)
5
12

+ 7
12

= P (1 + i)
12
12

= P (1 + i)1

which is the same as investing the money for a year.

Look carefully at the long equation above. It is not as complicated as it looks! All we are doing
is taking the opening amount (P ), then adding interest for just 1 month. Then we are taking
that new balance and adding interest for a further 4 months, and then finally we are taking the
new balance after a total of 5 months, and adding interest for 7 more months. Take a look
again, and check how easy it really is.

Does the final formula look familiar? Correct - it is the same result as you would get for simply
investing P for one full year. This is exactly what we would expect, because:

1 month + 4 months + 7 months = 12 months,

which is a year. Can you see that? Do not move on until you have understood this point.

8.5.2 The Power of Compound Interest

To see how important this “interest on interest” is, we shall compare the difference in closing
balances for money earning simple interest and money earning compound interest. Consider an
amount of R10 000 that you have to invest for 10 years, and assume we can earn interest of 9%.
How much would that be worth after 10 years?
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The closing balance for the money earning simple interest is:

Closing Balance = P (1 + i · n)

= R10 000(1 + 9% × 10)

= R19 000

The closing balance for the money earning compound interest is:

Closing Balance = P (1 + i)n)

= R10 000(1 + 9%)10

= R23 673,64

So next time someone talks about the “magic of compound interest”, not only will you know
what they mean - but you will be able to prove it mathematically yourself!

Again, keep in mind that this is good news and bad news. When you are earning interest on
money you have invested, compound interest helps that amount to increase exponentially. But
if you have borrowed money, the build up of the amount you owe will grow exponentially too.

Worked Example 14: Taking out a Loan

Question: Mr Lowe wants to take out a loan of R 350 000. He does not want
to pay back more than R625 000 altogether on the loan. If the interest rate he is
offered is 13%, over what period should he take the loan
Answer
Step 1 : Determine what has been provided and what is required

• opening balance, P = R350 000

• closing balance, A = R625 000

• interest rate, i = 13% peryear

We are required to find the time period(n).
Step 2 : Determine how to approach the problem
We know from (8.3) that:

Closing Balance,(A) = P (1 + i)n

We need to find n.
Therefore we covert the formula to:

A

P
= (1 + i)n

and then find n by trial and error.
Step 3 : Solve the problem

A

P
= (1 + i)n

625000

350000
= (1 + 0,13)n

1,785... = (1,13)n

Try n = 3 : (1,13)3 = 1,44...

Try n = 4 : (1,13)4 = 1,63...

Try n = 5 : (1,13)5 = 1,84...

Step 4 : Write the final answer
Mr Lowe should take the loan over four years
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8.5.3 Other Applications of Compound Growth

Worked Example 15: Population Growth

Question: South Africa’s population is increasing by 2,5% per year. If the current
population is 43 million, how many more people will there be in South Africa in two
year’s time ?
Answer
Step 1 : Determine what has been provided and what is required

• opening balance, P = 43 000 000

• period of time, n = 2 year

• interest rate, i = 2,5% peryear

We are required to find the closing balance(A).
Step 2 : Determine how to approach the problem
We know from (8.3) that:

Closing Balance,(A) = P (1 + i)n

Step 3 : Solve the problem

A = P (1 + i)n

= 43 000 000(1 + 0,025)2

= 45 176 875

Step 4 : Write the final answer
There are 45 176 875 − 43 000 000 = 2 176 875 more people in 2 year’s time

Worked Example 16: Compound Decrease

Question: A swimming pool is being treated for a build-up of algae. Initially, 50m2

of the pool is covered by algae. With each day of treatment, the algae reduces by
5%. What area is covered by algae after 30 days of treatment ?
Answer
Step 1 : Determine what has been provided and what is required

• opening balance, P = 50m2

• period of time, n = 30 days

• interest rate, i = 5% perday

We are required to find the closing balance(A).
Step 2 : Determine how to approach the problem
We know from (8.3) that:

Closing Balance,(A) = P (1 + i)n
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But this is compound decrease so we can use the formula:

Closing Balance,(A) = P (1 − i)n

Step 3 : Solve the problem

A = P (1 − i)n

= 50(1 − 0,05)30

= 10,73m2

Step 4 : Write the final answer
Therefore the area still covered with algae is 10,73m2

Exercise: Compound Interest

1. An amount of R3 500 is invested in a savings account which pays compound
interest at a rate of 7,5% per annum. Calculate the balance accumulated by
the end of 2 years.

2. If the average rate of inflation for the past few years was 7,3% and your water
and electricity account is R 1 425 on average, what would you expect to pay
in 6 years time ?

3. Shrek wants to invest some money at 11% per annum compound interest. How
much money (to the nearest rand) should he invest if he wants to reach a sum
of R 100 000 in five year’s time ?

8.6 Summary

As an easy reference, here are the key formulae that we derived and used during this chapter.
While memorising them is nice (there are not many), it is the application that is useful. Financial
experts are not paid a salary in order to recite formulae, they are paid a salary to use the right
methods to solve financial problems.

8.6.1 Definitions

P Principal (the amount of money at the starting point of the calculation)
i interest rate, normally the effective rate per annum
n period for which the investment is made

8.6.2 Equations

Closing Balance - simple interest
Solve for i
Solve for n







= P (1 + i · n)
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Closing Balance - compound interest
Solve for i
Solve for n







= P (1 + i)n

Important: Always keep the interest and the time period in the same units of time (e.g.
both in years, or both in months etc.).

8.7 End of Chapter Exercises

1. You are going on holiday to Europe. Your hotel will cost e200 per night. How much will
you need in Rands to cover your hotel bill, if the exchange rate is e1 = R9,20.

2. Calculate how much you will earn if you invested R500 for 1 year at the following interest
rates:

(a) 6,85% simple interest

(b) 4,00% compound interest

3. Bianca has R1 450 to invest for 3 years. Bank A offers a savings account which pays
simple interest at a rate of 11% per annum, whereas Bank B offers a savings account
paying compound interest at a rate of 10,5% per annum. Which account would leave
Bianca with the highest accumulated balance at the end of the 3 year period?

4. How much simple interest is payable on a loan of R2 000 for a year, if the interest rate is
10%?

5. How much compound interest is payable on a loan of R2 000 for a year, if the interest rate
is 10%?

6. Discuss:

(a) Which type of interest would you like to use if you are the borrower?

(b) Which type of interest would you like to use if you were the banker?

7. Calculate the compound interest for the following problems.

(a) A R2 000 loan for 2 years at 5%.

(b) A R1 500 investment for 3 years at 6%.

(c) An R800 loan for l year at 16%.

8. If the exchange rate 100 Yen = R 6,2287 and 1 AUD = R 5,1094 , determine the exchange
rate between the Australian Dollar and the Japanese Yen.

9. Bonnie bought a stove for R 3 750. After 3 years she paid for it and the R 956,25 interest
that was charged for hire-purchase. Determine the simple rate of interest that was charged.
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Chapter 9

Products and Factors - Grade 10

9.1 Introduction

In this chapter you will learn how to work with algebraic expressions. You will recap some of
the work on factorisation and multiplying out expressions that you learnt in earlier grades. This
work will then be extended upon for Grade 10.

9.2 Recap of Earlier Work

The following should be familiar. Examples are given as reminders.

9.2.1 Parts of an Expression

Mathematical expressions are just like sentences and their parts have special names. You should
be familiar with the following names used to describe the parts of an mathematical expression.

a · xk + b · x + cm = 0 (9.1)

d · yp + e · y + f ≤ 0 (9.2)

Name Examples (separated by commas)

term a · xk ,b · x, cm, d · yp, e · y, f

expression a · xk + b · x + cm, d · yp + e · y + f
coefficient a, b, d, e
exponent (or index) k, p
base x, y, c
constant a, b, c, d, e, f
variable x, y

equation a · xk + b · x + cm = 0
inequality d · yp + e · y + f ≤ 0
binomial expression with two terms
trinomial expression with three terms

9.2.2 Product of Two Binomials

A binomial is a mathematical expression with two terms, e.g. (ax + b) and (cx + d). If these
two binomials are multiplied, the following is the result:
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(a · x + b)(c · x + d) = (ax)(c · x + d) + b(c · x + d)

= (ax)(cx) + (ax)d + b(cx) + b · d

Worked Example 17: Product of two Binomials

Question: Find the product of (3x − 2)(5x + 8)
Answer

(3x − 2)(5x + 8) = (3x)(5x) + (3x)(8) + (−2)(5x) + (−2)(8)

= 15x2 + 24x − 10x − 16

= 15x2 + 14x − 16

The product of two identical binomials is known as the square of the binomials and is written
as:

(ax + b)2 = a2x2 + 2abx + b2

If the two terms are ax + b and ax − b then their product is:

(ax + b)(ax − b) = a2x2 − b2

This is known as the difference of squares.

9.2.3 Factorisation

Factorisation is the opposite of expanding brackets. For example expanding brackets would
require 2(x+ 1) to be written as 2x+2. Factorisation would be to start with 2x+2 and to end
up with 2(x + 1). In previous grades you factorised based on common factors and on difference
of squares.

Common Factors

Factorising based on common factors relies on there being common factors between your terms.
For example, 2x − 6x2 can be factorised as follows:

2x − 6x2 = 2x(1 − 3x)

Activity :: Investigation : Common Factors
Find the highest common factors of the following pairs of terms:

(a) 6y; 18x (b) 12mn; 8n (c) 3st; 4su (d) 18kl; 9kp (e) abc; ac
(f) 2xy; 4xyz (g) 3uv; 6u (h) 9xy; 15xz (i) 24xyz; 16yz (j) 3m; 45n
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Difference of Squares

We have seen that:
(ax + b)(ax − b) = a2x2 − b2 (9.3)

Since 9.3 is an equation, both sides are always equal. This means that an expression of the form:

a2x2 − b2

can be factorised to
(ax + b)(ax − b)

Therefore,
a2x2 − b2 = (ax + b)(ax − b)

For example, x2 − 16 can be written as (x2 − 42) which is a difference of squares. Therefore the
factors of x2 − 16 are (x − 4) and (x + 4).

Worked Example 18: Factorisation

Question: Factorise completely: b2y5 − 3aby3

Answer

b2y5 − 3aby3 = by3(by2 − 3a)

Worked Example 19: Factorising binomials with a common bracket

Question: Factorise completely: 3a(a − 4) − 7(a − 4)
Answer
Step 1 : bracket (a − 4) is the common factor

3a(a − 4) − 7(a − 4) = (a − 4)(3a − 7)

Worked Example 20: Factorising using a switch around in brackets

Question: Factorise 5(a − 2) − b(2 − a)
Answer
Step 1 : Note that (2 − a) = −(a − 2)

5(a − 2) − b(2 − a) = 5(a − 2) − [−b(a− 2)]

= 5(a − 2) + b(a − 2)

= (a − 2)(5 + b)

73



9.3 CHAPTER 9. PRODUCTS AND FACTORS - GRADE 10

Exercise: Recap

1. Find the products of:

(a) 2y(y + 4) (b) (y + 5)(y + 2) (c) (y + 2)(2y + 1)
(d) (y + 8)(y + 4) (e) (2y + 9)(3y + 1) (f) (3y − 2)(y + 6)

2. Factorise:

(a) 2l + 2w

(b) 12x + 32y

(c) 6x2 + 2x + 10x3

(d) 2xy2 + xy2z + 3xy

(e) −2ab2 − 4a2b

3. Factorise completely:

(a) 7a + 4 (b) 20a − 10 (c) 18ab − 3bc
(d) 12kj + 18kq (e) 16k2 − 4k (f) 3a2 + 6a − 18
(g) −6a − 24 (h) −2ab − 8a (i) 24kj − 16k2j
(j) −a2b − b2a (k) 12k2j + 24k2j2 (l) 72b2q − 18b3q2

(m) 4(y − 3) + k(3− y) (n) a(a − 1) − 5(a − 1) (o) bm(b+4)−6m(b+4)
(p) a2(a+7)+ a(a+7) (q) 3b(b− 4)− 7(4− b) (r) a2b2c2 − 1

9.3 More Products

We have seen how to multiply two binomials in section 9.2.2. In this section we learn how to
multiply a binomial (expression with two terms) by a trinomial (expression with three terms).
Fortunately, we use the same methods we used to multiply two binomials to multiply a binomial
and a trinomial.

For example, multiply 2x + 1 by x2 + 2x + 1.

(2x + 1)(x2 + 2x + 1)

= 2x(x2 + 2x + 1) + 1(x2 + 2x + 1) (apply distributive law)

= [2x(x2) + 2x(2x) + 2x(1)] + [1(x2) + 1(2x) + 1(1)]

= 4x3 + 4x2 + 2x + x2 + 2x + 1 (expand the brackets)

= 4x3 + (4x2 + x2) + (2x + 2x) + 1 (group like terms to simplify)

= 4x3 + 5x2 + 4x + 1 (simplify to get final answer)

Important: Multiplication of Binomial with Trinomial

If the binomial is A + B and the trinomial is C + D + E, then the very first step is to apply the
distributive law:

(A + B)(C + D + E) = A(C + D + E) + B(C + D + E) (9.4)

If you remember this, you will never go wrong!
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Worked Example 21: Multiplication of Binomial with Trinomial

Question: Multiply x − 1 with x2 − 2x + 1.

Answer

Step 1 : Determine what is given and what is required

We are given two expressions: a binomial, x − 1, and a trinomial, x2 − 2x + 1. We
need to multiply them together.

Step 2 : Determine how to approach the problem

Apply the distributive law and then simplify the resulting expression.

Step 3 : Solve the problem

(x − 1)(x2 − 2x + 1)

= x(x2 − 2x + 1) − 1(x2 − 2x + 1) (apply distributive law)

= [x(x2) + x(−2x) + x(1)] + [−1(x2) − 1(−2x) − 1(1)]

= x3 − 2x2 + x − x2 + 2x − 1 (expand the brackets)

= x3 + (−2x2 − x2) + (x + 2x) − 1 (group like terms to simplify)

= x3 − 3x2 + 3x − 1 (simplify to get final answer)

Step 4 : Write the final answer

The product of x − 1 and x2 − 2x + 1 is x3 − 3x2 + 3x − 1.

Worked Example 22: Sum of Cubes

Question: Find the product of x + y and x2 − xy + y2.

Answer

Step 1 : Determine what is given and what is required

We are given two expressions: a binomial, x + y, and a trinomial, x2 −xy + y2. We
need to multiply them together.

Step 2 : Determine how to approach the problem

Apply the distributive law and then simplify the resulting expression.

Step 3 : Solve the problem

(x + y)(x2 − xy + y2)

= x(x2 − xy + y2) + y(x2 − xy + y2) (apply distributive law)

= [x(x2) + x(−xy) + x(y2)] + [y(x2) + y(−xy) + y(y2)]

= x3 − x2y + xy2 + yx2 − xy2 + y3 (expand the brackets)

= x3 + (−x2y + yx2) + (xy2 − xy2) + y3 (group like terms to simplify)

= x3 + y3 (simplify to get final answer)

Step 4 : Write the final answer

The product of x + y and x2 − xy + y2 is x3 + y3.
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Important: We have seen that:

(x + y)(x2 − xy + y2) = x3 + y3

This is known as a sum of cubes.

Activity :: Investigation : Difference of Cubes
Show that the difference of cubes (x3 − y3) is given by the product of x− y and

x2 + xy + y2.

