FHSST Authors

The Free High School Science Texts: Textbooks for High School Students Studying the Sciences
Physics
Grades 10-12

Version 0
November 9, 2008

Copyright 2007 "Free High School Science Texts"
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

STOP!!!!

Did you notice the FREEDOMS we've granted you?

Our copyright license is different! It grants freedoms

 rather than just imposing restrictions like all those other textbooks you probably own or use.- We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally!
- Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide - we DARE you!
- Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want!
- Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents.
- So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair.
- These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community.

FHSST Core Team

Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton

FHSST Editors

Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield

FHSST Contributors

Rory Adams ; Prashant Arora; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ; Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ; Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ; Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ; Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek; Dr. Komal Maheshwari ; Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ; Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ; Tyrone Negus ; Thomas O'Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ; Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ; Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon; Mike Stringer ; Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ; Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal Yacoob ; Jean Youssef

Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource!
www.fhsst.org

Contents

I Introduction 1
1 What is Physics? 3
II Grade 10 - Physics 5
2 Units 9
2.1 Introduction 9
2.2 Unit Systems 9
2.2.1 SI Units 9
2.2.2 The Other Systems of Units 10
2.3 Writing Units as Words or Symbols 10
2.4 Combinations of SI Base Units 12
2.5 Rounding, Scientific Notation and Significant Figures 12
2.5.1 Rounding Off 12
2.5.2 Error Margins 13
2.5.3 Scientific Notation 13
2.5.4 Significant Figures 15
2.6 Prefixes of Base Units 15
2.7 The Importance of Units 17
2.8 How to Change Units 17
2.8.1 Two other useful conversions 19
2.9 A sanity test 19
2.10 Summary 19
2.11 End of Chapter Exercises 21
3 Motion in One Dimension - Grade 10 23
3.1 Introduction 23
3.2 Reference Point, Frame of Reference and Position 23
3.2.1 Frames of Reference 23
3.2.2 Position 25
3.3 Displacement and Distance 28
3.3.1 Interpreting Direction 29
3.3.2 Differences between Distance and Displacement 29
3.4 Speed, Average Velocity and Instantaneous Velocity 31
3.4.1 Differences between Speed and Velocity 35
3.5 Acceleration 38
3.6 Description of Motion 39
3.6.1 Stationary Object 40
3.6.2 Motion at Constant Velocity 41
3.6.3 Motion at Constant Acceleration 46
3.7 Summary of Graphs 48
3.8 Worked Examples 49
3.9 Equations of Motion 54
3.9.1 Finding the Equations of Motion 54
3.10 Applications in the Real-World 59
3.11 Summary 61
3.12 End of Chapter Exercises: Motion in One Dimension 62
4 Gravity and Mechanical Energy - Grade 10 67
4.1 Weight 67
4.1.1 Differences between Mass and Weight 68
4.2 Acceleration due to Gravity 69
4.2.1 Gravitational Fields 69
4.2.2 Free fall 69
4.3 Potential Energy 73
4.4 Kinetic Energy 75
4.4.1 Checking units 77
4.5 Mechanical Energy 78
4.5.1 Conservation of Mechanical Energy 78
4.5.2 Using the Law of Conservation of Energy 79
4.6 Energy graphs 82
4.7 Summary 83
4.8 End of Chapter Exercises: Gravity and Mechanical Energy 84
5 Transverse Pulses - Grade 10 87
5.1 Introduction 87
5.2 What is a medium? 87
5.3 What is a pulse? 87
5.3.1 Pulse Length and Amplitude 88
5.3.2 Pulse Speed 89
5.4 Graphs of Position and Velocity 90
5.4.1 Motion of a Particle of the Medium 90
5.4.2 Motion of the Pulse 92
5.5 Transmission and Reflection of a Pulse at a Boundary 96
5.6 Reflection of a Pulse from Fixed and Free Ends 97
5.6.1 Reflection of a Pulse from a Fixed End 97
5.6.2 Reflection of a Pulse from a Free End 98
5.7 Superposition of Pulses 99
5.8 Exercises - Transverse Pulses 102
6 Transverse Waves - Grade 10 105
6.1 Introduction 105
6.2 What is a transverse wave? 105
6.2.1 Peaks and Troughs 106
6.2.2 Amplitude and Wavelength 107
6.2.3 Points in Phase 109
6.2.4 Period and Frequency 110
6.2.5 Speed of a Transverse Wave 111
6.3 Graphs of Particle Motion 115
6.4 Standing Waves and Boundary Conditions 118
6.4.1 Reflection of a Transverse Wave from a Fixed End 118
6.4.2 Reflection of a Transverse Wave from a Free End 118
6.4.3 Standing Waves 118
6.4.4 Nodes and anti-nodes 122
6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends 122
6.4.6 Superposition and Interference 125
6.5 Summary 127
6.6 Exercises 127
7 Geometrical Optics - Grade 10 129
7.1 Introduction 129
7.2 Light Rays 129
7.2.1 Shadows 132
7.2.2 Ray Diagrams 132
7.3 Reflection 132
7.3.1 Terminology 133
7.3.2 Law of Reflection 133
7.3.3 Types of Reflection 135
7.4 Refraction 137
7.4.1 Refractive Index 139
7.4.2 Snell's Law 139
7.4.3 Apparent Depth 143
7.5 Mirrors 146
7.5.1 Image Formation 146
7.5.2 Plane Mirrors 147
7.5.3 Ray Diagrams 148
7.5.4 Spherical Mirrors 150
7.5.5 Concave Mirrors 150
7.5.6 Convex Mirrors 153
7.5.7 Summary of Properties of Mirrors 154
7.5.8 Magnification 154
7.6 Total Internal Reflection and Fibre Optics 156
7.6.1 Total Internal Reflection 156
7.6.2 Fibre Optics 161
7.7 Summary 163
7.8 Exercises 164
8 Magnetism - Grade 10 167
8.1 Introduction 167
8.2 Magnetic fields 167
8.3 Permanent magnets 169
8.3.1 The poles of permanent magnets 169
8.3.2 Magnetic attraction and repulsion 169
8.3.3 Representing magnetic fields 170
8.4 The compass and the earth's magnetic field 173
8.4.1 The earth's magnetic field 175
8.5 Summary 175
8.6 End of chapter exercises 176
9 Electrostatics - Grade 10 177
9.1 Introduction 177
9.2 Two kinds of charge 177
9.3 Unit of charge 177
9.4 Conservation of charge 177
9.5 Force between Charges 178
9.6 Conductors and insulators 181
9.6.1 The electroscope 182
9.7 Attraction between charged and uncharged objects 183
9.7.1 Polarisation of Insulators 183
9.8 Summary 184
9.9 End of chapter exercise 184
10 Electric Circuits - Grade 10 187
10.1 Electric Circuits 187
10.1.1 Closed circuits 187
10.1.2 Representing electric circuits 188
10.2 Potential Difference 192
10.2.1 Potential Difference 192
10.2.2 Potential Difference and Parallel Resistors 193
10.2.3 Potential Difference and Series Resistors 194
10.2.4 Ohm's Law 194
10.2.5 EMF 195
10.3 Current 198
10.3.1 Flow of Charge 198
10.3.2 Current 198
10.3.3 Series Circuits 199
10.3.4 Parallel Circuits 200
10.4 Resistance 202
10.4.1 What causes resistance? 202
10.4.2 Resistors in electric circuits 202
10.5 Instruments to Measure voltage, current and resistance 204
10.5.1 Voltmeter 204
10.5.2 Ammeter 204
10.5.3 Ohmmeter 204
10.5.4 Meters Impact on Circuit 205
10.6 Exercises - Electric circuits 205
III Grade 11 - Physics 209
11 Vectors 211
11.1 Introduction 211
11.2 Scalars and Vectors 211
11.3 Notation 211
11.3.1 Mathematical Representation 212
11.3.2 Graphical Representation 212
11.4 Directions 212
11.4.1 Relative Directions 212
11.4.2 Compass Directions 213
11.4.3 Bearing 213
11.5 Drawing Vectors 214
11.6 Mathematical Properties of Vectors 215
11.6.1 Adding Vectors 215
11.6.2 Subtracting Vectors 217
11.6.3 Scalar Multiplication 218
11.7 Techniques of Vector Addition 218
11.7.1 Graphical Techniques 218
11.7.2 Algebraic Addition and Subtraction of Vectors 223
11.8 Components of Vectors 228
11.8.1 Vector addition using components 231
11.8.2 Summary 235
11.8.3 End of chapter exercises: Vectors 236
11.8.4 End of chapter exercises: Vectors - Long questions 237
12 Force, Momentum and Impulse - Grade 11 239
12.1 Introduction 239
12.2 Force 239
12.2.1 What is a force? 239
12.2.2 Examples of Forces in Physics 240
12.2.3 Systems and External Forces 241
12.2.4 Force Diagrams 242
12.2.5 Free Body Diagrams 243
12.2.6 Finding the Resultant Force 244
12.2.7 Exercise 246
12.3 Newton's Laws 246
12.3.1 Newton's First Law 247
12.3.2 Newton's Second Law of Motion 249
12.3.3 Exercise 261
12.3.4 Newton's Third Law of Motion 263
12.3.5 Exercise 267
12.3.6 Different types of forces 268
12.3.7 Exercise 275
12.3.8 Forces in equilibrium 276
12.3.9 Exercise 279
12.4 Forces between Masses 282
12.4.1 Newton's Law of Universal Gravitation 282
12.4.2 Comparative Problems 284
12.4.3 Exercise 286
12.5 Momentum and Impulse 287
12.5.1 Vector Nature of Momentum 290
12.5.2 Exercise 291
12.5.3 Change in Momentum 291
12.5.4 Exercise 293
12.5.5 Newton's Second Law revisited 293
12.5.6 Impulse 294
12.5.7 Exercise 296
12.5.8 Conservation of Momentum 297
12.5.9 Physics in Action: Impulse 300
12.5.10 Exercise 301
12.6 Torque and Levers 302
12.6.1 Torque 302
12.6.2 Mechanical Advantage and Levers 305
12.6.3 Classes of levers 307
12.6.4 Exercise 308
12.7 Summary 309
12.8 End of Chapter exercises 310
13 Geometrical Optics - Grade 11 327
13.1 Introduction 327
13.2 Lenses 327
13.2.1 Converging Lenses 329