Exercise: Products

1. Find the products of:

(a) (−2y2 − 4y + 11)(5y − 12) (b) (−11y + 3)(−10y2 − 7y − 9)
(c) (4y2 + 12y + 10)(−9y2 + 8y + 2) (d) (7y2 − 6y − 8)(−2y + 2)
(e) (10y5 + 3)(−2y2 − 11y + 2) (f) (−12y − 3)(12y2 − 11y + 3)
(g) (−10)(2y2 + 8y + 3) (h) (2y6 + 3y5)(−5y − 12)
(i) (6y7 − 8y2 + 7)(−4y − 3)(−6y2 − 7y − 11) (j) (−9y2 + 11y + 2)(8y2 + 6y − 7)
(k) (8y5 + 3y4 + 2y3)(5y + 10)(12y2 + 6y + 6) (l) (−7y + 11)(−12y + 3)
(m) (4y3 +5y2−12y)(−12y−2)(7y2−9y+12) (n) (7y + 3)(7y2 + 3y + 10)
(o) (9)(8y2 − 2y + 3) (p) (−12y + 12)(4y2 − 11y + 11)
(q) (−6y4 + 11y2 + 3y)(10y + 4)(4y − 4) (r) (−3y6 − 6y3)(11y − 6)(10y − 10)
(s) (−11y5 + 11y4 + 11)(9y3 − 7y2 − 4y + 6) (t) (−3y + 8)(−4y3 + 8y2 − 2y + 12)

2. Remove the brackets and simplify:(2h + 3)(4h2 − 6h + 9)

9.4 Factorising a Quadratic

Finding the factors of a quadratic is quite easy, and some are easier than others.

The simplest quadratic has the form ax2, which factorises to (x)(ax). For example, 25x2

factorises to (5x)(5x) and 2x2 factorises to (2x)(x).

The second simplest quadratic is of the form ax2 + bx. We can see here that x is a common
factor of both terms. Therefore, ax2 + bx factorises to x(ax + b). For example, 8y2 + 4y
factorises to 4y(2y + 1).

The third simplest quadratic is made up of the difference of squares. We know that:

(a + b)(a − b) = a2 − b2.

This is true for any values of a and b, and more importantly since it is an equality, we can also
write:

a2 − b2 = (a + b)(a − b).

This means that if we ever come across a quadratic that is made up of a difference of squares,
we can immediately write down what the factors are.
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Worked Example 23: Difference of Squares

Question: Find the factors of 9x2 − 25.
Answer
Step 1 : Examine the quadratic
We see that the quadratic is a difference of squares because:

(3x)2 = 9x2

and
52 = 25.

Step 2 : Write the quadratic as the difference of squares

9x2 − 25 = (3x)2 − 52

Step 3 : Write the factors

(3x)2 − 52 = (3x − 5)(3x + 5)

Step 4 : Write the final answer
The factors of 9x2 − 25 are (3x − 5)(3x + 5).

The three types of quadratic that we have seen are very simple to factorise. However, many
quadratics do not fall into these categories, and we need a more general method to factorise
quadratics like x2 − x − 2?

We can learn about how to factorise quadratics by looking at how two binomials are multiplied
to get a quadratic. For example, (x + 2)(x + 3) is multiplied out as:

(x + 2)(x + 3) = x(x + 3) + 2(x + 3)

= (x)(x) + 3x + 2x + (2)(3)

= x2 + 5x + 6.

We see that the x2 term in the quadratic is the product of the x-terms in each bracket. Similarly,
the 6 in the quadratic is the product of the 2 and 3 the brackets. Finally, the middle term is the
sum of two terms.

So, how do we use this information to factorise the quadratic?

Let us start with factorising x2 +5x+6 and see if we can decide upon some general rules. Firstly,
write down two brackets with an x in each bracket and space for the remaining terms.

( x )( x )

Next decide upon the factors of 6. Since the 6 is positive, these are:

Factors of 6

1 6
2 3
-1 -6
-2 -3

Therefore, we have four possibilities:

Option 1 Option 2 Option 3 Option 4
(x + 1)(x + 6) (x − 1)(x − 6) (x + 2)(x + 3) (x − 2)(x − 3)
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Next we expand each set of brackets to see which option gives us the correct middle term.

Option 1 Option 2 Option 3 Option 4
(x + 1)(x + 6) (x − 1)(x − 6) (x + 2)(x + 3) (x − 2)(x − 3)
x2 + 7x + 6 x2 − 7x + 6 x2 + 5x + 6 x2 − 5x + 6

We see that Option 3 (x+2)(x+3) is the correct solution. As you have seen that the process
of factorising a quadratic is mostly trial and error, however the is some information that can be
used to simplify the process.

Method: Factorising a Quadratic

1. First divide the entire equation by any common factor of the coefficients, so as to obtain
an equation of the form ax2 + bx + c = 0 where a, b and c have no common factors and
a is positive.

2. Write down two brackets with an x in each bracket and space for the remaining terms.

( x )( x ) (9.5)

3. Write down a set of factors for a and c.

4. Write down a set of options for the possible factors for the quadratic using the factors of
a and c.

5. Expand all options to see which one gives you the correct answer.

There are some tips that you can keep in mind:

• If c is positive, then the factors of c must be either both positive or both negative. The
factors are both negative if b is negative, and are both positive if b is positive. If c is
negative, it means only one of the factors of c is negative, the other one being positive.

• Once you get an answer, multiply out your brackets again just to make sure it really works.

Worked Example 24: Factorising a Quadratic

Question: Find the factors of 3x2 + 2x − 1.
Answer
Step 1 : Check whether the quadratic is in the form ax2 + bx + c = 0 with a
positive.
The quadratic is in the required form.
Step 2 : Write down two brackets with an x in each bracket and space for
the remaining terms.

( x )( x ) (9.6)

Write down a set of factors for a and c. The possible factors for a are: (1,3).
The possible factors for c are: (-1,1) or (1,-1).

Write down a set of options for the possible factors for the quadratic using the
factors of a and c. Therefore, there are two possible options.

Option 1 Option 2
(x − 1)(3x + 1) (x + 1)(3x − 1)
3x2 − 2x − 1 3x2 + 2x − 1
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Step 3 : Check your answer

(x + 1)(3x − 1) = x(3x − 1) + 1(3x − 1)

= (x)(3x) + (x)(−1) + (1)(3x) + (1)(−1)

= 3x2 − x + 3x − 1

= x2 + 2x − 1.

Step 4 : Write the final answer
The factors of 3x2 + 2x − 1 are (x + 1) and (3x − 1).

Exercise: Factorising a Trinomial

1. Factorise the following:

(a) x2 + 8x + 15 (b) x2 + 10x + 24 (c) x2 + 9x + 8
(d) x2 + 9x + 14 (e) x2 + 15x + 36 (f) x2 + 13x + 36

2. Factorise the following:

(a) x2 − 2x − 15

(b) x2 + 2x − 3

(c) x2 + 2x − 8

(d) x2 + x − 20

(e) x2 − x − 20

3. Find the factors for the following quadratic expressions:

(a) 2x2 + 11x + 5

(b) 3x2 + 19x + 6

(c) 6x2 + 7x + 2

(d) 12x2 + 7x + 1

(e) 8x2 + 6x + 1

4. Find the factors for the following trinomials:

(a) 3x2 + 17x − 6

(b) 7x2 − 6x − 1

(c) 8x2 − 6x + 1

(d) 2x2 − 5x − 3

9.5 Factorisation by Grouping

One other method of factorisation involves the use of common factors. We know that the factors
of 3x + 3 are 3 and (x + 1). Similarly, the factors of 2x2 + 2x are 2x and (x + 1). Therefore, if
we have an expression:

2x2 + 2x + 3x + 3

then we can factorise as:
2x(x + 1) + 3(x + 1).

You can see that there is another common factor: x + 1. Therefore, we can now write:

(x + 1)(2x + 3).

We get this by taking out the x + 1 and see what is left over. We have a +2x from the first
term and a +3 from the second term. This is called factorisation by grouping.
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Worked Example 25: Factorisation by Grouping

Question: Find the factors of 7x + 14y + bx + 2by by grouping
Answer
Step 1 : Determine if there are common factors to all terms
There are no factors that are common to all terms.
Step 2 : Determine if there are factors in common between some terms
7 is a common factor of the first two terms and b is a common factor of the second
two terms.
Step 3 : Re-write expression taking the factors into account

7x + 14y + bx + 2by = 7(x + 2y) + b(x + 2y)

Step 4 : Determine if there are more common factors
x + 2y is a common factor.
Step 5 : Re-write expression taking the factors into account

7(x + 2y) + b(x + 2y) = (x + 2y)(7 + b)

Step 6 : Write the final answer
The factors of 7x + 14y + bx + 2by are (7 + b) and (x + 2y).

Exercise: Factorisation by Grouping

1. Factorise by grouping: 6x + 9 + 2ax + 3

2. Factorise by grouping: x2 − 6x + 5x − 30

3. Factorise by grouping: 5x + 10y − ax − 2ay

4. Factorise by grouping: a2 − 2a − ax + 2x

5. Factorise by grouping: 5xy − 3y + 10x − 6

9.6 Simplification of Fractions

In some cases of simplifying an algebraic expression, the expression will be a fraction. For
example,

x2 + 3x

x + 3

has a quadratic in the numerator and a binomial in the denominator. You can apply the different
factorisation methods to simplify the expression.

x2 + 3x

x + 3

=
x(x + 3)

x + 3
= x provided x 6= −3
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Worked Example 26: Simplification of Fractions

Question: Simplify: 2x−b+x−ab
ax2−abx

Answer

Step 1 : Factorise numerator and denominator

Use grouping for numerator and common factor for denominator in this example.

=
(ax − ab) + (x − b)

ax2 − abx

=
a(x − b) + (x − b)

ax(x − b)

=
(x − b)(a + 1)

ax(x − b)

Step 2 : Cancel out same factors

The simplified answer is:

=
a + 1

ax

Worked Example 27: Simplification of Fractions

Question: Simplify:x2−x−2
x2−4 ÷ x2+x

x2+2x

Answer

Step 1 : Factorise numerators and denominators

=
(x + 1)(x − 2)

(x + 2)(x − 2)
÷ x(x + 1)

x(x + 2)

Step 2 : Multiply by factorised reciprocal

=
(x + 1)(x − 2)

(x + 2)(x − 2)
× x(x + 2)

x(x + 1)

Step 3 : Cancel out same factors

The simplified answer is

= 1

Exercise: Simplification of Fractions

1. Simplify:
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(a) 3a
15 (b) 2a+10

4

(c) 5a+20
a+4 (d) a2−4a

a−4

(e) 3a2−9a
2a−6 (f) 9a+27

9a+18

(g) 6ab+2a
2b

(h) 16x2y−8xy

12x−6

(i) 4xyp−8xp
12xy

(j) 3a+9
14 ÷ 7a+21

a+3

(k) a2−5a
2a+10 ÷ 3a+15

4a
(l) 3xp+4p

8p
÷ 12p2

3x+4

(x) 16
2xp+4x

÷ 6x2+8x
12 (y) 24a−8

12 ÷ 9a−3
6

(o) a2+2a
5 ÷ 2a+4

20 (p) p2+pq

7p
÷ 8p+8q

21q

(q) 5ab−15b
4a−12 ÷ 6b2

a+b
(r) f2a−fa2

f−a

2. Simplify: x2−1
3 × 1

x−1 − 1
2

9.7 End of Chapter Exercises

1. Factorise:

(a) a2 − 9 (b) m2 − 36 (c) 9b2 − 81
(d) 16b6 − 25a2 (e) m2 − (1/9) (f) 5 − 5a2b6

(g) 16ba4 − 81b (h) a2 − 10a + 25 (i) 16b2 + 56b + 49
(j) 2a2 − 12ab + 18b2 (k) −4b2−144b8+48b5 (l) a3 − 27
(m) 125a3 + b3 (n) 128b7 − 250ba6 (o) c3 + 27
(p) 64b3 + 1 (q) 5a3 − 40c3 (r) 2b4 − 128b

2. Show that (2x − 1)2 − (x − 3)2 can be simplified to (x + 2)(3x − 4)

3. What must be added to x2 − x + 4 to make it equal to (x + 2)2
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Chapter 10

Equations and Inequalities - Grade
10

10.1 Strategy for Solving Equations

This chapter is all about solving different types of equations for one or two variables. In general,
we want to get the unknown variable alone on the left hand side of the equation with all the
constants on the right hand side of the equation. For example, in the equation x − 1 = 0, we
want to be able to write the equation as x = 1.

As we saw in section 2.9 (page 13), an equation is like a set of weighing scales, that must always
be balanced. When we solve equations, we need to keep in mind that what is done to one side
must be done to the other.

Method: Rearranging Equations

You can add, subtract, multiply or divide both sides of an equation by any number you want, as
long as you always do it to both sides.

For example, in the equation x+5−1 = −6, we want to get x alone on the left hand side of the
equation. This means we need to subtract 5 and add 1 on the left hand side. However, because
we need to keep the equation balanced, we also need to subtract 5 and add 1 on the right hand
side.

x + 5 − 1 = −6

x + 5 − 5 − 1 + 1 = −6 − 5 + 1

x + 0 + 0 = −11 + 1

x = −10

In another example, 2
3x = 8, we must divide by 2 and multiply by 3 on the left hand side in

order to get x alone. However, in order to keep the equation balanced, we must also divide by
2 and multiply by 3 on the right hand side.

2

3
x = 8

2

3
x ÷ 2 × 3 = 8 ÷ 2 × 3

2

2
× 3

3
× x =

8 × 3

2
1 × 1 × x = 12

x = 12

These are the basic rules to apply when simplifying any equation. In most cases, these rules
have to be applied more than once, before we have the unknown variable on the left hand side
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of the equation.

We are now ready to solve some equations!

Important: The following must also be kept in mind:

1. Division by 0 is undefined.

2. If x
y

= 0, then x = 0 and y 6= 0, because division by 0 is undefined.

Activity :: Investigation : Strategy for Solving Equations

In the following, identify what is wrong.

4x − 8 = 3(x − 2)

4(x − 2) = 3(x − 2)

4(x − 2)

(x − 2)
=

3(x − 2)

(x − 2)

4 = 3

10.2 Solving Linear Equations

The simplest equation to solve is a linear equation. A linear equation is an equation where the
power on the variable(letter, e.g. x) is 1(one). The following are examples of linear equations.

2x + 2 = 1
2 − x

3x + 1
= 2

4

3
x − 6 = 7x + 2

In this section, we will learn how to find the value of the variable that makes both sides of the
linear equation true. For example, what value of x makes both sides of the very simple equation,
x + 1 = 1 true.

Since the highest power on the variable is one(1) in a linear equation, there is at most one
solution or root for the equation.

This section relies on all the methods we have already discussed: multiplying out expressions,
grouping terms and factorisation. Make sure that you are comfortable with these methods,
before trying out the work in the rest of this chapter.

2x + 2 = 1

2x = 1 − 2 (like terms together)

2x = −1 (simplified as much a possible)

Now we see that 2x = −1. This means if we divide both sides by 2, we will get:

x = −1

2
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If we substitute x = − 1
2 , back into the original equation, we get:

2x + 2

= 2(−1

2
) + 2

= −1 + 2

= 1

That is all that there is to solving linear equations.

Important: Solving Equations

When you have found the solution to an equation, substitute the solution into the original
equation, to check your answer.

Method: Solving Equations

The general steps to solve equations are:

1. Expand(Remove) all brackets.

2. ”Move” all terms with the variable to the left hand side of equation, and all constant terms
(the numbers) to the right hand side of the equal to-sign. Bearing in mind that the sign
of the terms will chance(from (+) to (-) or vice versa, as they ”cross over” the equal to
sign.

3. Group all like terms together and simplify as much as possible.

4. Factorise if necessary.

5. Find the solution.

6. Substitute solution into original equation to check answer.

Worked Example 28: Solving Linear Equations

Question: Solve for x: 4 − x = 4
Answer
Step 1 : Determine what is given and what is required
We are given 4 − x = 4 and are required to solve for x.
Step 2 : Determine how to approach the problem
Since there are no brackets, we can start with grouping like terms and then simpli-
fying.
Step 3 : Solve the problem

4 − x = 4

−x = 4 − 4 (move all constant terms (numbers) to the RHS (right hand side))

−x = 0 (group like terms together)

−x = 0 (simplify grouped terms)

−x = 0

∴ x = 0

Step 4 : Check the answer
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Substitute solution into original equation:

4 − 0 = 4

4 = 4

Since both sides are equal, the answer is correct.
Step 5 : Write the Final Answer
The solution of 4 − x = 4 is x = 0.

Worked Example 29: Solving Linear Equations

Question: Solve for x: 4(2x − 9) − 4x = 4 − 6x
Answer
Step 1 : Determine what is given and what is required
We are given 4(2x − 9) − 4x = 4 − 6x and are required to solve for x.
Step 2 : Determine how to approach the problem
We start with expanding the brackets, then grouping like terms and then simplifying.
Step 3 : Solve the problem

4(2x − 9) − 4x = 4 − 6x

8x − 36 − 4x = 4 − 6x (expand the brackets)

8x − 4x + 6x = 4 + 36 (move all terms with x to the LHS and all constant terms to the RHS of the =)

(8x − 4x + 6x) = (4 + 36) (group like terms together)

10x = 40 (simplify grouped terms)

10

10
x =

40

10
(divide both sides by 10)

x = 4

Step 4 : Check the answer
Substitute solution into original equation:

4(2(4) − 9) − 4(4) = 4 − 6(4)

4(8 − 9) − 16 = 4 − 24

4(−1)− 16 = −20

−4 − 16 = −20

−20 = −20

Since both sides are equal to −20, the answer is correct.
Step 5 : Write the Final Answer
The solution of 4(2x − 9) − 4x = 4 − 6x is x = 4.

Worked Example 30: Solving Linear Equations

Question: Solve for x: 2−x
3x+1 = 2

Answer
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Step 1 : Determine what is given and what is required
We are given 2−x

3x+1 = 2 and are required to solve for x.
Step 2 : Determine how to approach the problem
Since there is a denominator of (3x+1), we can start by multiplying both sides of
the equation by (3x+1). But because division by 0 is not permissible, there is a
restriction on a value for x. (x 6= −1

3 )
Step 3 : Solve the problem

2 − x

3x + 1
= 2

(2 − x) = 2(3x + 1)

2 − x = 6x + 2 (remove/expand brackets)

−x − 6x = 2 − 2 (move all terms containing x to the LHS and all constant terms (numbers) to the RHS.)

−7x = 0 (simplify grouped terms)

x = 0 ÷ (−7)

therefore x = 0 zero divide by any number is 0

Step 4 : Check the answer
Substitute solution into original equation:

2 − (0)

3(0) + 1
= 2

2

1
= 2

Since both sides are equal to 2, the answer is correct.

Step 5 : Write the Final Answer
The solution of 2−x

3x+1 = 2 is x = 0.

Worked Example 31: Solving Linear Equations

Question: Solve for x: 4
3x − 6 = 7x + 2

Answer
Step 1 : Determine what is given and what is required
We are given 4

3x − 6 = 7x + 2 and are required to solve for x.
Step 2 : Determine how to approach the problem
We start with multiplying each of the terms in the equation by 3, then grouping like
terms and then simplifying.
Step 3 : Solve the problem

4

3
x − 6 = 7x + 2

4x − 18 = 21x + 6 (each term is multiplied by 3

4x − 21x = 6 + 18 (move all terms with x to the LHS and all constant terms to the RHS of the =)

−17x = 24 (simplify grouped terms)

−17

−17
x =

24

−17
(divide both sides by -17)

x =
−24

17
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Step 4 : Check the answer

Substitute solution into original equation:

4

3
× −24

17
− 6 = 7 × −24

17
+ 2

4 × (−8)

(17)
− 6 =

7 × (−24)

17
+ 2

(−32)

17
− 6 =

−168

17
+ 2

−32 − 102

17
=

(−168) + 34

17
−134

17
=

−134

17

Since both sides are equal to −134
17 , the answer is correct.

Step 5 : Write the Final Answer

The solution of 4
3x − 6 = 7x + 2 is, x = −24

17 .

Exercise: Solving Linear Equations

1. Solve for y: 2y − 3 = 7

2. Solve for w: −3w = 0

3. Solve for z: 4z = 16

4. Solve for t: 12t + 0 = 144

5. Solve for x: 7 + 5x = 62

6. Solve for y: 55 = 5y + 3
4

7. Solve for z: 5z = 3z + 45

8. Solve for a: 23a− 12 = 6 + 2a

9. Solve for b: 12 − 6b + 34b = 2b − 24 − 64

10. Solve for c: 6c + 3c = 4 − 5(2c− 3).

11. Solve for p: 18 − 2p = p + 9

12. Solve for q: 4
q

= 16
24

13. Solve for q: 4
1 = q

2

14. Solve for r: −(−16− r) = 13r − 1

15. Solve for d: 6d − 2 + 2d = −2 + 4d + 8

16. Solve for f : 3f − 10 = 10

17. Solve for v: 3v + 16 = 4v − 10

18. Solve for k: 10k + 5 + 0 = −2k + −3k + 80

19. Solve for j: 8(j − 4) = 5(j − 4)

20. Solve for m: 6 = 6(m + 7) + 5m
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10.3 Solving Quadratic Equations

A quadratic equation is an equation where the power on the variable is at most 2. The following
are examples of quadratic equations.

2x2 + 2x = 1
2 − x

3x + 1
= 2x

4

3
x − 6 = 7x2 + 2

Quadratic equations differ from linear equations by the fact that a linear equation only has one
solution, while a quadratic equation has at most two solutions. There are some special situations
when a quadratic equation only has one solution.

We solve quadratic equations by factorisation, that is writing the quadratic as a product of two
expressions in brackets. For example, we know that:

(x + 1)(2x − 3) = 2x2 − x − 3.

In order to solve:
2x2 − x − 3 = 0

we need to be able to write 2x2 − x − 3 as (x + 1)(2x− 3), which we already know how to do.

Activity :: Investigation : Factorising a Quadratic
Factorise the following quadratic expressions:

1. x + x2

2. x2 + 1 + 2x

3. x2 − 4x + 5

4. 16x2 − 9

5. 4x2 + 4x + 1

Being able to factorise a quadratic means that you are one step away from solving a quadratic
equation. For example, x2 − 3x − 2 = 0 can be written as (x − 1)(x − 2) = 0. This means
that both x − 1 = 0 and x − 2 = 0, which gives x = 1 and x = 2 as the two solutions to the
quadratic equation x2 − 3x − 2 = 0.

Method: Solving Quadratic Equations

1. First divide the entire equation by any common factor of the coefficients, so as to obtain
an equation of the form ax2 + bx + c = 0 where a, b and c have no common factors. For
example, 2x2 + 4x + 2 = 0 can be written as x2 + 2x + 1 = 0 by dividing by 2.

2. Write ax2 + bx + c in terms of its factors (rx + s)(ux + v).
This means (rx + s)(ux + v) = 0.

3. Once writing the equation in the form (rx + s)(ux + v) = 0, it then follows that the two
solutions are x = − s

r
or x = −u

v
.

Extension: Solutions of Quadratic Equations
There are two solutions to a quadratic equation, because any one of the values can
solve the equation.

89



10.3 CHAPTER 10. EQUATIONS AND INEQUALITIES - GRADE 10

Worked Example 32: Solving Quadratic Equations

Question: Solve for x: 3x2 + 2x − 1 = 0
Answer
Step 1 : Find the factors of 3x2 + 2x − 1
As we have seen the factors of 3x2 + 2x − 1 are (x + 1) and (3x − 1).
Step 2 : Write the equation with the factors

(x + 1)(3x − 1) = 0

Step 3 : Determine the two solutions
We have

x + 1 = 0

or
3x − 1 = 0

Therefore, x = −1 or x = 1
3 .

Step 4 : Write the final answer
3x2 + 2x − 1 = 0 for x = −1 or x = 1

3 .

Worked Example 33: Solving Quadratic Equations

Question: Solve for x:
√

x + 2 = x
Answer
Step 1 : Square both sides of the equation
Both sides of the equation should be squared to remove the square root sign.

x + 2 = x2

Step 2 : Write equation in the form ax2 + bx + c = 0

x + 2 = x2 (subtract x2 to both sides)

x + 2 − x2 = 0 (divide both sides by -1)

−x − 2 + x2 = 0

x2 − x + 2 = 0

Step 3 : Factorise the quadratic

x2 − x + 2

The factors of x2 − x + 2 are (x − 2)(x + 1).

Step 4 : Write the equation with the factors

(x − 2)(x + 1) = 0

Step 5 : Determine the two solutions
We have

x + 1 = 0

or
x − 2 = 0
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Therefore, x = −1 or x = 2.

Step 6 : Check whether solutions are valid

Substitute x = −1into the original equation
√

x + 2 = x:

LHS =
√

(−1) + 2

=
√

1

= 1

but

RHS = (−1)

Therefore LHS6=RHS
Therefore x 6= −1
Now substitute x = 2 into original equation

√
x + 2 = x:

LHS =
√

2 + 2

=
√

4

= 2

and

RHS = 2

Therefore LHS = RHS
Therefore x = 2 is the only valid solution

Step 7 : Write the final answer√
x + 2 = x for x = 2 only.

Worked Example 34: Solving Quadratic Equations

Question: Solve the equation: x2 + 3x − 4 = 0.

Answer

Step 1 : Check if the equation is in the form ax2 + bx + c = 0

The equation is in the required form, with a = 1.

Step 2 : Factorise the quadratic

You need the factors of 1 and 4 so that the middle term is +3 So the factors are:
(x − 1)(x + 4)

Step 3 : Solve the quadratic equation

x2 + 3x − 4 = (x − 1)(x + 4) = 0 (10.1)

Therefore x = 1 or x = −4.

Step 4 : Write the final solution

Therefore the solutions are x = 1 or x = −4.
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Worked Example 35: Solving Quadratic Equations

Question: Find the roots of the quadratic equation 0 = −2x2 + 4x − 2.
Answer
Step 1 : Determine whether the equation is in the form ax2 + bx + c = 0,
with no common factors.
There is a common factor: -2. Therefore, divide both sides of the equation by -2.

−2x2 + 4x − 2 = 0

x2 − 2x + 1 = 0

Step 2 : Factorise x2 − 2x + 1
The middle term is negative. Therefore, the factors are (x − 1)(x − 1)
If we multiply out (x − 1)(x − 1), we get x2 − 2x + 1.
Step 3 : Solve the quadratic equation

x2 − 2x + 1 = (x − 1)(x − 1) = 0

In this case, the quadratic is a perfect square, so there is only one solution for x:
x = 1.
Step 4 : Write the final solution
The root of 0 = −2x2 + 4x − 2 is x = 1.

Exercise: Solving Quadratic Equations

1. Solve for x: (3x + 2)(3x − 4) = 0

2. Solve for a: (5a − 9)(a + 6) = 0

3. Solve for x: (2x + 3)(2x − 3) = 0

4. Solve for x: (2x + 1)(2x − 9) = 0

5. Solve for x: (2x − 3)(2x − 3) = 0

6. Solve for x: 20x + 25x2 = 0

7. Solve for a: 4a2 − 17a− 77 = 0

8. Solve for x: 2x2 − 5x − 12 = 0

9. Solve for b: −75b2 + 290b − 240 = 0

10. Solve for y: 2y = 1
3y2 − 3y + 14 2

3

11. Solve for θ: θ2 − 4θ = −4

12. Solve for q: −q2 + 4q − 6 = 4q2 − 5q + 3

13. Solve for t: t2 = 3t

14. Solve for w: 3w2 + 10w − 25 = 0

15. Solve for v: v2 − v + 3

16. Solve for x: x2 − 4x + 4 = 0

17. Solve for t: t2 − 6t = 7

18. Solve for x: 14x2 + 5x = 6

19. Solve for t: 2t2 − 2t = 12

20. Solve for y: 3y2 + 2y − 6 = y2 − y + 2
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10.4 Exponential Equations of the form ka(x+p) = m

examples solved by trial and error)

Exponential equations generally have the unknown variable as the power. The following are
examples of exponential equations:

2x = 1
2−x

3x+1
= 2

4

3
− 6 = 7x + 2

You should already be familiar with exponential notation. Solving exponential equations are
simple, if we remember how to apply the laws of exponentials.

Activity :: Investigation : Solving Exponential Equations
Solve the following equations by completing the table:

2x = 2 x
-3 -2 -1 0 1 2 3

2x

3x = 9 x
-3 -2 -1 0 1 2 3

3x

2x+1 = 8 x
-3 -2 -1 0 1 2 3

2x+1

10.4.1 Algebraic Solution

Definition: Equality for Exponential Functions
If a is a positive number such that a > 0, then:

ax = ay

if and only if:
x = y

.

This means that if we can write all terms in an equation with the same base, we can solve the
exponential equations by equating the indices. For example take the equation 3x+1 = 9. This
can be written as:

3x+1 = 32.

Since the bases are equal (to 3), we know that the exponents must also be equal. Therefore we
can write:

x + 1 = 2.

This gives:
x = 1.
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Method: Solving Exponential Equations

Try to write all terms with the same base.

Activity :: Investigation : Exponential Numbers
Write the following with the same base. The base is the first in the list. For

example, in the list 2, 4, 8, the base is two and we can write 4 as 22.

1. 2,4,8,16,32,64,128,512,1024

2. 3,9,27,81,243

3. 5,25,125,625

4. 13,169

5. 2x, 4x2, 8x3, 49x8

Worked Example 36: Solving Exponential Equations

Question: Solve for x: 2x = 2
Answer
Step 1 : Try to write all terms with the same base.
All terms are written with the same base.

2x = 21

Step 2 : Equate the indices

x = 1

Step 3 : Check your answer

2x

= 2(1)

= 21

Since both sides are equal, the answer is correct.
Step 4 : Write the final answer

x = 1

is the solution to 2x = 2.

Worked Example 37: Solving Exponential Equations

Question: Solve:
2x+4 = 42x
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Answer
Step 1 : Try to write all terms with the same base.

2x+4 = 42x

2x+4 = 22(2x)

2x+4 = 24x

Step 2 : Equate the indices

x + 4 = 4x

Step 3 : Solve for x

x + 4 = 4x

x − 4x = −4

−3x = −4

x =
−4

−3

x =
4

3

Step 4 : Check your answer

LHS = 2x+4

= 2( 4
3
+4)

= 2
16
3

= (216)
1
3

RHS = 42x

= 42( 4
3
)

= 4
8
3

= (48)
1
3

= ((22)8)
1
3

= (216)
1
3

= LHS

Since both sides are equal, the answer is correct.
Step 5 : Write the final answer

x =
4

3

is the solution to 2x+4 = 42x.

Exercise: Solving Exponential Equations

1. Solve the following exponential equations.

a. 2x+5 = 25 b. 32x+1 = 33 c. 52x+2 = 53

d. 65−x = 612 e. 64x+1 = 162x+5 f. 125x = 5

2. Solve: 39x−2 = 27
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3. Solve for k: 81k+2 = 27k+4

4. The growth of an algae in a pond is can be modeled by the function f(t) = 2t.
Find the value of t such that f(t) = 128?