13.2.2 Diverging Lenses 340
13.2.3 Summary of Image Properties 343
13.3 The Human Eye 344
13.3.1 Structure of the Eye 345
13.3.2 Defects of Vision 346
13.4 Gravitational Lenses 347
13.5 Telescopes 347
13.5.1 Refracting Telescopes 347
13.5.2 Reflecting Telescopes 348
13.5.3 Southern African Large Telescope 348
13.6 Microscopes 349
13.7 Summary 351
13.8 Exercises 352
14 Longitudinal Waves - Grade 11 355
14.1 Introduction 355
14.2 What is a longitudinal wave? 355
14.3 Characteristics of Longitudinal Waves 356
14.3.1 Compression and Rarefaction 356
14.3.2 Wavelength and Amplitude 357
14.3.3 Period and Frequency 357
14.3.4 Speed of a Longitudinal Wave 358
14.4 Graphs of Particle Position, Displacement, Velocity and Acceleration 359
14.5 Sound Waves 360
14.6 Seismic Waves 361
14.7 Summary - Longitudinal Waves 361
14.8 Exercises - Longitudinal Waves 362
15 Sound - Grade 11 363
15.1 Introduction 363
15.2 Characteristics of a Sound Wave 363
15.2.1 Pitch 364
15.2.2 Loudness 364
15.2.3 Tone 364
15.3 Speed of Sound 365
15.4 Physics of the Ear and Hearing 365
15.4.1 Intensity of Sound 366
15.5 Ultrasound 367
15.6 SONAR 368
15.6.1 Echolocation 368
15.7 Summary 369
15.8 Exercises 369
16 The Physics of Music - Grade 11 373
16.1 Introduction 373
16.2 Standing Waves in String Instruments 373
16.3 Standing Waves in Wind Instruments 377
16.4 Resonance 382
16.5 Music and Sound Quality 384
16.6 Summary - The Physics of Music 385
16.7 End of Chapter Exercises 386
17 Electrostatics - Grade 11 387
17.1 Introduction 387
17.2 Forces between charges - Coulomb's Law 387
17.3 Electric field around charges 392
17.3.1 Electric field lines 393
17.3.2 Positive charge acting on a test charge 393
17.3.3 Combined charge distributions 394
17.3.4 Parallel plates 397
17.4 Electrical potential energy and potential 400
17.4.1 Electrical potential 400
17.4.2 Real-world application: lightning 402
17.5 Capacitance and the parallel plate capacitor 403
17.5.1 Capacitors and capacitance 403
17.5.2 Dielectrics 404
17.5.3 Physical properties of the capacitor and capacitance 404
17.5.4 Electric field in a capacitor 405
17.6 Capacitor as a circuit device 406
17.6.1 A capacitor in a circuit 406
17.6.2 Real-world applications: capacitors 407
17.7 Summary 407
17.8 Exercises - Electrostatics 407
18 Electromagnetism - Grade 11 413
18.1 Introduction 413
18.2 Magnetic field associated with a current 413
18.2.1 Real-world applications 418
18.3 Current induced by a changing magnetic field 420
18.3.1 Real-life applications 422
18.4 Transformers 423
18.4.1 Real-world applications 425
18.5 Motion of a charged particle in a magnetic field 425
18.5.1 Real-world applications 426
18.6 Summary 427
18.7 End of chapter exercises 427
19 Electric Circuits - Grade 11 429
19.1 Introduction 429
19.2 Ohm's Law 429
19.2.1 Definition of Ohm's Law 429
19.2.2 Ohmic and non-ohmic conductors 431
19.2.3 Using Ohm's Law 432
19.3 Resistance 433
19.3.1 Equivalent resistance 433
19.3.2 Use of Ohm's Law in series and parallel Circuits 438
19.3.3 Batteries and internal resistance 440
19.4 Series and parallel networks of resistors 442
19.5 Wheatstone bridge 445
19.6 Summary 447
19.7 End of chapter exercise 447
20 Electronic Properties of Matter - Grade 11 451
20.1 Introduction 451
20.2 Conduction 451
20.2.1 Metals 453
20.2.2 Insulator 453
20.2.3 Semi-conductors 454
20.3 Intrinsic Properties and Doping 454
20.3.1 Surplus 455
20.3.2 Deficiency 455
20.4 The p-n junction 457
20.4.1 Differences between p - and n -type semi-conductors 457
20.4.2 The p-n Junction 457
20.4.3 Unbiased 457
20.4.4 Forward biased 457
20.4.5 Reverse biased 458
20.4.6 Real-World Applications of Semiconductors 458
20.5 End of Chapter Exercises 459
IV Grade 12-Physics 461
21 Motion in Two Dimensions - Grade 12 463
21.1 Introduction 463
21.2 Vertical Projectile Motion 463
21.2.1 Motion in a Gravitational Field 463
21.2.2 Equations of Motion 464
21.2.3 Graphs of Vertical Projectile Motion 467
21.3 Conservation of Momentum in Two Dimensions 475
21.4 Types of Collisions 480
21.4.1 Elastic Collisions 480
21.4.2 Inelastic Collisions 485
21.5 Frames of Reference 490
21.5.1 Introduction 490
21.5.2 What is a frame of reference? 491
21.5.3 Why are frames of reference important? 491
21.5.4 Relative Velocity 491
21.6 Summary 494
21.7 End of chapter exercises 495
22 Mechanical Properties of Matter - Grade 12 503
22.1 Introduction 503
22.2 Deformation of materials 503
22.2.1 Hooke's Law 503
22.2.2 Deviation from Hooke's Law 506
22.3 Elasticity, plasticity, fracture, creep 508
22.3.1 Elasticity and plasticity 508
22.3.2 Fracture, creep and fatigue 508
22.4 Failure and strength of materials 509
22.4.1 The properties of matter 509
22.4.2 Structure and failure of materials 509
22.4.3 Controlling the properties of materials 509
22.4.4 Steps of Roman Swordsmithing 510
22.5 Summary 511
22.6 End of chapter exercise 511
23 Work, Energy and Power - Grade 12 513
23.1 Introduction 513
23.2 Work 513
23.3 Energy 519
23.3.1 External and Internal Forces 519
23.3.2 Capacity to do Work 520
23.4 Power 525
23.5 Important Equations and Quantities 529
23.6 End of Chapter Exercises 529
24 Doppler Effect - Grade 12 533
24.1 Introduction 533
24.2 The Doppler Effect with Sound and Ultrasound 533
24.2.1 Ultrasound and the Doppler Effect 537
24.3 The Doppler Effect with Light 537
24.3.1 The Expanding Universe 538
24.4 Summary 539
24.5 End of Chapter Exercises 539
25 Colour - Grade 12 541
25.1 Introduction 541
25.2 Colour and Light 541
25.2.1 Dispersion of white light 544
25.3 Addition and Subtraction of Light 544
25.3.1 Additive Primary Colours 544
25.3.2 Subtractive Primary Colours 545
25.3.3 Complementary Colours 546
25.3.4 Perception of Colour 546
25.3.5 Colours on a Television Screen 547
25.4 Pigments and Paints 548
25.4.1 Colour of opaque objects 548
25.4.2 Colour of transparent objects 548
25.4.3 Pigment primary colours 549
25.5 End of Chapter Exercises 550
26 2D and 3D Wavefronts - Grade 12 553
26.1 Introduction 553
26.2 Wavefronts 553
26.3 The Huygens Principle 554
26.4 Interference 556
26.5 Diffraction 557
26.5.1 Diffraction through a Slit 558
26.6 Shock Waves and Sonic Booms 562
26.6.1 Subsonic Flight 563
26.6.2 Supersonic Flight 563
26.6.3 Mach Cone 566
26.7 End of Chapter Exercises 568
27 Wave Nature of Matter - Grade 12 571
27.1 Introduction 571
27.2 de Broglie Wavelength 571
27.3 The Electron Microscope 574
27.3.1 Disadvantages of an Electron Microscope 577
27.3.2 Uses of Electron Microscopes 577
27.4 End of Chapter Exercises 578
28 Electrodynamics - Grade 12 579
28.1 Introduction 579
28.2 Electrical machines - generators and motors 579
28.2.1 Electrical generators 580
28.2.2 Electric motors 582
28.2.3 Real-life applications 582
28.2.4 Exercise - generators and motors 584
28.3 Alternating Current 585
28.3.1 Exercise - alternating current 586
28.4 Capacitance and inductance 586
28.4.1 Capacitance 586
28.4.2 Inductance 586
28.4.3 Exercise - capacitance and inductance 588
28.5 Summary 588
28.6 End of chapter exercise 589
29 Electronics - Grade 12 591
29.1 Introduction 591
29.2 Capacitive and Inductive Circuits 591
29.3 Filters and Signal Tuning 596
29.3.1 Capacitors and Inductors as Filters 596
29.3.2 LRC Circuits, Resonance and Signal Tuning 596
29.4 Active Circuit Elements 599
29.4.1 The Diode 599
29.4.2 The Light Emitting Diode (LED) 601
29.4.3 Transistor 603
29.4.4 The Operational Amplifier 607
29.5 The Principles of Digital Electronics 609
29.5.1 Logic Gates 610
29.6 Using and Storing Binary Numbers 616
29.6.1 Binary numbers 616
29.6.2 Counting circuits 617
29.6.3 Storing binary numbers 619
30 EM Radiation 625
30.1 Introduction 625
30.2 Particle/wave nature of electromagnetic radiation 625
30.3 The wave nature of electromagnetic radiation 626
30.4 Electromagnetic spectrum 626
30.5 The particle nature of electromagnetic radiation 629
30.5.1 Exercise - particle nature of EM waves 630
30.6 Penetrating ability of electromagnetic radiation 631
30.6.1 Ultraviolet(UV) radiation and the skin 631
30.6.2 Ultraviolet radiation and the eyes 632
30.6.3 X-rays 632
30.6.4 Gamma-rays 632
30.6.5 Exercise - Penetrating ability of EM radiation 633
30.7 Summary 633
30.8 End of chapter exercise 633
31 Optical Phenomena and Properties of Matter - Grade 12 635
31.1 Introduction 635
31.2 The transmission and scattering of light 635
31.2.1 Energy levels of an electron 635
31.2.2 Interaction of light with metals 636
31.2.3 Why is the sky blue? 637
31.3 The photoelectric effect 638
31.3.1 Applications of the photoelectric effect 640
31.3.2 Real-life applications 642
31.4 Emission and absorption spectra 643
31.4.1 Emission Spectra 643
31.4.2 Absorption spectra 644
31.4.3 Colours and energies of electromagnetic radiation 646
31.4.4 Applications of emission and absorption spectra 648
31.5 Lasers 650
31.5.1 How a laser works 652
31.5.2 A simple laser 654
31.5.3 Laser applications and safety 655
31.6 Summary 656
31.7 End of chapter exercise 657
V Exercises 659
32 Exercises 661
VI Essays 663
Essay 1: Energy and electricity. Why the fuss? 665
33 Essay: How a cell phone works 671
34 Essay: How a Physiotherapist uses the Concept of Levers 673
35 Essay: How a Pilot Uses Vectors 675A GNU Free Documentation License677