5. Solve for x: 25(1−2x) = 54

6. Solve for x: 27x × 9x−2 = 1

10.5 Linear Inequalities

graphically;

Activity :: Investigation : Inequalities on a Number Line
Represent the following on number lines:

1. x = 4

2. x < 4

3. x ≤ 4

4. x ≥ 4

5. x > 4

A linear inequality is similar to a linear equation and has the power on the variable is equal to 1.
The following are examples of linear inequalities.

2x + 2 ≤ 1
2 − x

3x + 1
≥ 2

4

3
x − 6 < 7x + 2

The methods used to solve linear inequalities are identical to those used to solve linear equations.
The only difference occurs when there is a multiplication or a division that involves a minus sign.
For example, we know that 8 > 6. If both sides of the inequality are divided by −2, −4 is not
greater than −3. Therefore, the inequality must switch around, making −4 < −3.

Important: When you divide or multiply both sides of an inequality by any number with a
minus sign, the direction of the inequality changes.

For example, if x < 1, then −x > −1.

In order to compare am inequality to a normal equation, we shall solve an equation first. Solve
2x + 2 = 1.

2x + 2 = 1

2x = 1 − 2

2x = −1

x = −1

2

If we represent this answer on a number line, we get
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b

-3 -2 -1 0 1 2 3

x = − 1
2

Now let us solve the inequality 2x + 2 ≤ 1.

2x + 2 ≤ 1

2x ≤ 1 − 2

2x ≤ −1

x ≤ −1

2

If we represent this answer on a number line, we get

b

-3 -2 -1 0 1 2 3

x ≤ − 1
2

As you can see, for the equation, there is only a single value of x for which the equation is true.
However, for the inequality, there is a range of values for which the inequality is true. This is
the main difference between an equation and an inequality.

Worked Example 38: Linear Inequalities

Question: Solve for r: 6 − r > 2
Answer
Step 1 : Move all constants to the RHS

−r > 2 − 6

−r > −4

Step 2 : Multiply both sides by -1
When you multiply by a minus sign, the direction of the inequality changes.

r < 4

Step 3 : Represent answer graphically

0 1 2 3 4 5

r < 4
bc

Worked Example 39: Linear Inequalities

Question: Solve for q: 4q + 3 < 2(q + 3) and represent solution on a number line.
Answer
Step 1 : Expand all brackets

4q + 3 < 2(q + 3)

4q + 3 < 2q + 6
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Step 2 : Move all constants to the RHS and all unknowns to the LHS

4q + 3 < 2q + 6

4q − 2q < 6 − 3

2q < 3

Step 3 : Solve inequality

2q < 3 Divide both sides by 2

q <
3

2

Step 4 : Represent answer graphically

0 1 2 3 4 5

q < 3
2
bc

Worked Example 40: Compound Linear Inequalities

Question: Solve for x: 5 ≤ x + 3 < 8 and represent solution on a number line.
Answer
Step 1 : Subtract 3 from Left, middle and right of inequalities

5 − 3 ≤ x + 3 − 3 < 8 − 3

2 ≤ x < 5

Step 2 : Represent answer graphically

0 1 2 3 4 5

2 ≤ x < 5
bcb

Exercise: Linear Inequalities

1. Solve for x and represent the solution graphically:

(a) 3x + 4 > 5x + 8

(b) 3(x − 1) − 2 ≤ 6x + 4

(c) x−7
3 > 2x−3

2

(d) −4(x − 1) < x + 2

(e) 1
2x + 1

3 (x − 1) ≥ 5
6x − 1

3

2. Solve the following inequalities. Illustrate your answer on a number line if x is
a real number.

(a) −2 ≤ x − 1 < 3
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(b) −5 < 2x − 3 ≤ 7

3. Solve for x: 7(3x + 2) − 5(2x − 3) > 7.
Illustrate this answer on a number line.

10.6 Linear Simultaneous Equations

Thus far, all equations that have been encountered have one unknown variable, that must be
solved for. When two unknown variables need to be solved for, two equations are required
and these equations are known as simultaneous equations. The solutions to the system of
simultaneous equations, are the values of the unknown variables which satisfy the system of
equations simultaneously, that means at the same time. In general, if there are n unknown
variables, then n equations are required to obtain a solution for each of the n variables.

An example of a system of simultaneous equations is:

2x + 2y = 1 (10.2)

2 − x

3y + 1
= 2

10.6.1 Finding solutions

In order to find a numerical value for an unknown variable, one must have at least as many inde-
pendent equations as variables. We solve simultaneous equations graphically and algebraically/

10.6.2 Graphical Solution

Simultaneous equations can also be solved graphically. If the graphs corresponding to each
equation is drawn, then the solution to the system of simultaneous equations is the co-ordinate
of the point at which both graphs intersect.

x = 2y (10.3)

y = 2x − 3

Draw the graphs of the two equations in (10.3).

1 2 3−1−2

1

−1

y
=

2
x
−

3

y
=

1

2
x(2,1) b

The intersection of the two graphs is (2,1). So the solution to the system of simultaneous
equations in (10.3) is y = 1 and x = 2.
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This can be shown algebraically as:

x = 2y

∴ y = 2(2y) − 3

y − 4y = −3

−3y = −3

y = 1

Substitute into the first equation: x = 2(1)

= 2

Worked Example 41: Simultaneous Equations

Question: Solve the following system of simultaneous equations graphically.

4y + 3x = 100

4y − 19x = 12

Answer
Step 1 : Draw the graphs corresponding to each equation.
For the first equation:

4y + 3x = 100

4y = 100 − 3x

y = 25 − 3

4
x

and for the second equation:

4y − 19x = 12

4y = 19x + 12

y =
19

4
x + 3

2 4 6 8−2−4−6−8

10

20

30

40

4y + 3x = 100

4y
−

19
x
=

12

Step 2 : Find the intersection of the graphs.
The graphs intersect at (4,22).
Step 3 : Write the solution of the system of simultaneous equations as given
by the intersection of the graphs.

x = 4

y = 22
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10.6.3 Solution by Substitution

A common algebraic technique is the substitution method: try to solve one of the equations
for one of the variables and substitute the result into the other equations, thereby reducing the
number of equations and the number of variables by 1. Continue until you reach a single equation
with a single variable, which (hopefully) can be solved; back substitution then yields the values
for the other variables.

In the example (??), we first solve the first equation for x:

x =
1

2
− y

and substitute this result into the second equation:

2 − x

3y + 1
= 2

2 − (1
2 − y)

3y + 1
= 2

2 − (
1

2
− y) = 2(3y + 1)

2 − 1

2
+ y = 6y + 2

y − 6y = −2 +
1

2
+ 2

−5y =
1

2

y = − 1

10

∴ x =
1

2
− y

=
1

2
− (− 1

10
)

=
6

10

=
3

5

The solution for the system of simultaneous equations (??) is:

x =
3

5

y = − 1

10

Worked Example 42: Simultaneous Equations

Question: Solve the following system of simultaneous equations:

4y + 3x = 100

4y − 19x = 12

Answer
Step 1 : If the question, does not explicitly ask for a graphical solution, then
the system of equations should be solved algebraically.
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Step 2 : Make x the subject of the first equation.

4y + 3x = 100

3x = 100 − 4y

x =
100 − 4y

3

Step 3 : Substitute the value obtained for x into the second equation.

4y − 19(
100− 4y

3
) = 12

12y − 19(100− 4y) = 36

12y − 1900 + 76y = 36

88y = 1936

y = 22

Step 4 : Substitute into the equation for x.

x =
100 − 4(22)

3

=
100 − 88

3

=
12

3
= 4

Step 5 : Substitute the values for x and y into both equations to check the
solution.

4(22) + 3(4) = 88 + 12 = 100 X

4(22)− 19(4) = 88 − 76 = 12 X

Worked Example 43: Bicycles and Tricycles

Question: A shop sells bicycles and tricycles. In total there are 7 cycles and 19
wheels. Determine how many of each there are, if a bicycle has two wheels and a
tricycle has three wheels.

Answer

Step 1 : Identify what is required

The number of bicycles and the number of tricycles are required.

Step 2 : Set up the necessary equations

If b is the number of bicycles and t is the number of tricycles, then:

b + t = 7

2b + 3t = 19

Step 3 : Solve the system of simultaneous equations using substitution.
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b = 7 − t

Into second equation: 2(7 − t) + 3t = 19

14 − 2t + 3t = 19

t = 5

Into first equation: b = 7 − 5

= 2

Step 4 : Check solution by substituting into original system of equations.

2 + 5 = 7 X

2(2) + 3(5) = 4 + 15 = 19 X

Exercise: Simultaneous Equations

1. Solve graphically and confirm your answer algebraically: 3a − 2b7 = 0 , a −
4b + 1 = 0

2. Solve algebraically: 15c + 11d − 132 = 0, 2c + 3d − 59 = 0

3. Solve algebraically: −18e− 18 + 3f = 0, e − 4f + 47 = 0

4. Solve graphically: x + 2y = 7, x + y = 0

10.7 Mathematical Models

10.7.1 Introduction

Tom and Jane are friends. Tom picked up Jane’s Physics test paper, but will not tell Jane what
her marks are. He knows that Jane hates maths so he decided to tease her. Tom says: “I have
2 marks more than you do and the sum of both our marks is equal to 14. How much did we
get?”

Let’s help Jane find out what her marks are. We have two unknowns, Tom’s mark (which we shall
call t) and Jane’s mark (which we shall call j). Tom has 2 more marks than Jane. Therefore,

t = j + 2

Also, both marks add up to 14. Therefore,

t + j = 14

The two equations make up a set of linear (because the highest power is one) simultaneous
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equations, which we know how to solve! Substitute for t in the second equation to get:

t + j = 14

j + 2 + j = 14

2j + 2 = 14

2(j + 1) = 14

j + 1 = 7

j = 7 − 1

= 6

Then,

t = j + 2

= 6 + 2

= 8

So, we see that Tom scored 8 on his test and Jane scored 6.

This problem is an example of a simple mathematical model. We took a problem and we able
to write a set of equations that represented the problem, mathematically. The solution of the
equations then gave the solution to the problem.

10.7.2 Problem Solving Strategy

The purpose of this section is to teach you the skills that you need to be able to take a problem
and formulate it mathematically, in order to solve it. The general steps to follow are:

1. Read ALL of it !

2. Find out what is requested.

3. Let the requested be a variable e.g. x.

4. Rewrite the information given in terms of x. That is, translate the words into algebraic
language. This is the reponse

5. Set up an equation (i.e. a mathematical sentence or model) to solve the required variable.

6. Solve the equation algebraically to find the result.

Important: Follow the three R’s and solve the problem... Request - Response - Result

10.7.3 Application of Mathematical Modelling

Worked Example 44: Mathematical Modelling: One variable

Question: A fruit shake costs R2,00 more than a chocolate milkshake. If three fruit
shakes and 5 chocolate milkshakes cost R78,00, determine the individual prices.
Answer
Step 1 : Summarise the information in a table

Price number Total
Fruit x + 2 3 3(x + 2)

Chocolate x 5 5x
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Step 2 : Set up an algebraic equation

3(x + 2) + 5x = 78

Step 3 : Solve the equation

3x + 6 + 5x = 78

8x = 72

x = 9

Step 4 : Present the final answer
Chocolate milkshake costs R 9,00 and the Fruitshake costs R 11,00

Worked Example 45: Mathematical Modelling: Two variables

Question: Three rulers and two pens cost R 21,00. One ruler and one pen cost R
8,00. Find the cost of one ruler and one pen
Answer
Step 1 : Translate the problem using variables
Let the cost of one ruler be x rand and the cost of one pen be y rand.
Step 2 : Rewrite the information in terms of the variables

3x + 2y = 21 (10.4)

x + y = 8 (10.5)

Step 3 : Solve the equations simultaneously
First solve the second equation for y:

y = 8 − x

and substitute the result into the first equation:

3x + 2(8 − x) = 21

3x + 16 − 2x = 21

x = 5

therefore

y = 8 − 5

y = 3

Step 4 : Present the final answers
one Ruler costs R 5,00 and one Pen costs R 3,00
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Exercise: Mathematical Models

1. Stephen has 1 l of a mixture containing 69% of salt. How much water must
Stephen add to make the mixture 50% salt? Write your answer as a fraction.

2. The diagonal of a rectangle is 25 cm more than its width. The length of
the rectangle is 17 cm more than its width. What are the dimensions of the
rectangle?

3. The sum of 27 and 12 is 73 more than an unknown number. Find the unknown
number.

4. The two smaller angles in a right-angled triangle are in the ratio of 1:2. What
are the sizes of the two angles?

5. George owns a bakery that specialises in wedding cakes. For each wedding cake,
it costs George R150 for ingredients, R50 for overhead, and R5 for advertising.
George’s wedding cakes cost R400 each. As a percentage of George’s costs,
how much profit does he make for each cake sold?

6. If 4 times a number is increased by 7, the result is 15 less than the square of
the number. Find the numbers that satisfy this statement, by formulating an
equation and then solving it.

7. The length of a rectangle is 2 cm more than the width of the rectangle. The
perimeter of the rectangle is 20 cm. Find the length and the width of the
rectangle.

10.7.4 End of Chapter Exercises

1. What are the roots of the quadratic equation x2 − 3x + 2 = 0?

2. What are the solutions to the equation x2 + x = 6?

3. In the equation y = 2x2 − 5x − 18, which is a value of x when y = 0?

4. Manuel has 5 more CDs than Pedro has. Bob has twice as many CDs as Manuel has.
Altogether the boys have 63 CDs. Find how many CDs each person has.

5. Seven-eighths of a certain number is 5 more than one-third of the number. Find the
number.

6. A man runs to a telephone and back in 15 minutes. His speed on the way to the telephone
is 5 m/s and his speed on the way back is 4 m/s. Find the distance to the telephone.

7. Solve the inequality and then answer the questions:
x
3 − 14 > 14 − x

4

(a) If xǫR, write the solution in interval notation.

(b) if xǫZ and x < 51, write the solution as a set of integers.

8. Solve for a: 1−a
2 − 2−a

3 > 1

9. Solve for x: x − 1 = 42
x

10. Solve for x and y: 7x + 3y = 13 and 2x − 3y = −4

chapterFunctions and Graphs - Grade 10
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10.8 Introduction to Functions and Graphs

Functions are mathematical building blocks for designing machines, predicting natural disasters,
curing diseases, understanding world economies and for keeping aeroplanes in the air. Functions
can take input from many variables, but always give the same answer, unique to that function.
It is the fact that you always get the same answer from a set of inputs, which is what makes
functions special.

A major advantage of functions is that they allow us to visualise equations in terms of a graph.
A graph is an accurate drawing of a function and is much easier to read than lists of numbers.
In this chapter we will learn how to understand and create real valued functions, how to read
graphs and how to draw them.

Despite their use in the problems facing humanity, functions also appear on a day-to-day level,
so they are worth learning about. A function is always dependent on one or more variables, like
time, distance or a more abstract quantity.

10.9 Functions and Graphs in the Real-World

Some typical examples of functions you may already have met include:-

• how much money you have, as a function of time. You never have more than one amount
of money at any time because you can always add everything to give one number. By
understanding how your money changes over time, you can plan to spend your money
sensibly. Businesses find it very useful to plot the graph of their money over time so that
they can see when they are spending too much. Such observations are not always obvious
from looking at the numbers alone.

• the temperature is a very complicated function because it has so many inputs, including;
the time of day, the season, the amount of clouds in the sky, the strength of the wind, where
you are and many more. But the important thing is that there is only one temperature
when you measure it. By understanding how the temperature is effected by these things,
you can plan for the day.

• where you are is a function of time, because you cannot be in two places at once! If you
were to plot the graphs of where two people are as a function of time, if the lines cross it
means that the two people meet each other at that time. This idea is used in logistics, an
area of mathematics that tries to plan where people and items are for businesses.

• your weight is a function of how much you eat and how much exercise you do, but everybody
has a different function so that is why people are all different sizes.

10.10 Recap

The following should be familiar.

10.10.1 Variables and Constants

In section 2.4 (page 8), we were introduced to variables and constants. To recap, a variable
can take any value in some set of numbers, so long is the equation is consistent. Most often, a
variable will be written as a letter.

A constant has a fixed value. The number 1 is a constant. Sometimes letters are used to
represent constants, as its easier to work with.

Activity :: Investigation : Variables and Constants
In the following expressions, identify the variables and the constants:
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1. 2x2 = 1

2. 3x + 4y = 7

3. y = −5
x

4. y = 7x − 2

10.10.2 Relations and Functions

In earlier grades, you saw that variables can be related to each other. For example, Alan is two
years older than Nathan. Therefore the relationship between the ages of Alan and Nathan can
be written as A = N + 2, where A is Alan’s age and N is Nathan’s age.

In general, a relation is an equation which relates two variables. For example, y = 5x and
y2 + x2 = 5 are relations. In both examples x and y are variables and 5 is a constant, but for a
given value of x the value of y will be very different in each relation.

Besides writing relations as equations, they can also be represented as words, tables and graphs.
Instead of writing y = 5x, we could also say “y is always five times as big as x”. We could also
give the following table:

x y = 5x

2 10
6 30
8 40
13 65
15 75

Activity :: Investigation : Relations and Functions

Complete the following table for the given functions:
x y = x y = 2x y = x + 2
1
2
3
50
100

10.10.3 The Cartesian Plane

When working with real valued functions, our major tool is drawing graphs. In the first place, if
we have two real variables, x and y, then we can assign values to them simultaneously. That is,
we can say “let x be 5 and y be 3”. Just as we write “let x = 5” for “let x be 5”, we have the
shorthand notation “let (x, y) = (5, 3)” for “let x be 5 and y be 3”. We usually think of the
real numbers as an infinitely long line, and picking a number as putting a dot on that line. If
we want to pick two numbers at the same time, we can do something similar, but now we must
use two dimensions. What we do is use two lines, one for x and one for y, and rotate the one
for y, as in Figure 10.1. We call this the Cartesian plane.
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1 2 3 4−1−2−3−4

1

2

3

4

−1

−2

−3

−4

y

x

b

(2,2)
b

(−3,2)

Figure 10.1: The Cartesian plane is made up of an x−axis (horizontal) and a y−axis (vertical).

10.10.4 Drawing Graphs

In order to draw the graph of a function, we need to calculate a few points. Then we plot the
points on the Cartesian Plane and join the points with a smooth line.

The great beauty of doing this is that it allows us to “draw” functions, in a very abstract way.
Assume that we were investigating the properties of the function f(x) = 2x. We could then
consider all the points (x, y) such that y = f(x), i.e. y = 2x. For example, (1, 2), (2.5, 5), and
(3, 6) would all be such points, whereas (3, 5) would not since 5 6= 2 × 3. If we put a dot at
each of those points, and then at every similar one for all possible values of x, we would obtain
the graph shown in

1 2 3 4 5

1

2

3

4

5

b

b

b

b

b

b

Figure 10.2: Graph of f(x) = 2x

The form of this graph is very pleasing – it is a simple straight line through the middle of

109



10.10 CHAPTER 10. EQUATIONS AND INEQUALITIES - GRADE 10

the plane. The technique of “plotting”, which we have followed here, is the key element in
understanding functions.

Activity :: Investigation : Drawing Graphs and the Cartesian Plane
Plot the following points and draw a smooth line through them. (-6; -8),(-2; 0),

(2; 8), (6; 16)

10.10.5 Notation used for Functions

Thus far you would have seen that we can use y = 2x to represent a function. This notation
however gets confusing when you are working with more than one function. A more general form
of writing a function is to write the function as f(x), where f is the function name and x is the
independent variable. For example, f(x) = 2x and g(t) = 2t + 1 are two functions.

Both notations will be used in this book.

Worked Example 46: Function notation

Question: If f(n) = n2 − 6n + 9, find f(k − 1) in terms of k.
Answer
Step 1 : Replace n with k − 1

f(n) = n2 − 6n + 9

f(k − 1) = (k − 1)2 − 6(k − 1) + 9

Step 2 : Remove brackets on RHS and simplify

= k2 − 2k + 1 − 6k + 6 + 9

= k2 − 8k + 16

Worked Example 47: Function notation

Question: If f(x) = x2 − 4, calculate b if f(b) = 45.
Answer
Step 1 : Replace x with b

f(b) = b2 − 4

butf(b) = 45
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Step 2 : f(b) = f(b)

b2 − 4 = 45

b2 − 49 = 0

b = +7or − 7

{ExerciseRecap

1. Guess the function in the form y = . . . that has the values listed in the table.

x 1 2 3 40 50 600 700 800 900 1000
y 1 2 3 40 50 600 700 800 900 1000

2. Guess the function in the form y = . . . that has the values listed in the table.

x 1 2 3 40 50 600 700 800 900 1000
y 2 4 6 80 100 1200 1400 1600 1800 2000

3. Guess the function in the form y = . . . that has the values listed in the table.

x 1 2 3 40 50 600 700 800 900 1000
y 10 20 30 400 500 6000 7000 8000 9000 10000

4. On a Cartesian plane, plot the following points: (1,2), (2,4), (3,6), (4,8), (5,10). Join the
points. Do you get a straight-line?

5. If f(x) = x + x2, write out:

(a) f(t)

(b) f(a)

(c) f(1)

(d) f(3)

6. If g(x) = x and f(x) = 2x, write out:

(a) f(t) + g(t)

(b) f(a) − g(a)

(c) f(1) + g(2)

(d) f(3) + g(s)

7. A car drives by you on a straight highway. The car is travelling 10 m every second.
Complete the table below by filling in how far the car has travelled away from you after 5,
10 and 20 seconds.

Time (s) 0 1 2 5 10 20
Distance (m) 0 10 20

Use the values in the table and draw a graph of distance on the y-axis and time on the
x-axis.
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10.11 Characteristics of Functions - All Grades

There are many characteristics of graphs that help describe the graph of any function. These
properties are:

1. dependent and independent variables

2. domain and range

3. intercepts with axes

4. turning points

5. asymptotes

6. lines of symmetry

7. intervals on which the function increases/decreases

8. continuous nature of the function

Some of these words may be unfamiliar to you, but each will be clearly described. Examples of
these properties are shown in Figure 10.3.

1 2 3−1−2−3

1

2

3

−1

−2

−3

f(x)

b

b b

b

b

b

A
B C

D

E

F

1 2 3−1−2−3

1

2

3

−1

−2

−3

h

g(x)

(a) (b)

A y-intercept
B, C, F x-intercept
D, E turning points

Figure 10.3: (a) Example graphs showing the characteristics of a function. (b) Example graph
showing asymptotes of a function.

10.11.1 Dependent and Independent Variables

Thus far, all the graphs you have drawn have needed two values, an x-value and a y-value. The
y-value is usually determined from some relation based on a given or chosen x-value. These
values are given special names in mathematics. The given or chosen x-value is known as the
independent variable, because its value can be chosen freely. The calculated y-value is known
as the dependent variable, because its value depends on the chosen x-value.
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10.11.2 Domain and Range

The domain of a relation is the set of all the x values for which there exists at least one y value
according to that relation. The range is the set of all the y values, which can be obtained using
at least one x value.

If the relation is of height to people, then the domain is all living people, while the range would
be about 0.1 to 3 metres — no living person can have a height of 0m, and while strictly its not
impossible to be taller than 3 metres, no one alive is. An important aspect of this range is that
it does not contain all the numbers between 0.1 and 3, but only six billion of them (as many as
there are people).

As another example, suppose x and y are real valued variables, and we have the relation y = 2x.
Then for any value of x, there is a value of y, so the domain of this relation is the whole set of
real numbers. However, we know that no matter what value of x we choose, 2x can never be
less than or equal to 0. Hence the range of this function is all the real numbers strictly greater
than zero.

These are two ways of writing the domain and range of a function, set notation and interval
notation. Both notations are used in mathematics, so you should be familiar with each.

Set Notation

A set of certain x values has the following form:

{x : conditions, more conditions} (10.6)

We read this notation as “the set of all x values where all the conditions are satisfied”. For
example, the set of all positive real numbers can be written as {x : x ∈ R, x > 0} which reads
as “the set of all x values where x is a real number and is greater than zero”.

Interval Notation

Here we write an interval in the form ’lower bracket, lower number, comma, upper number,
upper bracket’. We can use two types of brackets, square ones [, ] or round ones (, ). A square
bracket means including the number at the end of the interval whereas a round bracket means
excluding the number at the end of the interval. It is important to note that this notation can
only be used for all real numbers in an interval. It cannot be used to describe integers in an
interval or rational numbers in an interval.

So if x is a real number greater than 2 and less than or equal to 8, then x is any number in the
interval

(2,8] (10.7)

It is obvious that 2 is the lower number and 8 the upper number. The round bracket means
’excluding 2’, since x is greater than 2, and the square bracket means ’including 8’ as x is less
than or equal to 8.

10.11.3 Intercepts with the Axes

The intercept is the point at which a graph intersects an axis. The x-intercepts are the points
at which the graph cuts the x-axis and the y-intercepts are the points at which the graph cuts
the y-axis.

In Figure 10.3(a), the A is the y-intercept and B, C and F are x-intercepts.

You will usually need to calculate the intercepts. The two most important things to remember
is that at the x-intercept, y = 0 and at the y-intercept, x = 0.

For example, calculate the intercepts of y = 3x + 5. For the y-intercept, x = 0. Therefore the
y-intercept is yint = 3(0) + 5 = 5. For the x-intercept, y = 0. Therefore the x-intercept is
found from 0 = 3xint + 5, giving xint = − 5

3 .
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10.11.4 Turning Points

Turning points only occur for graphs of functions that whose highest power is greater than 1.
For example, graphs of the following functions will have turning points.

f(x) = 2x2 − 2

g(x) = x3 − 2x2 + x − 2

h(x) =
2

3
x4 − 2

There are two types of turning points: a minimal turning point and a maximal turning point.
A minimal turning point is a point on the graph where the graph stops decreasing in value and
starts increasing in value and a maximal turning point is a point on the graph where the graph
stops increasing in value and starts decreasing. These are shown in Figure 10.4.

0

1

2

−1

−2

y

y-values decreasing y-values increasing

minimal turning point b

0

1

2

−1

−2

y

y-values increasing y-values decreasing

maximal turning pointb

(a) (b)

Figure 10.4: (a) Maximal turning point. (b) Minimal turning point.

In Figure 10.3(a), E is a maximal turning point and D is a minimal turning point.

10.11.5 Asymptotes

An asymptote is a straight or curved line, which the graph of a function will approach, but never
touch.

In Figure 10.3(b), the y-axis and line h are both asymptotes as the graph approaches both these
lines, but never touches them.

10.11.6 Lines of Symmetry

Graphs look the same on either side of lines of symmetry. These lines include the x- and y-
axes. For example, in Figure 10.5 is symmetric about the y-axis. This is described as the axis
of symmetry.

10.11.7 Intervals on which the Function Increases/Decreases

In the discussion of turning points, we saw that the graph of a function can start or stop
increasing or decreasing at a turning point. If the graph in Figure 10.3(a) is examined, we find
that the values of the graph increase and decrease over different intervals. We see that the
graph increases (i.e. that the y-values increase) from -∞ to point E, then it decreases (i.e. the
y-values decrease) from point E to point D and then it increases from point D to +∞.

10.11.8 Discrete or Continuous Nature of the Graph

A graph is said to be continuous if there are no breaks in the graph. For example, the graph in
Figure 10.3(a) can be described as a continuous graph, while the graph in Figure 10.3(b) has a
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1 2−1−2

1

−1

Figure 10.5: Demonstration of axis of symmetry. The y-axis is an axis of symmetry, because the
graph looks the same on both sides of the y-axis.

break around the asymptotes. In Figure 10.3(b), it is clear that the graph does have a break in
it around the asymptote.

Exercise: Domain and Range

1. The domain of the function f(x) = 2x+5 is -3; -3; -3; 0. Determine the range
of f .

2. If g(x) = −x2 + 5 and x is between - 3 and 3, determine:

(a) the domain of g(x)

(b) the range of g(x)

3. Label, on the following graph:

(a) the x-intercept(s)

(b) the y-intercept(s)

(c) regions where the graph is increasing

(d) regions where the graph is decreasing

1 2 3−1−2−3

1

2

3

4

−1

−2

−3

4. Label, on the following graph:

(a) the x-intercept(s)

(b) the y-intercept(s)
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(c) regions where the graph is increasing

(d) regions where the graph is decreasing

1 2−1−2

1

2

3

−1

−2

10.12 Graphs of Functions

10.12.1 Functions of the form y = ax + q

Functions with a general form of y = ax + q are called straight line functions. In the equation,
y = ax + q, a and q are constants and have different effects on the graph of the function. The
general shape of the graph of functions of this form is shown in Figure 10.6 for the function
f(x) = 2x + 3.

1 2 3 4 5−1−2−3−4−5

3

6

9

12

−3

−6
b

b

b

b

b

b

b

b

b

− 3
2

Figure 10.6: Graph of f(x) = 2x + 3

Activity :: Investigation : Functions of the Form y = ax + q

1. On the same set of axes, plot the following graphs:

(a) a(x) = x − 2
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(b) b(x) = x − 1

(c) c(x) = x

(d) d(x) = x + 1

(e) e(x) = x + 2

Use your results to deduce the effect of q.

2. On the same set of axes, plot the following graphs:

(a) f(x) = −2 · x
(b) g(x) = −1 · x
(c) h(x) = 0 · x
(d) j(x) = 1 · x
(e) k(x) = 2 · x
Use your results to deduce the effect of a.

You should have found that the value of a affects the slope of the graph. As a increases, the slope
of the graph increases. If a > 0 then the graph increases from left to right (slopes upwards).
If a < 0 then the graph increases from right to left (slopes downwards). For this reason, a is
referred to as the slope or gradient of a straight-line function.

You should have also found that the value of q affects where the graph passes through the y-axis.
For this reason, q is known as the y-intercept.

These different properties are summarised in Table 10.1.

Table 10.1: Table summarising general shapes and positions of graphs of functions of the form
y = ax + q.

a > 0 a < 0

q > 0

q < 0

Domain and Range

For f(x) = ax + q, the domain is {x : x ∈ R} because there is no value of x ∈ R for which
f(x) is undefined.

The range of f(x) = ax + q is also {f(x) : f(x) ∈ R} because there is no value of f(x) ∈ R

for which f(x) is undefined.

For example, the domain of g(x) = x − 1 is {x : x ∈ R} because there is no value of x ∈ R for
which g(x) is undefined. The range of g(x) is {g(x) : g(x) ∈ R}.

Intercepts

For functions of the form, y = ax + q, the details of calculating the intercepts with the x and y
axis is given.
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The y-intercept is calculated as follows:

y = ax + q (10.8)

yint = a(0) + q (10.9)

= q (10.10)

For example, the y-intercept of g(x) = x − 1 is given by setting x = 0 to get:

g(x) = x − 1

yint = 0 − 1

= −1

The x-intercepts are calculated as follows:

y = ax + q (10.11)

0 = a · xint + q (10.12)

a · xint = −q (10.13)

xint = − q

a
(10.14)

For example, the x-intercepts of g(x) = x − 1 is given by setting y = 0 to get:

g(x) = x − 1

0 = xint − 1

xint = 1

Turning Points

The graphs of straight line functions do not have any turning points.