Chapter 29

Electronics - Grade 12

29.1 Introduction

Electronics and electrical devices surround us in daily life. From the street lights and water pumps to computers and digital phones, electronics have enabled the digital revolution to occur. All electronics are built on a backbone of simple circuits, and so an understanding of circuits is vital in understanding more complex devices.

This chapter will explain the basic physics principles of many of the components of electronic devices. We will begin with an explanation of capacitors and inductors. We see how these are used in tuning a radio. Next, we look at active components such as transistors and operational amplifiers. Lastly, the chapter will finish with an explanation of digital electronics, including logic gates and counting circuits.

Before studying this chapter, you will want to remind yourself of:

- The meaning of voltage (V), current (I) and resistance (R), as covered in Grade 10 (see chapter 10), and Grade 11 (see chapter 19).
- Capacitors in electric circuits, as covered in Grade 11 (see section 17.6).
- Semiconductors, as covered in Grade 11 (see chapter 20).
- The meaning of an alternating current (see section 28.3).
- Capacitance (C) and Inductance (L) (see section 28.4).

29.2 Capacitive and Inductive Circuits

Earlier in Grade 12, you were shown alternating currents (a.c.) and you saw that the voltage and the current varied with time. If the a.c. supply is connected to a resistor, then the current and voltage will be proportional to each other. This means that the current and voltage will 'peak' at the same time. We say that the current and voltage are in phase. This is shown in Figure 29.1.

When a capacitor is connected to an alternating voltage, the maximum voltage is proportional to the maximum current, but the maximum voltage does not occur at the same time as the maximum current. The current has its maximum (it peaks) one quarter of a cycle before the voltage peaks. Engineers say that the 'current leads the voltage by 90° '. This is shown in Figure 29.2.

For a circuit with a capacitor, the instantaneous value of $\frac{V}{I}$ is not constant. However the value of $\frac{V_{\text {max }}}{I_{\text {max }}}$ is useful, and is called the capacitive reactance $\left(X_{C}\right)$ of the component. Because it is still a voltage divided by a current (like resistance), its unit is the ohm. The value of X_{C} (C

Figure 29.1: The voltage and current are in phase when a resistor is connected to an alternating voltage.