Axes of Symmetry

The graphs of straight-line functions do not, generally, have any axes of symmetry.

Sketching Graphs of the Form f(x) = ax + q

In order to sketch graphs of the form, f(x) = ax+q, we need to determine three characteristics:

1. sign of a

2. y-intercept

3. x-intercept

Only two points are needed to plot a straight line graph. The easiest points to use are the
x-intercept (where the line cuts the x-axis) and the y-intercept.

For example, sketch the graph of g(x) = x − 1. Mark the intercepts.

Firstly, we determine that a > 0. This means that the graph will have an upward slope.

The y-intercept is obtained by setting x = 0 and was calculated earlier to be yint = −1. The
x-intercept is obtained by setting y = 0 and was calculated earlier to be xint = 1.

Worked Example 48: Drawing a straight line graph

Question: Draw the graph of y = 2x + 2
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1 2 3 4−1−2−3−4

1

2

3

−1

−2

−3

−4

b

b

(0,-1)

(1,0)

Figure 10.7: Graph of the function g(x) = x − 1

Answer

Step 1 : Find the y-intercept

For the intercept on the y-axis, let x = 0

y = 2(0) + 2

= 2

Step 2 : Find the x-intercept

For the intercept on the x-axis, let y = 0

0 = 2x + 2

2x = −2

x = −1

Step 3 : Draw the graph

1 2 3−1−2−3

1

2

3

−1

−2

y
=

2x
+

2
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Exercise: Intercepts

1. List the y-intercepts for the following straight-line graphs:

(a) y = x

(b) y = x − 1

(c) y = 2x − 1

(d) y + 1 = 2x

2. Give the equation of the illustrated graph below:
y

x

(0;3)

(4;0)

3. Sketch the following relations on the same set of axes, clearly indicating the
intercepts with the axes as well as the co-ordinates of the point of interception
on the graph: x + 2y − 5 = 0 and 3x − y − 1 = 0

10.12.2 Functions of the Form y = ax2 + q

The general shape and position of the graph of the function of the form f(x) = ax2 +q is shown
in Figure 10.8.

Activity :: Investigation : Functions of the Form y = ax2 + q

1. On the same set of axes, plot the following graphs:

(a) a(x) = −2 · x2 + 1

(b) b(x) = −1 · x2 + 1

(c) c(x) = 0 · x2 + 1

(d) d(x) = 1 · x2 + 1

(e) e(x) = 2 · x2 + 1

Use your results to deduce the effect of a.

2. On the same set of axes, plot the following graphs:

(a) f(x) = x2 − 2

(b) g(x) = x2 − 1
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1 2 3 4−1−2−3−4
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Figure 10.8: Graph of the f(x) = x2 − 1.

(c) h(x) = x2 + 0

(d) j(x) = x2 + 1

(e) k(x) = x2 + 2

Use your results to deduce the effect of q.

Complete the following table of values for the functions a to k to help with drawing
the required graphs in this activity:

x −2 −1 0 1 2
a(x)
b(x)
c(x)
d(x)
e(x)
f(x)
g(x)
h(x)
j(x)
k(x)

From your graphs, you should have found that a affects whether the graph makes a smile or a
frown. If a < 0, the graph makes a frown and if a > 0 then the graph makes a smile. This is
shown in Figure 10.9.

b b b b

a > 0 (a positive smile) a < 0 (a negative frown)

Figure 10.9: Distinctive shape of graphs of a parabola if a > 0 and a < 0.

You should have also found that the value of q affects whether the turning point is to the left
of the y-axis (q > 0) or to the right of the y-axis (q < 0).

These different properties are summarised in Table ??.
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Table 10.2: Table summarising general shapes and positions of functions of the form y = ax2+q.
a > 0 a < 0

q > 0

q < 0

Domain and Range

For f(x) = ax2 + q, the domain is {x : x ∈ R} because there is no value of x ∈ R for which
f(x) is undefined.

The range of f(x) = ax2 + q depends on whether the value for a is positive or negative. We
will consider these two cases separately.

If a > 0 then we have:

x2 ≥ 0 (The square of an expression is always positive)

ax2 ≥ 0 (Multiplication by a positive number maintains the nature of the inequality)

ax2 + q ≥ q

f(x) ≥ q

This tells us that for all values of x, f(x) is always greater than q. Therefore if a > 0, the range
of f(x) = ax2 + q is {f(x) : f(x) ∈ [q,∞)}.

Similarly, it can be shown that if a < 0 that the range of f(x) = ax2 + q is {f(x) : f(x) ∈
(−∞,q]}. This is left as an exercise.

For example, the domain of g(x) = x2 + 2 is {x : x ∈ R} because there is no value of x ∈ R for
which g(x) is undefined. The range of g(x) can be calculated as follows:

x2 ≥ 0

x2 + 2 ≥ 2

g(x) ≥ 2

Therefore the range is {g(x) : g(x) ∈ [2,∞)}.

Intercepts

For functions of the form, y = ax2 + q, the details of calculating the intercepts with the x and
y axis is given.

The y-intercept is calculated as follows:

y = ax2 + q (10.15)

yint = a(0)2 + q (10.16)

= q (10.17)
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For example, the y-intercept of g(x) = x2 + 2 is given by setting x = 0 to get:

g(x) = x2 + 2

yint = 02 + 2

= 2

The x-intercepts are calculated as follows:

y = ax2 + q (10.18)

0 = ax2
int + q (10.19)

ax2
int = −q (10.20)

xint = ±
√

− q

a
(10.21)

However, (10.21) is only valid if − q
a

> 0 which means that either q < 0 or a < 0. This is
consistent with what we expect, since if q > 0 and a > 0 then − q

a
is negative and in this case

the graph lies above the x-axis and therefore does not intersect the x-axis. If however, q > 0
and a < 0, then − q

a
is positive and the graph is hat shaped and should have two x-intercepts.

Similarly, if q < 0 and a > 0 then − q

a
is also positive, and the graph should intersect with the

x-axis.

For example, the x-intercepts of g(x) = x2 + 2 is given by setting y = 0 to get:

g(x) = x2 + 2

0 = x2
int + 2

−2 = x2
int

which is not real. Therefore, the graph of g(x) = x2 + 2 does not have any x-intercepts.

Turning Points

The turning point of the function of the form f(x) = ax2 + q is given by examining the range of
the function. We know that if a > 0 then the range of f(x) = ax2 + q is {f(x) : f(x) ∈ [q,∞)}
and if a < 0 then the range of f(x) = ax2 + q is {f(x) : f(x) ∈ (−∞,q]}.
So, if a > 0, then the lowest value that f(x) can take on is q. Solving for the value of x at
which f(x) = q gives:

q = ax2
tp + q

0 = ax2
tp

0 = x2
tp

xtp = 0

∴ x = 0 at f(x) = q. The co-ordinates of the (minimal) turning point is therefore (0; q).

Similarly, if a < 0, then the highest value that f(x) can take on is q and the co-ordinates of the
(maximal) turning point is (0; q).

Axes of Symmetry

There is one axis of symmetry for the function of the form f(x) = ax2 + q that passes through
the turning point. Since the turning point lies on the y-axis, the axis of symmetry is the y-axis.

Sketching Graphs of the Form f(x) = ax2 + q

In order to sketch graphs of the form, f(x) = ax2 + q, we need to calculate determine four
characteristics:

1. sign of a
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2. domain and range

3. turning point

4. y-intercept

5. x-intercept

For example, sketch the graph of g(x) = − 1
2x2 − 3. Mark the intercepts, turning point and axis

of symmetry.

Firstly, we determine that a < 0. This means that the graph will have a maximal turning point.

The domain of the graph is {x : x ∈ R} because f(x) is defined for all x ∈ R. The range of the
graph is determined as follows:

x2 ≥ 0

−1

2
x2 ≤ 0

−1

2
x2 − 3 ≤ −3

∴ f(x) ≤ −3

Therefore the range of the graph is {f(x) : f(x) ∈ (−∞, − 3]}.
Using the fact that the maximum value that f(x) achieves is -3, then the y-coordinate of the
turning point is -3. The x-coordinate is determined as follows:

−1

2
x2 − 3 = −3

−1

2
x2 − 3 + 3 = 0

−1

2
x2 = 0

Divide both sides by − 1
2 : x2 = 0

Take square root of both sides: x = 0

∴ x = 0

The coordinates of the turning point are: (0, − 3).

The y-intercept is obtained by setting x = 0. This gives:

yint = −1

2
(0)2 − 3

= −1

2
(0) − 3

= −3

The x-intercept is obtained by setting y = 0. This gives:

0 = −1

2
x2

int − 3

3 = −1

2
x2

int

−3 · 2 = x2
int

−6 = x2
int

which is not real. Therefore, there are no x-intercepts.

We also know that the axis of symmetry is the y-axis.
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1 2 3 4−1−2−3−4
−1

−2

−3

−4

−5

−6

b (0,-3)

Figure 10.10: Graph of the function f(x) = − 1
2x2 − 3

Exercise: Parabolas

1. Show that if a < 0 that the range of f(x) = ax2+q is {f(x) : f(x) ∈ (−∞,q]}.
2. Draw the graph of the function y = −x2 + 4 showing all intercepts with the

axes.

3. Two parabolas are drawn: g : y = ax2 + p and h : y = bx2 + q.
y

x

23

-9

(-4; 7) (4; 7)

3

g

h

(a) Find the values of a and p.

(b) Find the values of b and q.

(c) Find the values of x for which ax2 + p ≥ bx2 + q.

(d) For what values of x is g increasing ?

10.12.3 Functions of the Form y = a

x
+ q

Functions of the form y = a
x

+ q are known as hyperbolic functions. The general form of the
graph of this function is shown in Figure 10.11.

Activity :: Investigation : Functions of the Form y = a
x

+ q

1. On the same set of axes, plot the following graphs:

(a) a(x) = −2
x

+ 1

(b) b(x) = −1
x

+ 1
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1 2 3 4−1−2−3−4

1

2

3

4

5

−1

−2

Figure 10.11: General shape and position of the graph of a function of the form f(x) = a
x

+ q.

(c) c(x) = 0
x

+ 1

(d) d(x) = +1
x

+ 1

(e) e(x) = +2
x

+ 1

Use your results to deduce the effect of a.

2. On the same set of axes, plot the following graphs:

(a) f(x) = 1
x
− 2

(b) g(x) = 1
x
− 1

(c) h(x) = 1
x

+ 0

(d) j(x) = 1
x

+ 1

(e) k(x) = 1
x

+ 2

Use your results to deduce the effect of q.

You should have found that the value of a affects whether the graph is located in the first and
third quadrants of Cartesian plane.

You should have also found that the value of q affects whether the graph lies above the x-axis
(q > 0) or below the x-axis (q < 0).

These different properties are summarised in Table 10.3. The axes of symmetry for each graph
are shown as a dashed line.

Domain and Range

For y = a
x

+ q, the function is undefined for x = 0. The domain is therefore {x : x ∈ R,x 6= 0}.
We see that y = a

x
+ q can be re-written as:

y =
a

x
+ q

y − q =
a

x
If x 6= 0 then: (y − q)(x) = a

x =
a

y − q

This shows that the function is undefined at y = q. Therefore the range of f(x) = a
x

+ q is
{f(x) : f(x) ∈ (−∞,q) ∪ (q,∞)}.
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Table 10.3: Table summarising general shapes and positions of functions of the form y = a
x

+ q.
The axes of symmetry are shown as dashed lines.

a > 0 a < 0

q > 0

q < 0

For example, the domain of g(x) = 2
x

+ 2 is {x : x ∈ R, x 6= 0} because g(x) is undefined at
x = 0.

y =
2

x
+ 2

(y − 2) =
2

x
If x 6= 0 then: x(y − 2) = 2

x =
2

y − 2

We see that g(x) is undefined at y = 2. Therefore the range is {g(x) : g(x) ∈ (−∞,2)∪(2,∞)}.

Intercepts

For functions of the form, y = a
x

+q, the intercepts with the x and y axis is calculated by setting
x = 0 for the y-intercept and by setting y = 0 for the x-intercept.

The y-intercept is calculated as follows:

y =
a

x
+ q (10.22)

yint =
a

0
+ q (10.23)

which is undefined. Therefore there is no y-intercept.

For example, the y-intercept of g(x) = 2
x

+ 2 is given by setting x = 0 to get:

y =
2

x
+ 2

yint =
2

0
+ 2

which is undefined.
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The x-intercepts are calculated by setting y = 0 as follows:

y =
a

x
+ q (10.24)

0 =
a

xint

+ q (10.25)

a

xint

= −q (10.26)

a = −q(xint) (10.27)

xint =
a

−q
(10.28)

(10.29)

For example, the x-intercept of g(x) = 2
x

+ 2 is given by setting x = 0 to get:

y =
2

x
+ 2

0 =
2

xint

+ 2

−2 =
2

xint

−2(xint) = 2

xint =
2

−2
xint = −1

Asymptotes

There are two asymptotes for functions of the form y = a
x
+q. They are determined by examining

the domain and range.

We saw that the function was undefined at x = 0 and for y = q. Therefore the asymptotes are
x = 0 and y = q.

For example, the domain of g(x) = 2
x

+ 2 is {x : x ∈ R, x 6= 0} because g(x) is undefined at
x = 0. We also see that g(x) is undefined at y = 2. Therefore the range is {g(x) : g(x) ∈
(−∞,2) ∪ (2,∞)}.
From this we deduce that the asymptotes are at x = 0 and y = 2.

Sketching Graphs of the Form f(x) = a
x

+ q

In order to sketch graphs of functions of the form, f(x) = a
x

+ q, we need to calculate determine
four characteristics:

1. domain and range

2. asymptotes

3. y-intercept

4. x-intercept

For example, sketch the graph of g(x) = 2
x

+ 2. Mark the intercepts and asymptotes.

We have determined the domain to be {x : x ∈ R, x 6= 0} and the range to be {g(x) : g(x) ∈
(−∞,2) ∪ (2,∞)}. Therefore the asymptotes are at x = 0 and y = 2.

There is no y-intercept and the x-intercept is xint = −1.
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1 2 3 4−1−2−3−4

1

2

3

4

5

6

−1

−2

−3

Figure 10.12: Graph of g(x) = 2
x

+ 2.

Exercise: Graphs

1. Using grid paper, draw the graph of xy = −6.

(a) Does the point (-2; 3) lie on the graph ? Give a reason for your answer.

(b) Why is the point (-2; -3) not on the graph ?

(c) If the x-value of a point on the drawn graph is 0,25, what is the corre-
sponding y-value ?

(d) What happens to the y-values as the x-values become very large ?

(e) With the line y = −x as line of symmetry, what is the point symmetrical
to (-2; 3) ?

2. Draw the graph of xy = 8.

(a) How would the graph y = 8
3 + 3 compare with that of xy = 8? Explain

your answer fully.

(b) Draw the graph of y = 8
3 + 3 on the same set of axes.

10.12.4 Functions of the Form y = ab(x) + q

Functions of the form y = ab(x) + q are known as exponential functions. The general shape of
a graph of a function of this form is shown in Figure 10.13.

Activity :: Investigation : Functions of the Form y = ab(x) + q

1. On the same set of axes, plot the following graphs:

(a) a(x) = −2 · b(x) + 1

(b) b(x) = −1 · b(x) + 1

(c) c(x) = −0 · b(x) + 1
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1 2 3 4−1−2−3−4

1

2

3

4

Figure 10.13: General shape and position of the graph of a function of the form f(x) = ab(x)+q.

(d) d(x) = −1 · b(x) + 1

(e) e(x) = −2 · b(x) + 1

Use your results to deduce the effect of a.

2. On the same set of axes, plot the following graphs:

(a) f(x) = 1 · b(x) − 2

(b) g(x) = 1 · b(x) − 1

(c) h(x) = 1 · b(x) + 0

(d) j(x) = 1 · b(x) + 1

(e) k(x) = 1 · b(x) + 2

Use your results to deduce the effect of q.

You should have found that the value of a affects whether the graph curves upwards (a > 0) or
curves downwards (a < 0).

You should have also found that the value of q affects the position of the y-intercept.

These different properties are summarised in Table 10.4.

Table 10.4: Table summarising general shapes and positions of functions of the form y =
ab(x) + q.

a > 0 a < 0

q > 0

q < 0

Domain and Range

For y = ab(x) + q, the function is defined for all real values of x. Therefore, the domain is
{x : x ∈ R}.
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The range of y = ab(x) + q is dependent on the sign of a.

If a > 0 then:

b(x) ≥ 0

a · b(x) ≥ 0

a · b(x) + q ≥ q

f(x) ≥ q

Therefore, if a > 0, then the range is {f(x) : f(x) ∈ [q,∞)}.

If a < 0 then:

b(x) ≤ 0

a · b(x) ≤ 0

a · b(x) + q ≤ q

f(x) ≤ q

Therefore, if a < 0, then the range is {f(x) : f(x) ∈ (−∞,q]}.

For example, the domain of g(x) = 3 · 2x + 2 is {x : x ∈ R}. For the range,

2x ≥ 0

3 · 2x ≥ 0

3 · 2x + 2 ≥ 2

Therefore the range is {g(x) : g(x) ∈ [2,∞)}.

Intercepts

For functions of the form, y = ab(x) + q, the intercepts with the x and y axis is calculated by
setting x = 0 for the y-intercept and by setting y = 0 for the x-intercept.

The y-intercept is calculated as follows:

y = ab(x) + q (10.30)

yint = ab(0) + q (10.31)

= a(1) + q (10.32)

= a + q (10.33)

For example, the y-intercept of g(x) = 3 · 2x + 2 is given by setting x = 0 to get:

y = 3 · 2x + 2

yint = 3 · 20 + 2

= 3 + 2

= 5

The x-intercepts are calculated by setting y = 0 as follows:

y = ab(x) + q (10.34)

0 = ab(xint) + q (10.35)

ab(xint) = −q (10.36)

b(xint) = − q

a
(10.37)

Which only has a real solution if either a < 0 or q < 0. Otherwise, the graph of the function of
form y = ab(x) + q does not have any x-intercepts.
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For example, the x-intercept of g(x) = 3 · 2x + 2 is given by setting y = 0 to get:

y = 3 · 2x + 2

0 = 3 · 2xint + 2

−2 = 3 · 2xint

2xint =
−2

3

which has no real solution. Therefore, the graph of g(x) = 3 · 2x + 2 does not have any
x-intercepts.

Asymptotes

There are two asymptotes for functions of the form y = ab(x) + q. They are determined by
examining the domain and range.

We saw that the function was undefined at x = 0 and for y = q. Therefore the asymptotes are
x = 0 and y = q.

For example, the domain of g(x) = 3 · 2x + 2 is {x : x ∈ R, x 6= 0} because g(x) is undefined
at x = 0. We also see that g(x) is undefined at y = 2. Therefore the range is {g(x) : g(x) ∈
(−∞,2) ∪ (2,∞)}.
From this we deduce that the asymptotes are at x = 0 and y = 2.

Sketching Graphs of the Form f(x) = ab(x) + q

In order to sketch graphs of functions of the form, f(x) = ab(x) + q, we need to calculate
determine four characteristics:

1. domain and range

2. y-intercept

3. x-intercept

For example, sketch the graph of g(x) = 3 · 2x + 2. Mark the intercepts.

We have determined the domain to be {x : x ∈ R} and the range to be {g(x) : g(x) ∈ [2,∞)}.
The y-intercept is yint = 5 and there are no x-intercepts.

1 2 3 4−1−2−3−4

1

2

3

4

5

6

Figure 10.14: Graph of g(x) = 3 · 2x + 2.
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Exercise: Exponential Functions and Graphs

1. Draw the graphs of y = 2x and y = (1
2 )x on the same set of axes.

(a) Is the x-axis and asymptote or and axis of symmetry to both graphs ?
Explain your answer.

(b) Which graph is represented by the equation y = 2−x ? Explain your
answer.

(c) Solve the equation 2x = (1
2 )x graphically and check that your answer is

correct by using substitution.

(d) Predict how the graph y = 2.2x will compare to y = 2x and then draw the
graph of y = 2.2x on the same set of axes.

2. The curve of the exponential function f in the accompanying diagram cuts the

y-axis at the point A(0; 1) and B(2; 4) is on f .

b

b

B(2,4)

A(0,1)

0 1 2

1

2

3

4

x

f

(a) Determine the equation of the function f .

(b) Determine the equation of h, the function of which the curve is the reflec-
tion of the curve of f in the x-axis.

(c) Determine the range of h.

10.13 End of Chapter Exercises

1. Given the functions f(x) = −2x2 − 18 and g(x) = −2x + 6

(a) Draw f and g on the same set of axes.

(b) Calculate the points of intersection of f and g.

(c) Hence use your graphs and the points of intersection to solve for x when:

i. f(x) > 0

ii. f(x)
g(x) ≤ 0

(d) Give the equation of the reflection of f in the x-axis.

2. After a ball is dropped, the rebound height of each bounce decreases. The equation
y = 5(0.8)x shows the relationship between x, the number of bounces, and y, the height
of the bounce, for a certain ball. What is the approximate height of the fifth bounce of
this ball to the nearest tenth of a unit ?

3. Marc had 15 coins in five rand and two rand pieces. He had 3 more R2-coins than R5-
coins. He wrote a system of equations to represent this situation, letting x represent the
number of five rand coins and y represent the number of two rand coins. Then he solved
the system by graphing.
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(a) Write down the system of equations.

(b) Draw their graphs on the same set of axes.

(c) What is the solution?
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Chapter 11

Average Gradient - Grade 10
Extension

11.1 Introduction

In chapter 10.7.4, we saw that the gradient of a straight line graph is calculated as:

y2 − y1

x2 − x1
(11.1)

for two points (x1,y1) and (x2,y2) on the graph.

We can now define the average gradient between any two points, (x1,y1) and (x2,y2) as:

y2 − y1

x2 − x1
. (11.2)

This is the same as (11.1).

11.2 Straight-Line Functions

Activity :: Investigation : Average Gradient - Straight Line Function
Fill in the table by calculating the average gradient over the indicated intervals

for the function f(x) = 2x − 2:

x1 x2 y1 y2
y2−y1

x2−x1

A-B
A-C
B-C

1−1

1

2

−1

−2

−3

−4

y

x

b

b

b

A(-1,-4)

B(1,0)

C(2,2)
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What do you notice about the gradients over each interval?

The average gradient of a straight-line function is the same over any two intervals on the function.

11.3 Parabolic Functions

Activity :: Investigation : Average Gradient - Parabolic Function
Fill in the table by calculating the average gradient over the indicated intervals

for the function f(x) = 2x − 2:

x1 x2 y1 y2
y2−y1

x2−x1

A-B
B-C
C-D
D-E
E-F
F-G

What do you notice about the average
gradient over each interval? What can
you say about the average gradients be-
tween A and D compared to the average
gradients between D and G?

y

x

b

b

b

b

b

b

bA(-3,7)

B(-2,2)

C(-1,-1)

D(0,-2)

E(1,-1)

F(2,2)

G(3,7)

The average gradient of a parabolic function depends on the interval and is the gradient of a
straight line that passes through the points on the interval.

For example, in Figure 11.1 the various points have been joined by straight-lines. The average
gradients between the joined points are then the gradients of the straight lines that pass through
the points.

y

x

b

b

b

b

b

b

bA(-3,7)

B(-2,2)

C(-1,-1)

D(0,-2)

E(1,-1)

F(2,2)

G(3,7)

Figure 11.1: The average gradient between two points on a curve is the gradient of the straight
line that passes through the points.

Method: Average Gradient

Given the equation of a curve and two points (x1, x2):
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1. Write the equation of the curve in the form y = . . ..

2. Calculate y1 by substituting x1 into the equation for the curve.

3. Calculate y2 by substituting x2 into the equation for the curve.

4. Calculate the average gradient using:

y2 − y1

x2 − x1

Worked Example 49: Average Gradient

Question: Find the average gradient of the curve y = 5x2 − 4 between the points
x = −3 and x = 3

Answer

Step 1 : Label points

Label the points as follows:
x1 = −3

x2 = 3

to make it easier to calculate the gradient.

Step 2 : Calculate the y coordinates

We use the equation for the curve to calculate the y-value at x1 and x2.

y1 = 5x2
1 − 4

= 5(−3)2 − 4

= 5(9) − 4

= 41

y2 = 5x2
2 − 4

= 5(3)2 − 4

= 5(9) − 4

= 41

Step 3 : Calculate the average gradient

y2 − y1

x2 − x1
=

41 − 41

3 − (−3)

=
0

3 + 3

=
0

6
= 0

Step 4 : Write the final answer

The average gradient between x = −3 and x = 3 on the curve y = 5x2 − 4 is 0.
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11.4 End of Chapter Exercises

1. An object moves according to the function d = 2t2 + 1 , where d is the distance in metres
and t the time in seconds. Calculate the average speed of the object between 2 and 3
seconds.

2. Given: f(x) = x3 − 6x.
Determine the average gradient between the points where x = 1 and x = 4.
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Chapter 12

Geometry Basics

12.1 Introduction

The purpose of this chapter is to recap some of the ideas that you learned in geometry and
trigonometry in earlier grades. You should feel comfortable with the work covered in this chapter
before attempting to move onto the Grade 10 Geometry Chapter (Chapter 13) or the Grade 10
Trigonometry Chapter (Chapter 14). This chapter revises:

1. Terminology: quadrilaterals, vertices, sides, angles, parallel lines, perpendicular lines,
diagonals, bisectors, transversals

2. Similarities and differences between quadrilaterals

3. Properties of triangles and quadrilaterals

4. Congruence

5. Classification of angles into acute, right, obtuse, straight, reflex or revolution

6. Theorem of Pythagoras which is used to calculate the lengths of sides of a right-angled
triangle

12.2 Points and Lines

The two simplest objects in geometry are points and lines.

A point is something that is not very wide or high and is usually used in geometry as a marker of
a position. Points are usually labelled with a capital letter. Some examples of points are shown
in Figure 12.1.

A line is formed when many points are placed next to each other. Lines can be straight or
curved, but are always continuous. This means that there are never any breaks in the lines. The
endpoints of lines are labelled with capital letters. Examples of two lines are shown in Figure 12.1.

b

b

b

b

P

Q

R

S

Some points

B C

D E

Some lines

Figure 12.1: Examples of some points (labelled P , Q, R and S) and some lines (labelled BC and DE).
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Lines are labelled according to the start point and end point. We call the line that starts at a
point A and ends at a point B, AB. Since the line from point B to point A is the same as the
line from point A to point B, we have that AB=BA.

The length of the line between points A and B is AB. So if we say AB = CD we mean that
the length of the line between A and B is equal to the length of the line between C and D.

In science, we sometimes talk about a vector and this is just a fancy way of saying the we are
referring to the line that starts at one point and moves in the direction of the other point. We
label a vector in a similar manner to a line, with ~AB referring to the vector from the point A
with length AB and in the direction from point A to point B. Similarly, ~BA is the line segment
with the same length but direction from point B to point A. Usually, vectors are only equal if
they have the same length and same direction. So, usually, ~AB 6= ~BA.

A line is measured in units of length. Some common units of length are listed in Table 12.1.

Table 12.1: Some common units of length and their abbreviations.
Unit of Length Abbreviation

kilometre km
metre m

centimetre cm
millimetre mm

12.3 Angles

An angle is formed when two straight lines meet at a point. The point at which two lines meet
is known as a vertex. Angles are labelled with a ˆ on a letter, for example, in Figure 12.3, the
angle is at B̂. Angles can also be labelled according to the line segments that make up the angle.
For example, in Figure 12.3, the angle is made up when line segments CB and BA meet. So,
the angle can be referred to as ∠CBA or ∠ABC. The ∠ symbol is a short method of writing
angle in geometry.

Angles are measured in degrees which is denoted by ◦.

A

C

B

Figure 12.2: Angle labelled as B̂, ∠CBA or ∠ABC

A

C

B E

F

G
(a) (b)

Figure 12.3: Examples of angles. Â = Ê, even though the lines making up the angles are of
different lengths.
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12.3.1 Measuring angles

The size of an angle does not depend on the length of the lines that are joined to make up the
angle, but depends only on how both the lines are placed as can be seen in Figure 12.3. This
means that the idea of length cannot be used to measure angles. An angle is a rotation around
the vertex.

Using a Protractor

A protractor is a simple tool that is used to measure angles. A picture of a protractor is shown
in Figure 12.4.

0
◦

30
◦

60
◦

90
◦

120
◦

150
◦

180
◦

Figure 12.4: Diagram of a protractor.

Method:

Using a protractor

1. Place the bottom line of the protractor along one line of the angle.

2. Move the protractor along the line so that the centre point on the protractor is at the
vertex of the two lines that make up the angle.

3. Follow the second line until it meets the marking on the protractor and read off the angle.
Make sure you start measuring at 0◦.

Activity :: Measuring Angles : Use a protractor to measure the following
angles:

12.3.2 Special Angles

What is the smallest angle that can be drawn? The figure below shows two lines (CA and AB)
making an angle at a common vertex A. If line CA is rotated around the common vertex A,
down towards line AB, then the smallest angle that can be drawn occurs when the two lines are
pointing in the same direction. This gives an angle of 0◦.
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A B

C swing point C down
towards AB

0◦

A B

C
b

180◦

A B

C

If line CA is now swung upwards, any other angle can be obtained. If line CA and line AB
point in opposite directions (the third case in the figure) then this forms an angle of 180◦.

Important: If three points A, B and C lie on a straight line, then the angle between them
is 180◦. Conversely, if the angle between three points is 180◦, then the points lie on a
straight line.

An angle of 90◦ is called a right angle. A right angle is half the size of the angle made by a
straight line (180◦). We say CA is perpendicular to AB or CA ⊥ AB. An angle twice the size
of a straight line is 360◦. An angle measuring 360◦ looks identical to an angle of 0◦, except for
the labelling. We call this a revolution.

A
B

C

90◦

bA B
C

360◦

Figure 12.5: An angle of 90◦ is known as a right angle.

Extension: Angles larger than 360◦

All angles larger than 360◦ also look like we have seen them before. If you are given
an angle that is larger than 360◦, continue subtracting 360◦ from the angle, until
you get an answer that is between 0◦and 360◦. Angles that measure more than 360◦

are largely for mathematical convenience.

Important:

• Acute angle: An angle ≥ 0◦ and < 90◦.

• Right angle: An angle measuring 90◦.

• Obtuse angle: An angle > 90◦ and < 180◦.

• Straight angle: An angle measuring 180◦.

• Reflex angle: An angle > 180◦ and < 360◦.

• Revolution: An angle measuring 360◦.

These are simply labels for angles in particular ranges, shown in Figure 12.6.

Once angles can be measured, they can then be compared. For example, all right angles are
90◦, therefore all right angles are equal, and an obtuse angle will always be larger than an acute
angle.
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bA B

C

acute
bA B

C

obtuse

b

A
B

C

reflex

Figure 12.6: Three types of angles defined according to their ranges.