Figure 29.2: The current peaks (has its maximum) one quarter of a wave before the voltage when a capacitor is connected to an alternating voltage.
standing for capacitor) depends on its capacitance (C) and the frequency (f) of the alternating current (in South Africa 50 Hz).

$$
\begin{equation*}
X_{C}=\frac{V_{\max }}{I_{\max }}=\frac{1}{2 \pi f C} \tag{29.1}
\end{equation*}
$$

Inductors are very similar, but the current peaks 90° after the voltage. This is shown in Figure 29.3. Engineers say that the 'current lags the voltage'. Again, the ratio of maximum voltage to maximum current is called the reactance - this time inductive reactance (X_{L}). The value of the reactance depends on its inductance (L).

$$
\begin{equation*}
X_{L}=\frac{V_{\max }}{I_{\max }}=2 \pi f L \tag{29.2}
\end{equation*}
$$

Figure 29.3: The current peaks (has its maximum) one quarter of a wave after the voltage when an inductor is connected to an alternating voltage.

Definition: Reactance

The ratio of the maximum voltage to the maximum current when a capacitor or inductor is connected to an alternating voltage. The unit of reactance is the ohm.

While inductive and capacitive reactances are similar, in one sense they are opposites. For an inductor, the current peaks 90° after the voltage. For a capacitor the current peaks 90° ahead of the voltage. When we work out the total reactance for an inductor and a capacitor in series, we use the formula

$$
\begin{equation*}
X_{\text {total }}=X_{L}-X_{C} \tag{29.3}
\end{equation*}
$$

to take this into account. This formula can also be used when there is more than one inductor or more than one capacitor in the circuit. The total reactance is the sum of all of the inductive reactances minus the sum of all the capacitive reactances. The magnitude (number) in the final result gives the ratio of maximum voltage to maximum current in the circuit as a whole. The sign of the final result tells you its phase. If it is positive, the current peaks 90° after the voltage, if it is negative, the current peaks 90° before the voltage.

If a series circuit contains resistors as well, then the situation is more complicated. The maximum current is still proportional to the maximum voltage, but the phase difference between them won't be 90°. The ratio between the maximum voltage and maximum current is called the impedance (Z), and its unit is also the ohm. Impedances are calculated using this formula:

$$
\begin{equation*}
Z=\sqrt{X^{2}+R^{2}} \tag{29.4}
\end{equation*}
$$

where X is the total reactance of the inductors and capacitors in the circuit, and R is the total resistance of the resistors in the circuit.

It is easier to understand this formula by thinking of a right angled triangle. Resistances are drawn horizontally, reactances are drawn vertically. The hypotenuse of the triangle gives the impedance. This is shown in Figure 29.4.

Figure 29.4: Visualizing the relationship between reactance, resistance and impedance.

Definition: Impedance

The maximum voltage divided by the maximum current for any circuit. The unit of impedance is the ohm.

It is important to remember that when resistors and inductances (or capacitors) are in a circuit, the current will not be in phase with the voltage, so the impedance is not a resistance.
Similarly the current won't be exactly 90° out of phase with the voltage so the impedance isn't a reactance either.

Worked Example 179: The impedance of a coil

Question: Calculate the maximum current in a coil in a South African motor which has a resistance of 5Ω and an inductance of 3 mH . The maximum voltage across the coil is 6 V . You can assume that the resistance and inductance are in series.

Answer

1. Calculate the reactance of the coil $X_{L}=2 \pi f L=2 \pi \times 50 \times 0,003=0,942 \Omega$
2. Calculate the impedance of the coil

$$
Z=\sqrt{X^{2}+R^{2}}=\sqrt{0,942^{2}+5^{2}}=5,09 \Omega
$$

3. Calculate the maximum current $I_{\max }=V_{\max } / Z=6 / 5,09=1,18 \mathrm{~A}$.

Worked Example 180: An RC circuit

Question: Part of a radio contains a 30Ω resistor in series with a $3 \mu \mathrm{~F}$ capacitor.
What is its impedance at a frequency of 1 kHz ?

Answer

1. Calculate the reactance of the capacitor

$$
X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 10^{3} \times 3 \times 10^{-6}}=53,05 \Omega
$$

2. Calculate the impedance $Z=\sqrt{X^{2}+R^{2}}=\sqrt{53,05^{2}+30^{2}}=60,9 \Omega$

Exercise: Capacitive and Inductive Circuits

1. Why is the instantaneous value of $\frac{V}{I}$ of little use in an a.c. circuit containing an inductor or capacitor?
2. How is the reactance of an inductor different to the reactance of a capacitor?
3. Why can the ratio of the maximum voltage to the maximum current in a circuit with a resistor and an inductor not be called a reactance?
4. An engineer can describe a motor as equivalent to a 30Ω resistor in series with a 30 mH inductor. If the maximum value of the supply voltage is 350 V , what is the maximum current? Assume that the frequency is 50 Hz .
5. A timer circuit in a factory contains a $200 \mu \mathrm{~F}$ capacitor in series with a $10 \mathrm{k} \Omega$ resistor. What is its impedance? Assume that the frequency is 50 Hz .
6. A 3 mH inductor is connected in series with a $100 \mu \mathrm{~F}$ capacitor. The reactance of the combination is zero. What is the frequency of the alternating current?

Most factories containing heavy duty electrical equipment (e.g. large motors) have to pay extra money to their electricity supply company because the inductance of the motor coils causes the current and voltage to get out of phase. As this makes the electricity distribution network less efficient, a financial penalty is incurred. The factory engineer can prevent this by connecting capacitors into the circuit to reduce the reactance to zero, as in the last question above. The current and voltage are then in phase again. We can't calculate the capacitance needed in this chapter, because the capacitors are usually connected in parallel, and we have only covered the reactances and impedances of series circuits.

29.3 Filters and Signal Tuning

29.3.1 Capacitors and Inductors as Filters

We have already seen how capacitors and inductors pass current more easily at certain frequencies than others. To recap: if we examine the equation for the reactance of a capacitor, we see that the frequency is in the denominator. Therefore, when the frequency is low, the capacitive reactance is very high. This is why a capacitor blocks the flow of DC and low frequency AC because its reactance increases with decreasing frequency.

When the frequency is high, the capacitive reactance is low. This is why a capacitor allows the flow of high frequency AC because its reactance decreases with increasing frequency.

Therefore putting a capacitor in a circuit blocks the low frequencies and allows the high frequencies to pass. This is called a high pass filter. A filter like this can be used in the 'treble' setting of a sound mixer or music player which controls the amount of high frequency signal reaching the speaker. The more high frequency signal there is, the 'tinnier' the sound. A simple high pass filter circuit is shown in Figure 29.5.

Similarly, if we examine the equation for the reactance of an inductor, we see that inductive reactance increases with increasing frequency. Therefore, when the frequency is low, the inductive reactance is very low. This is why an inductor allows the flow of DC and low frequency AC because its reactance decreases with decreasing frequency.

When the frequency is high, the inductive reactance is high. This is why an inductor blocks the flow of high frequency AC because its reactance increases with increasing frequency.

Therefore putting an inductor in a circuit blocks the high frequencies and allows the low frequencies to pass. This is called a low pass filter. A filter like this can be used in the 'bass' setting of a sound mixer or music player which controls the amount of low frequency signal reaching the speaker. The more low frequency signal there is, the more the sound 'booms'. A simple low pass filter circuit is shown in Figure 29.6.

Figure 29.5: A high pass filter. High frequencies easily pass through the capacitor and into the next part of the circuit, while low frequencies pass through the inductor straight to ground.

29.3.2 LRC Circuits, Resonance and Signal Tuning

A circuit containing a resistor, a capacitor and an inductor all in series is called an LRC circuit. Because the components are in series, the current through each component at a particular time will be the same as the current through the others. The voltage across the resistor will be in phase with the current. The voltage across the inductor will be 90° ahead of the current (the current always follows or lags the voltage in an inductor). The voltage across the capacitor will be 90° behind the current (the current leads the voltage for a capacitor). The phases of the three voltages are shown in Figure 29.7.

Figure 29.6: A low pass filter. Low frequencies pass through the inductor and into the next part of the circuit, while high frequencies pass through the capacitor straight to ground.

Figure 29.7: The voltages across the separate components of an LRC circuit. Looking at the peaks, you see that the voltage across the inductor V_{L} 'peaks' first, followed 90° later by the current I, followed 90° later by the voltage across the capacitor V_{C}. The voltage across the resistor is not shown - it is in phase with the current and peaks at the same time as the current.

The reactance of the inductor is $2 \pi f L$, and the reactance of the capacitor is $1 / 2 \pi f C$ but with the opposite phase. So the total reactance of the LRC circuit is

$$
X=X_{L}-X_{C}=2 \pi f L-\frac{1}{2 \pi f C}
$$

The impedance of the circuit as a whole is given by

$$
Z=\sqrt{X^{2}+R^{2}}=\sqrt{\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}+R^{2}}
$$

At different frequencies, the impedance will take different values. The impedance will have its smallest value when the positive inductive reactance cancels out the negative capacitive reactance. This occurs when

$$
2 \pi f L=\frac{1}{2 \pi f C}
$$

so the frequency of minimum impedance must be

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

This is called the resonant frequency of the circuit. This is the frequency at which you can get the largest current for a particular supply voltage. It is also called the natural frequency of the circuit. This means the frequency at which the circuit would oscillate by itself.

Definition: Resonance

Resonance occurs when a circuit is connected to an alternating voltage at its natural frequency. A very large current in the circuit can build up, even with minimal power input.

An LRC circuit is very useful when we have a signal containing many different frequencies, and we only want one of them. If a signal like this is connected to an LRC circuit, then only the resonant frequency (and other frequencies close to it) will drive measureable currents. This means that an LRC circuit can select one frequency from a range. This process is called signal tuning.

When you set up a radio antenna, and amplify the radio signal it receives, you find many different bands of frequencies - one from each radio station. When you listen to the radio, you only want to listen to one station. An LRC circuit in the radio (the tuning circuit) is set so that its resonant frequency is the frequency of the station you want to listen to. This means that of the many radio stations broadcasting, you only hear one. When you adjust the tuning dial on the radio, it changes the capacitance of the capacitor in the tuning circuit. This changes the resonant frequency, and this changes the radio station that you will hear.

Exercise: Filters and Signal Tuning

1. Which component would you use if you wanted to block low frequencies?
2. Which component would you use if you wanted to block high frequencies?
3. Calculate the impedance of a series circuit containing a 50Ω resistor, a $30 \mu \mathrm{~F}$ capacitor and a 3 mH inductor for frequencies of (a) 50 Hz , (b) 500 Hz , and (c) 5000 Hz .
4. Calculate the resonant frequency of the circuit in the last question.
5. A radio station broadcasts at a frequency of 150 kHz . The tuning circuit in the radio contains a 0.3 mH inductor. What is the capacitance of the capacitor needed in the tuning circuit if you want to listen to this radio station?
6. State the relationship between the phase of the voltages across an inductor, a resistor and a capacitor in an LRC circuit.
7. Explain what is meant by resonance.
8. Explain how LRC circuits are used for signal tuning, for example in a radio.

29.4 Active Circuit Elements

The components you have been learning about so far - resistors, capacitors and inductors are called passive components. They do not change their behaviour or physics in response to changes in voltage or current. Active components are quite different. Their response to changes in input allows them to make amplifiers, calculators and computers.

29.4.1 The Diode

A diode is an electronic device that allows current to flow in one direction only.

Figure 29.8: Diode circuit symbol and direction of flow of current.

A diode consists of two doped semi-conductors joined together so that the resistance is low when connected one way and very high the other way.

Figure 29.9: Operation of a diode. (a) The diode is forward biased and current is permitted. The negative terminal of the battery is connected to the negative terminal of the diode. (b) The diode is reverse biased and current flow is not allowed. The negative terminal of the battery is connected to the positive terminal of the diode.

A full explanation of diode operation is complex. Here is a simplified description. The diode consists of two semiconductor blocks attached together. Neither block is made of pure silicon - they are both doped. Doping was described in more detail in Section 10.3.

In short, p-type semiconductor has fewer free electrons than normal semiconductor. 'P' stands for 'positive', meaning a lack of electrons, although the material is actually neutral. The locations where electrons are missing are called holes. This material can conduct electricity well, because electrons can move into the holes, making a new hole somewhere else in the material. Any extra electrons introduced into this region by the circuit will fill some or all of the holes.

In n-type semiconductor, the situation is reversed. The material has an more free electrons than normal semiconductor. ' N ' stands for 'negative', meaning an excess of electrons, although the material is actually neutral.

When a p-type semiconductor is attached to an n-type semiconductor, some of the free electrons in the n-type move across to the p-type semiconductor. They fill the available holes near the junction. This means that the region of the n-type semiconductor nearest the junction has no free electrons (they've moved across to fill the holes). This makes this n-type semiconductor positively charged. It used to be electrically neutral, but has since lost electrons.

The region of p-type semiconductor nearest the junction now has no holes (they've been filled in by the migrating electrons). This makes the p-type semiconductor negatively charged. It used to be electrically neutral, but has since gained electrons.

Without free electrons or holes, the central region can not conduct electricity well. It has a high resistance, and is called the depletion band. This is shown in Figure 29.10.

You can explain the high resistance in a different way. A free electron in the n-type semiconductor will be repelled from the p-type semiconductor because of its negative charge. The electron will not go into the depletion band, and certainly won't cross the band to the p-type semiconductor. You may ask, "But won't a free electron in the p-type semiconductor be attracted across the band, carrying a current?" But there are no free electrons in p-type semiconductor, so no current of this kind can flow.

If the diode is reverse-biased, the + terminal of the battery is connected to the n-type semiconductor. This makes it even more negatively charged. It also removes even more of the free electrons near the depletion band. At the same time, the - terminal of the battery is connected to the p-type silicon. This will supply free electrons and fill in more of the holes next to the depletion band. Both processes cause the depletion band to get wider. The resistance of the diode (which was already high) increases. This is why a reverse-biased diode does not conduct.

Another explanation for the increased resistance is that the battery has made the p-type semiconductor more negative than it used to be, making it repel any electrons from the n-type semiconductor which attempt to cross the depletion band.

On the other hand, if the diode is forward biased, the depletion band is made narrower. The negative charge on the p-type silicon is cancelled out by the battery. The greater the voltage used, the narrower the depletion band becomes. Eventually, when the voltage is about 0,6 V (for silicon) the depletion band disappears. Once this has occurred, the diode conducts very well.

Figure 29.10: A diode consists of two doped semi-conductors joined together so that the resistance is low when connected one way and very high the other way.

Exercise: The Diode

1. What is a diode?
2. What is a diode made of?
3. What is the term which means that a diode is connected the 'wrong way' and little current is flowing?
4. Why is a diode able to conduct electricity in one direction much more easily than the other?

29.4.2 The Light Emitting Diode (LED)

A light-emitting diode (LED) is a diode device that emits light when charge flows in the correct direction through it. If you apply a voltage to force current to flow in the direction the LED allows it will light up.

Light-emitting diode (LED)

Anode

Cathode

Extension: Circuit Symbols

This notation of having two small arrows pointing away from the device is common to the schematic symbols of all light-emitting semiconductor devices. Conversely, if a device is light-activated (meaning that incoming light stimulates it), then the symbol will have two small arrows pointing toward it. It is interesting to note, though, that LEDs are capable of acting as light-sensing devices: they will generate a small voltage when exposed to light, much like a solar cell on a small scale. This property can be gainfully applied in a variety of light-sensing circuits.