12.3.3 Special Angle Pairs

In Figure 12.7, straight lines AB and CD intersect at point X, forming four angles: X̂1, X̂2,
X̂3 and X̂4.

b

A

BC

D

X
1

2

3

4

Figure 12.7: Two intersecting straight lines with vertical angles X̂1,X̂3 and X̂2,X̂4.

The table summarises the special angle pairs that result.

Special Angle Property Example

adjacent angles
share a common

vertex and a
common side

(X̂1,X̂2), (X̂2,X̂3),
(X̂3,X̂4), (X̂4,X̂1)

linear pair
(adjacent angles

on a straight
line)

adjacent angles
formed by two

intersecting straight
lines that by

definition add to
180◦

X̂1 + X̂2 = 180◦

X̂2 + X̂3 = 180◦

X̂3 + X̂4 = 180◦

X̂4 + X̂1 = 180◦

vertically
opposite angles

angles formed by
two intersecting

straight lines that
share a vertex but
do not share any

sides

X̂1 = X̂3

X̂2 = X̂4

supplementary
angles

two angles whose sum is 180◦

complementary
angles

two angles whose sum is 90◦

Important: The vertically opposite angles formed by the intersection of two straight lines
are equal. Adjacent angles on a straight line are supplementary.

12.3.4 Parallel Lines intersected by Transversal Lines

Two lines intersect if they cross each other at a point. For example, at a traffic intersection,
two or more streets intersect; the middle of the intersection is the common point between the
streets.

143



12.3 CHAPTER 12. GEOMETRY BASICS

Parallel lines are lines that never intersect. For example the tracks of a railway line are parallel.
We wouldn’t want the tracks to intersect as that would be catastrophic for the train!

All these lines are parallel to each other. Notice the arrow symbol for parallel.

Interesting

Fact

teresting

Fact
A section of the Australian National Railways Trans-Australian line is perhaps
one of the longest pairs of man-made parallel lines.

Longest Railroad Straight (Source: www.guinnessworldrecords.com)

The Australian National Railways Trans-Australian line over the
Nullarbor Plain, is 478 km (297 miles) dead straight, from Mile 496,
between Nurina and Loongana, Western Australia, to Mile 793,
between Ooldea and Watson, South Australia.

A transversal of two or more lines is a line that intersects these lines. For example in Figure 12.8,
AB and CD are two parallel lines and EF is a transversal. We say AB ‖ CD. The properties
of the angles formed by these intersecting lines are summarised in the table below.

A B

C D

E

F

g
h

a
b

c
d

e
f

Figure 12.8: Parallel lines intersected by a transversal

Extension: Euclid’s Parallel Line Postulate
If a straight line falling on two straight lines makes the two interior angles on the same
side less than two right angles (180◦), the two straight lines, if produced indefinitely,
will meet on that side. This postulate can be used to prove many identities about
the angles formed when two parallel lines are cut by a transversal.
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Name of angle Definition Examples Notes

interior angles
the angles that lie
inside the parallel

lines

a, b, c and d are
interior angles

the word interior
means inside

exterior angles
the angles that lie
outside the parallel

lines

e, f , g and h are
exterior angles

the word exterior
means outside

alternate interior
angles

the interior angles
that lie on opposite

sides of the
transversal

(a,c) and (b,d) are
pairs of alternate
interior angles,
a = c, b = d

Z shape

co-interior angles on
the same side

co-interior angles
that lie on the same

side of the
transversal

(a,d) and (b,c) are
interior angles on
the same side.
a + d = 180◦,
b + c = 180◦

C shape

corresponding
angles

the angles on the
same side of the

transversal and the
same side of the

parallel lines

(a,e), (b,f), (c,g)
and (d,h) are pairs
of corresponding
angles. a = e,

b = f , c = g, d = h
F shape

Important:

1. If two parallel lines are intersected by a transversal, the sum of the co-interior angles
on the same side of the transversal is 180◦.

2. If two parallel lines are intersected by a transversal, the alternate interior angles are
equal.

3. If two parallel lines are intersected by a transversal, the corresponding angles are equal.

4. If two lines are intersected by a transversal such that any pair of co-interior angles on
the same side is supplementary, then the two lines are parallel.

5. If two lines are intersected by a transversal such that a pair of alternate interior angles
are equal, then the lines are parallel.

6. If two lines are intersected by a transversal such that a pair of alternate corresponding
angles are equal, then the lines are parallel.

Exercise: Angles

1. Use adjacent, corresponding, co-interior and
alternate angles to fill in all the angles labeled
with letters in the diagram alongside:

30◦a

b c

d e

f
g
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2. Find all the unknown angles in the figure
alongside:

A

B

C

D

E

F

G

H

30◦

100◦

1
1

2
3

1
2 3

1
2

3

1

3. Find the value of x in the figure alongside:

A

B C

D

X

Y

Z

4x

x

x+20◦

4. Determine whether there are pairs of parallel lines in the following figures.

a)

115◦

55◦

O

P

Q

R

S

T

A

B

1

2
3

3

2
1

b)

45◦

35◦

M

N

O

P

Q R
K

L

1 2

3 3

2

1

c)

85◦

85◦

K

L

M N

T Y

U

V

1

2

3

12

3

5. If AB is parallel to CD and AB is parallel to
EF, prove that CD is parallel to EF: A B

FE

C
D
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12.4 Polygons

If you take some lines and join them such that the end point of the first line meets the starting
point of the last line, you will get a polygon. Each line that makes up the polygon is known as
a side. A polygon has interior angles. These are the angles that are inside the polygon. The
number of sides of a polygon equals the number of interior angles. If a polygon has equal length
sides and equal interior angles then the polygon is called a regular polygon. Some examples of
polygons are shown in Figure 12.9.

*

Figure 12.9: Examples of polygons. They are all regular, except for the one marked *

12.4.1 Triangles

A triangle is a three-sided polygon. There are four types of triangles: equilateral, isosceles,
right-angled and scalene. The properties of these triangles are summarised in Table 12.2.

Properties of Triangles

Activity :: Investigation : Sum of the angles in a triangle

1. Draw on a piece of paper a triangle of any size and shape

2. Cut it out and label the angles Â, B̂ and Ĉ on both sides of the paper

3. Draw dotted lines as shown and cut along these lines to get three pieces of
paper

4. Place them along your ruler as shown to see that Â + B̂ + Ĉ = 180◦

A

B C

A B C

Important: The sum of the angles in a triangle is 180◦.
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Table 12.2: Types of Triangles
Name Diagram Properties

equilateral

b

A
b

B

b

C

60◦

60◦60◦

All three sides are equal in length
and all three angles are equal.

isosceles

b

A
b

B

b

C

Two sides are equal in length. The
angles opposite the equal sides are
equal.

right-angled

b

A

b

B

b

C

hypotenuse

This triangle has one right angle.
The side opposite this angle is
called the hypotenuse.

scalene (non-syllabus) All sides and angles are different.
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A

B

C

Figure 12.10: In any triangle, ∠A + ∠B + ∠C = 180◦

Important: Any exterior angle of a triangle is equal to the sum of the two opposite interior
angles. An exterior angle is formed by extending any one of the sides.

bA

b

B

b

C

D

ˆBAC + ˆBCA = ˆCBD

bA

b

B

b

C D

ˆBAC + ˆCBA = ˆBCD

bA

b

B

b C

D

ˆABC + ˆBAC = ˆACD

Figure 12.11: In any triangle, any exterior angle is equal to the sum of the two opposite interior
angles.
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Congruent Triangles

Label Description Diagram

RHS

If the hypotenuse and one
side of a right-angled

triangle are equal to the
hypotenuse and the

respective side of another
triangle then the triangles

are congruent.

SSS

If three sides of a triangle
are equal in length to the

same sides of another
triangle then the two

triangles are congruent

SAS

If two sides and the
included angle of one

triangle are equal to the
same two sides and

included angle of another
triangle, then the two

triangles are congruent.

AAS

If one side and two angles
of one triangle are equal to
the same one side and two
angles of another triangle,
then the two triangles are

congruent.

Similar Triangles

Description Diagram

If all three pairs of corresponding
angles of two triangles are equal,

then the triangles are similar.
b

a

c

a

b c

If all pairs of corresponding sides
of two triangles are in proportion,

then the triangles are similar.

x y

z r

p q

x
p

= y
q

= z
r
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The theorem of Pythagoras

A

CB

b

b

c

c

a

a

If △ABC is right-angled (B̂ = 90◦) then
b2 = a2 + c2

Converse:
If b2 = a2 + c2, then

△ABC is right-angled (B̂ = 90◦).

Exercise: Triangles

1. Calculate the unknown variables in each of the following figures. All lengths
are in mm.

36o

x

y

N

P O

a)

30o

x68o

N

P O

b)

68o

68o

OP

N
x

y

c)

12 14

O

N

P TS 21

R

x

d)

O

N

P
R

S

x19

76

116
e)

15

20

x

OP

N

9

15
5

x

y
P

N

O

R

f)

g)

2. State whether or not the following pairs of triangles are congruent or not. Give
reasons for your answers. If there is not enough information to make a descision,
say why.
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C

B

A

E

D

b

b

DA

B

C

E

D
A

B

C

E

B

A C D

CA

D

B

a) b)

c)
d)

e)

12.4.2 Quadrilaterals

A quadrilateral is any polygon with four sides. The basic quadrilaterals are the trapezium,
parallelogram, rectangle, rhombus, square and kite.

Name of quadrilateral Figure

trapezium Figure 12.12
parallelogram Figure 12.13

rectangle Figure 12.14
rhombus Figure 12.15
square Figure 12.16
kite Figure 12.17

Table 12.3: Examples of quadrilaterals.

Trapezium

A trapezium is a quadrilateral with one pair of parallel opposite sides. It may also be called a
trapezoid. A special type of trapezium is the isosceles trapezium, where one pair of opposite
sides is parallel, the other pair of sides is equal in length and the angles at the ends of each
parallel side are equal. An isosceles trapezium has one line of symmetry and its diagonals are
equal in length.

isosceles trapezium

Figure 12.12: Examples of trapeziums.
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Parallelogram

A trapezium with both sets of opposite sides parallel is called a parallelogram. A summary of
the properties of a parallelogram is:

• Both pairs of opposite sides are parallel.

• Both pairs of opposite sides are equal in length.

• Both pairs of opposite angles are equal.

• Both diagonals bisect each other (i.e. they cut each other in half).

bA b B

b CbD

b

///

////

/

Figure 12.13: An example of a parallelogram.

Rectangle

A rectangle is a parallelogram that has all four angles equal to 90◦. A summary of the properties
of a rectangle is:

• Both pairs of opposite sides are parallel.

• Both pairs of opposite sides are of equal length equal.

• Both diagonals bisect each other.

• Diagonals are equal in length.

• All angles are right angles.

bA b B

b CbD

b

/

//

/

Figure 12.14: Example of a rectangle.

Rhombus

A rhombus is a parallelogram that has all four side of equal length. A summary of the properties
of a rhombus is:

• Both pairs of opposite sides are parallel.

• All sides are equal in length.
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• Both pairs of opposite angles equal.

• Both diagonals bisect each other at 90◦.

• Diagonals of a rhombus bisect both pairs of opposite angles.

bA b B

b CbD

b

///

////

/

x
x

x
x••

••

Figure 12.15: An example of a rhombus. A rhombus is a parallelogram with all sides equal.

Square

A square is a rhombus that has all four angles equal to 90◦.

A summary of the properties of a rhombus is:

• Both pairs of opposite sides are parallel.

• All sides are equal in length.

• All angles are equal to 90◦.

• Both pairs of opposite angles equal.

• Both diagonals bisect each other at 90◦.

• Diagonals are equal in length.

• Diagonals bisect both pairs of opposite angles (ie. all 45◦).

bA b B

b CbD

b

/

//

/

••

•• ••

••

Figure 12.16: An example of a square. A square is a rhombus with all angles equal to 90◦.

Kite

A kite is a quadrilateral with two pairs of adjacent sides equal.

A summary of the properties of a kite is:

• Two pairs of adjacent sides are equal in length.
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• One pair of opposite angles are equal where the angles must be between unequal sides.

• One diagonal bisects the other diagonal and one diagonal bisects one pair of opposite
angles.

• Diagonals intersect at right-angles.

bA b B

b

C

b

D

b/

/

x x

• •

Figure 12.17: An example of a kite.

12.4.3 Other polygons

There are many other polygons, some of which are given in the table below.

Sides Name
5 pentagon
6 hexagon
7 heptagon
8 octagon
10 decagon
15 pentadecagon

Table 12.4: Table of some polygons and their number of sides.

pentagon hexagon heptagon

octagon nonagon decagon

Figure 12.18: Examples of other polygons.
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12.4.4 Extra

Angles of regular polygons

You can calculate the size of the interior angle of a regular polygon by using:

Â =
n − 2

n
× 180◦ (12.1)

where n is the number of sides and Â is any angle.

Areas of Polygons

1. Area of triangle: 1
2× base × perpendicular height

h

2. Area of trapezium: 1
2× (sum of ‖ sides) × perpendicular height

h

3. Area of parallelogram and rhombus: base × perpendicular height
h

4. Area of rectangle: length × breadth
b

l

5. Area of square: length of side × length of side

s

s

6. Area of circle: π x radius2
r

Exercise: Polygons

1. For each case below, say whether the statement is true or false. For false
statements, give a counter-example to prove it:

(a) All squares are rectangles

(b) All rectangles are squares

(c) All pentagons are similar

(d) All equilateral triangles are similar

(e) All pentagons are congruent

(f) All equilateral triangles are congruent

2. Find the areas of each of the given figures - remember area is measured in
square units (cm2, m2, mm2).
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5cm

10cm

a) b)

5cm

10cm

b

10cm

c)

d)

5cm

7cm 3cm

12cm 8cm

10cm

e) f)

5cm

6cm

g)

10cm 15cm

9cm

16cm

21cm

h)

12.5 Exercises

1. Find all the pairs of parallel lines in the following figures, giving reasons in each case.

(a)

62◦

62◦
A B

D C

(c)

120◦

60◦

60◦

G H

K L

(b)

M

N

O

P

57◦

123◦

137◦

2. Find a, b, c and d in each case, giving reasons.

(a)

P

Q

R

S

a

b

cd

73◦
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(b)

A B

C D

E F

K

L

M

O

N

a

b

c

d

100
◦

(c)

T

U

V

W

X

a

b

d

c

45
◦

50◦

(a) Which of the following claims are true? Give a counter-example for those that are
incorrect.

i. All equilateral triangles are similar.

ii. All regular quadrilaterals are similar.

iii. In any △ABC with ∠ABC = 90◦ we have AB3 + BC3 = CA3.

iv. All right-angled isosceles triangles with perimeter 10 cm are congruent.

v. All rectangles with the same area are similar.

(b) Say which of the following pairs of triangles are congruent with reasons.

i.

A

B

C

D

E

F

ii.

G

H I

J

K

L

iii. M

N

O

P

Q R

iv. Q

R

S T

U

V

(c) For each pair of figures state whether they are similar or not. Give reasons.
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2
√

22

3

3

45◦

45◦

A

B C

P

Q R

(a)

(b) H J

KL

W X

YZ

5

7,5

5

12.5.1 Challenge Problem

1. Using the figure below, show that the sum of the three angles in a triangle is 180◦. Line
DE is parallel to BC.

B C

A
D E

b
c

d e
a
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Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially. Secondar-
ily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially,
provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
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you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

6. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
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10. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.
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COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the actual
title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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