The color depends on the semiconducting material used to construct the LED, and can be in the near-ultraviolet, visible or infrared part of the electromagnetic spectrum.

Nick Holonyak Jr. (1928) of the University of Illinois at Urbana-Champaign developed the first practical visible-spectrum LED in 1962.

Light emission

The wavelength of the light emitted, and therefore its color, depends on the materials forming the p-n junction. A normal diode, typically made of silicon or germanium, emits invisible far-infrared light (so it can't be seen), but the materials used for an LED have emit light corresponding to near-infrared, visible or near-ultraviolet frequencies.

LED applications

LEDs have many uses. Some of these are given here.

- thin, lightweight message displays, e.g. in public information signs (at airports and railway stations, among other places)
- status indicators, e.g. on/off lights on professional instruments and consumers audio/video equipment
- infrared LEDs in remote controls (for TVs, VCRs, etc)
- clusters of LEDs are used in traffic signals, replacing ordinary bulbs behind colored glass
- car indicator lights and bicycle lighting
- calculator and measurement instrument displays (seven segment displays), although now mostly replaced by LCDs
- red or yellow LEDs are used in indicator and [alpha]numeric displays in environments where night vision must be retained: aircraft cockpits, submarine and ship bridges, astronomy observatories, and in the field, e.g. night time animal watching and military field use
- red or yellow LEDs are also used in photographic darkrooms, for providing lighting which does not lead to unwanted exposure of the film
- illumination, e.g. flashlights (a.k.a. torches, UK), and backlighting for LCD screens
- signaling/emergency beacons and strobes
- movement sensors, e.g. in mechanical and optical computer mice and trackballs
- in LED printers, e.g. high-end color printers

LEDs offer benefits in terms of maintenance and safety.

- The typical working lifetime of a device, including the bulb, is ten years, which is much longer than the lifetimes of most other light sources.
- LEDs fail by dimming over time, rather than the abrupt burn-out of incandescent bulbs.
- LEDs give off less heat than incandescent light bulbs and are less fragile than fluorescent lamps.
- Since an individual device is smaller than a centimetre in length, LED-based light sources used for illumination and outdoor signals are built using clusters of tens of devices.

Because they are monochromatic, LED lights have great power advantages over white lights where a specific color is required. Unlike the white lights, the LED does not need a filter that absorbs most of the emitted white light. Colored fluorescent lights are made, but they are not widely available. LED lights are inherently colored, and are available in a wide range of colors. One of the most recently introduced colors is the emerald green (bluish green, about 500 nm) that meets the legal requirements for traffic signals and navigation lights.

The largest LED display in the world is 36 m high, at Times Square, New York, U.S.A.

There are applications that specifically require light that does not contain any blue component. Examples are photographic darkroom safe lights, illumination in laboratories where certain photo-sensitive chemicals are used, and situations where dark adaptation (night vision) must be preserved, such as cockpit and bridge illumination, observatories, etc. Yellow LED lights are a good choice to meet these special requirements because the human eye is more sensitive to yellow light.

Exercise: The Light Emitting Diode

1. What is an LED?
2. List 5 applications of LEDs.

29.4.3 Transistor

The diode is the simplest semiconductor device, made up of a p-type semiconductor and an n-type semiconductor in contact. It can conduct in only one direction, but it cannot control the size of an electric current. Transistors are more complicated electronic components which can control the size of the electric current flowing through them.

This enables them to be used in amplifiers. A small signal from a microphone or a radio antenna can be used to control the transistor. In response, the transistor will then increase and decrease a much larger current which flows through the speakers.

One of the earliest popular uses of transistors was in cheap and portable radios. Before that, radios were much more expensive and contained glass valves which were fragile and needed replacing. In some parts of the world you can still hear people talking about their 'transistor' - they mean their portable radio.

You can also use a small current to turn the transistor on and off. The transistor then controls a more complicated or powerful current through other components. When a transistor is used in this way it is said to be in switching mode as it is acting as a remotely controlled switch. As we shall see in the final sections of this chapter, switching circuits can be used in a computer to process and store digital information. A computer would not work without the millions (or billions) of transistors in it.

There are two main types of transistor - bipolar transistors (NPN or PNP), and field effect transistors (FETs). Both use doped semiconductors, but in different ways. You are mainly required to know about field effect transistors (FETs), however we have to give a brief description of bipolar transistors so that you see the difference.

Bipolar Transistors

Bipolar transistors are made of a doped semiconductor 'sandwich'. In an NPN transistor, a very thin layer of p-type semiconductor is in between two thicker layers of n-type

Figure 29.11: An NPN transistor. This is a type of bipolar transistor.
semiconductor. This is shown in Figure 29.11. Similarly an PNP transistor consists of a very thin n-type layer in between two thicker layers of p-type semiconductor.

In an NPN transistor a small current of electrons flows from the emitter (E) to the base (B). Simultaneously, a much larger current of electrons flows from the emitter (E) to the collector (C). If you lower the number of electrons able to leave the transistor at the base (B), the transistor automatically reduces the number of electrons flowing from emitter (E) to collector (C). Similarly, if you increase the current of electrons flowing out of the base (B), the transistor automatically also increases the current of electrons flowing from emitter (E) to collector (C). The transistor is designed so that the current of electrons from emitter to collector $\left(I_{E C}\right)$ is proportional to the current of electrons from emitter to base $\left(I_{E B}\right)$. The constant of proportionality is known as the current gain β. So $I_{E C}=\beta I_{E B}$.

How does it do it? The answer comes from our work with diodes. Electrons arriving at the emitter (n-type semiconductor) will naturally flow through into the central p-type since the base-emitter junction is forward biased. However if none of these electrons are removed from the base, the electrons flowing into the base from the emitter will fill all of the available 'holes'. Accordingly, a large depletion band will be set up. This will act as an insulator preventing current flow into the collector as well. On the other hand, if the base is connected to a positive voltage, a small number of electrons will be removed by the base connection. This will prevent the 'holes' in the base becoming filled up, and no depletion band will form. While some electrons from the emitter leave via the base connection, the bulk of them flow straight on to the collector. You may wonder how the electrons get from the base into the collector (it seems to be reverse biased). The answer is complicated, but the important fact is that the p-type layer is extremely thin. As long as there is no depletion layer, the bulk of the electrons will have no difficulty passing straight from the n-type emitter into the n-type collector. A more satisfactory answer can be given to a university student once band theory has been explained.

Summing up, in an NPN transistor, a small flow of electrons from emitter (E) to base (B) allows a much larger flow of electrons from emitter (E) to collector (C). Given that conventional current (flowing from + to -) is in the opposite direction to electron flow, we say that a small conventional current from base to emitter allows a large current to flow from collector to emitter.

A PNP transistor works the other way. A small conventional current from emitter to base allows a much larger conventional current to flow from emitter to collector. The operation is more complicated to explain since the principal charge carrier in a PNP transistor is not the electron but the 'hole'.

The operation of NPN and PNP transistors (in terms of conventional currents) is summarized in Figure 29.12.

The transistor is considered by many to be one of the greatest discoveries or inventions in modern history, ranking with banking and the printing press. Key to the importance of the transistor in modern society is its ability to be produced in huge numbers using simple techniques, resulting in vanishingly small prices. Computer "chips" consist of millions of transistors and sell for

Figure 29.12: An overview of bipolar transistors as current amplifiers.

Rands, with per-transistor costs in the thousandths-of-cents. The low cost has meant that the transistor has become an almost universal tool for non-mechanical tasks. Whereas a common device, say a refrigerator, would have used a mechanical device for control, today it is often less expensive to simply use a few million transistors and the appropriate computer program to carry out the same task through "brute force". Today transistors have replaced almost all electromechanical devices, most simple feedback systems, and appear in huge numbers in everything from computers to cars.

The transistor was invented at Bell Laboratories in December 1947 (first demonstrated on December 23) by John Bardeen, Walter Houser Brattain, and William Bradford Shockley, who were awarded the Nobel Prize in physics in 1956.

The Field Effect Transistor (FET)

To control a bipolar transistors, you control the current flowing into or out of its base. The other type of transistor is the field effect transistor (FET). FETs work using control voltages instead. Accordingly they can be controlled with much smaller currents and are much more economic to use.

No-one would build a computer with billions of bipolar transistors - the current in each transistor's base might be small, but when you add up all of the
base currents in the millions of transistors, the computer as a whole would be consuming a great deal of electricity and making a great deal of heat. Not only is this wasteful, it would prevent manufacturers making a computer of convenient size. If the transistors were too close together, they would overheat.

Figure 29.13: A field effect transistor (FET). The diagram on the left shows the semiconductor structure. The diagram on the right shows its circuit symbol.

The three terminals of the FET are called the source (S), drain (D) and gate (G), as shown in Figure 29.13. When the gate is not connected, a current of electrons can flow from source (S) to drain (D) easily along the channel. The source is, accordingly, the negative terminal of the transistor. The drain, where the electrons come out, is the positive terminal of the transistor. A few electrons will flow from the n-type channel into the p-type semiconductor of the gate when the device is manufactured. However, as these electrons are not removed (the gate is not connected), a depletion band is set up which prevents further flow into the gate.

In operation, the gate is connected to negative voltages relative to the source. This makes the p-n junction between gate and channel reverse-biased. Accordingly no current flows from the source into the gate. When the voltage of the gate is lowered (made more negative), the depletion band becomes wider. This enlarged depletion band takes up some of the space of the channel. So the lower the voltage of the gate (the more negative it is relative to the source), the larger the depletion band. The larger the depletion band, the narrower the channel. The narrower the channel, the harder it is for electrons to flow from source to drain.

The voltage of the gate is not the only factor affecting the current of electrons between the source and the drain. If the external circuit has a low resistance, electrons are able to leave the drain easily. If the external circuit has a high resistance, electrons leave the drain slowly. This creates a kind of 'traffic jam' which slows the passage of further electrons. In this way, the voltage of the drain regulates itself, and is more or less independent of the current demanded from the drain.

Once these two factors have been taken into account, it is fair to say that the positive output voltage (the voltage of the drain relative to the source) is proportional to the negative input voltage (the voltage of the gate relative to the source).

For this reason, the field effect transistor is known as a voltage amplifier. This contrasts with the bipolar transistor which is a current amplifier.

Exercise: Field Effect Transistors

1. What are the two types of bipolar transistor? How does their construction differ?
2. What are the three connections to a bipolar transistor called?
3. Why are very few electrons able to flow from emitter to collector in an NPN transistor if the base is not connected?
4. Why do you think a bipolar transistor would not work if the base layer were too thick?
5. "The bipolar transistor is a current amplifier." What does this statement mean?
6. Describe the structure of a FET.
7. Define what is meant by the source, drain and gate. During normal operation, what will the voltages of drain and gate be with respect to the source?
8. Describe how a depletion layer forms when the gate voltage is made more negative. What controls the width of the depletion layer?
9. "The field effect transistor is a voltage amplifier." What does this statement mean?
10. The amplifier in a cheap radio will probably contain bipolar transistors. A computer contains many field effect transistors. Bipolar transistors are more rugged and less sensitive to interference than field effect transistors, which makes them more suitable for a simple radio. Why are FETs preferred for the computer?

29.4.4 The Operational Amplifier

The operational amplifier is a special kind of voltage amplifier which is made from a handful of bipolar or field effect transistors. Operational amplifiers are usually called op-amps for short. They are used extensively in all kinds of audio equipment (amplifiers, mixers and so on) and in instrumentation. They also have many other uses in other circuit - for example comparing voltages from sensors.

Operational amplifiers are supplied on Integrated Circuits (I.C.s). The most famous operational amplifier I.C. is numbered 741 and contains a single operational amplifier on an integrated circuit ('chip') with eight terminals. Other varieties can be bought, and you can get a single integrated circuit with two or four '741'-type operational amplifiers on it.

The symbol for an op-amp is shown in Figure 29.14. The operational amplifier has two input terminals and one output terminal. The voltage of the output terminal is proportional to the difference in voltage between the two input terminals. The output terminal is on the right (at the sharp point of the triangle). The two input terminals are drawn on the left. One input terminal (labelled with a + on diagrams) is called the non-inverting input. The other input terminal (labelled -) is called the inverting input. The labels + and - have nothing to do with the way in which the operational amplifier is connected to the power supply. Operational amplifiers must be connected to the power supply, but this is taken for granted when circuit diagrams are drawn, and these connections are not shown on circuit diagrams. Usually, when drawing electronic circuits, ' $O \mathrm{~V}$ ' is taken to mean the negative terminal of the power supply. This is not the case with op-amps. For an op-amp, 'OV' refers to the voltage midway between the + and - of the supply.

The output voltage of the amplifier $V_{\text {out }}$ is given by the formula

$$
\begin{equation*}
V_{o u t}=A\left(V_{+}-V_{-}\right) \tag{29.5}
\end{equation*}
$$

here A is a constant called the open loop gain, and V_{+}and V_{-}are the voltages of the two input terminals. That said, the output voltage can not be less than the voltage of the negative terminal of the battery supplying it or higher than the positive terminal of the battery supplying it. You will notice that $V_{\text {out }}$ is positive if $V_{+}>V_{-}$and negative if $V_{+}<V_{-}$. This is why the input is called the inverting input: raising its voltage causes the output voltage to drop.

The input resistance of an operational amplifier is very high. This means that very little current flows into the input terminals during operation.

If all of the transistors in the operational amplifier were identical then the output voltage would be zero if the two inputs were at equal voltages. In practice this is not quite the case, and for sensitive work a trimming potentiometer is connected. This is adjusted until the op-amp is zeroed correctly.

Simple operational amplifiers require the trimming potentiometer to be built into the circuit containing them, and an example is shown in Figure 29.15. Other operational amplifier designs incorporate separate terminals for the trimming potentiometer. These special terminals are labelled offset on the manufacturer's diagram. The exact method of connecting the potentiometer to the offset terminals can depend on the design of the operational amplifier, and you need to refer to the manufacturer's data sheet for details of which potentiometer to use and how to connect it.

For most commercially produced operational amplifiers (known as op-amps for short), the open loop gain A is very large and does not stay constant. Values of 100000 are typical. Usually a designer would want an amplifier with a stable gain of smaller value, and builds the operational amplifier into a circuit like the one in Figure 29.15.

Extension: Calculating the gain of the amplifier in Figure 29.15.

1. The input resistance of the operational amplifier is very high. This means that very little current flows into the inverting input of the op-amp. Accordingly, the current through resistor R_{1} must be almost the same as the current through resistor R_{2}. This means that the ratio of the voltage across R_{1} to the voltage across R_{2} is the same as the ratio of the two resistances.
2. The open loop gain A of the op-amp is very high. Assuming that the output voltage is less than a few volts, this means that the two input terminals must be at very similar voltages. We shall assume that they are at the same voltage.
3. We want the output voltage to be zero if the input voltage is zero. Assuming that the transistors within the op-amp are very similar, the output voltage will only be zero for zero input voltage if V_{+}is very close to zero. We shall assume that $V_{+}=0$ when the trimming potentiometer is correctly adjusted.
4. It follows from the last two statements that $V_{-} \approx 0$, and we shall assume that it is zero.
5. With these assumptions, the voltage across R_{2} is the same as $V_{\text {out }}$, and the voltage across R_{1} is the same as $V_{i n}$. Since both resistors carry the same current (as noted in point 1), we may say that the magnitude of $V_{\text {out }} / V_{\text {in }}=R_{2} / R_{1}$. However, if $V_{\text {in }}$ is negative, then $V_{\text {out }}$ will be positive. Therefore it is customary to write the gain of this circuit as $V_{\text {out }} / V_{\text {in }}=-R_{2} / R_{1}$.

Figure 29.14: Circuit symbol for an operational amplifier. The amplifier must also be connectd to the + and - terminals of the power supply. These connections are taken for granted and not shown.

Figure 29.15: An inverting amplifier built using an operational amplifier. The connections from battery to operational amplifier are not shown. The output voltage $V_{\text {out }}=-R_{2} V_{\text {in }} / R_{1}$, as explained in the text. The potentiometer R_{3} is a trimming potentiometer. To set it, the input is connected to zero volts. The trimming potentiometer is then adjusted until $V_{\text {out }}=0$. In all operational amplifier circuits, zero volts is midway between the + and - of the supply.

Exercise: Operational Amplifiers

1. What are operational amplifiers used for?
2. Draw a simple diagram of an operational amplifier and label its terminals.
3. Why is a trimming potentiometer is needed when using an op-amp?

29.5 The Principles of Digital Electronics

The circuits and components we have discussed are very useful. You can build a radio or television with them. You can make a telephone. Even if that was all there was to electronics, it would still be very useful. However, the great breakthrough in the last fifty years or so has been in digital electronics. This is the subject which gave us the computer. The computer has revolutionized the way business, engineering and science are done. Small computers programmed to do a specific job (called microprocessors) are now used in almost every electronic machine from cars to washing machines. Computers have also changed the way we communicate. We used to have telegraph or telephone wires passing up and down a country each one carrying one telephone call or signal. We now have optic fibres each capable of carrying tens of thousands of telephone calls using digital signals.

So, what is a digital signal? Look at Figure 29.16. A normal signal, called an analogue signal, carries a smooth wave. At any time, the voltage of the signal could take any value. It could be $2,00 \mathrm{~V}$ or $3,53 \mathrm{~V}$ or anything else. A digital signal can only take certain voltages. The simplest case is shown in the figure - the voltage takes one of two values. It is either high, or it is low. It never has any other value.

These two special voltages are given symbols. The low voltage level is written 0 , while the high voltage level is written as 1 . When you send a digital signal, you set the voltage you want (0 or 1), then keep this fixed for a fixed amount of time (for example $0.01 \mu \mathrm{~s}$), then you send the next 0 or 1 . The digital signal in Figure 29.16 could be written 01100101.

Why are digital signals so good?

Figure 29.16: The difference between normal (analogue) signals and digital signals. The analogue signal is on the left.

1. Using a computer, any information can be turned into a pattern of 0 s and 1 s . Pictures, recorded music, text and motion pictures can all be turned into a string of 0 s and 1 s and transmitted or stored in the same way. The computer receiving the signal at the other end converts it back again. A Compact Disc (CD) for example, can store music or text or pictures, and all can be read using a computer.
2. The 0 and the 1 look very different. You can immediately tell if a 0 or a 1 is being sent. Even if there is interference, you can still tell whether the sender sent a 0 or a 1 . This means that fewer mistakes are made when reading a digital signal. This is why the best music recording technologies, and the most modern cameras, for example, all use digital technology.
3. Using the 0 s and 1 s you can count, and do all kinds of mathematics. This will be explained in more detail in the next section.

The simplest digital circuits are called logic gates. Each logic gate makes a decision based on the information it receives. Different logic gates are set up to make the decisions in different ways. Each logic gate will be made of many microscopic transistors connected together within a thin wafer of silicon. This tiny circuit is called an Integrated Circuit or I.C. - all the parts are in one place (integrated) on the silicon wafer.

29.5.1 Logic Gates

There are five main types of logic gate: NOT, AND, OR, NAND and NOR. Each one makes its decision in a different way.

The NOT Gate

Problem: You want an automatic circuit in your office to turn on the heating in the winter. You already have a digital electronic temperature sensor. When the temperature is high, it sends out a 1 . When the office is cold, it sends out a 0 . If this signal were sent straight to the heater, the heater would turn on (1) when it was already hot, and would stay off when it was cold. This is wrong! To make the heater work, we need a circuit which will change a 0 (from the sensor) into a 1 (to send to the heater). This will make the heater come on when it is cold. You also want it to change a 1 (from the sensor) into a 0 (to send to the heater). This will turn the heater off when the room is hot. This circuit is called an inverter or NOT gate. It
changes 0 into 1 (1 is NOT 0). It changes 1 into 0 (0 is NOT 1). It changes a signal into what it is NOT.

The symbol for the NOT gate is:

The action of the NOT gate is written in a table called a truth table. The left column shows the possible inputs on different rows. The right column shows what the output (decision) of the circuit will be for that input. The truth table for the NOT gate is shown below.

Input	Output
0	1
1	0

When you read the truth table, the top row says, "If the input is 0 , the output will be 1." For our heater, this means, "If the room is cold, the heater will turn on." The bottom row says, "If the input is 1 , the output will be 0 ." For our heater, this means, "If the room is hot, the heater will switch off."

The AND Gate

Problem: An airliner has two toilets. Passengers get annoyed if they get up from their seat only to find that both toilets are being used and they have to go back to their seat and wait. You want to fit an automatic circuit to light up a display if both toilets are in use. Then passengers know that if the light is off, there will be a free toilet for them to use. There is a sensor in each toilet. It gives out a 0 of the toilet is free, and a 1 if it is in use. You want to send a 1 to the display unit if both sensors are sending 1s. To do this, you use an AND gate.

The symbol for the AND gate is:

Figure 29.17: Symbol for the AND logic gate.

The truth table for the AND gate is shown below. An AND gate has two inputs (the NOT gate only had one). This means we need four rows in the truth table, one for each possible set of inputs. The first row, for example, tells us what the AND gate will do if both inputs are 0 . In our airliner, this means that both toilets are free. The right column has a 0 showing that the output will be 0 , so the display will not light up. The second row has inputs of 0 and 1 (the first toilet is free, the other is in use). Again the output is 0 . The third row tells us what will happen if the inputs are 1 and 0 (the first toilet is in use, and the second is free). Finally, the last line tells us what will happen if both inputs are 1 (both toilets are in use). It is only in this case that the output is 1 and the display lights up.

Inputs		Output
A	B	
0	0	0
0	1	0
1	0	0
1	1	1
611		

This device is called an AND gate, because the output is only 1 if one input AND the other input are both 1.

Extension: Using 0 and 1 to mean True and False

When we use logic gates we use the low voltage state 0 to represent 'false'. The high voltage state 1 represents 'true'. This is why the word AND is so appropriate. A AND B is true (1) if, and only if, A is true (1) AND B is true (1).

Extension: AND and multiplication

Sometimes, the AND operation is written as multiplication. A AND B is written $A B$. If either A or B are 0 , then $A B$ will also be 0 . For $A B$ to be 1 , we need A and B to both be 1 . Multiplication of the numbers 0 and 1 does exactly the same job as an AND gate.

The NAND Gate

Problem: You build the circuit for the airliner toilets using an AND gate. Your customer is pleased, but she says that it would be better if the display lit up when there was a free toilet. In other words, the display should light up unless both toilets are in use. To do this we want a circuit which does the opposite of an AND gate. We want a circuit which would give the output 0 if an AND gate would give 1 . We want a circuit which would give the output 1 if an AND gate would give 0 . This circuit is called a NAND gate.

The symbol for the NAND gate is:

The truth table for the NAND gate is shown below.

Inputs		Output
A	B	
0	0	1
0	1	1
1	0	1
1	1	0

You may have noticed that we could have done this job on the airliner by using our earlier circuit, with a NOT gate added between the original AND gate and the display. This is where the word NAND comes from - it is short for NotAND.

The OR Gate

Problem: A long, dark corridor has two light switches - one at each end of the corridor. The switches each send an output of 0 to the control unit if no-one has pressed the switch. If someone presses the switch, its output is 1 . The lights in the corridor should come on if either switch is pressed. To do this job, the control unit needs an OR gate. The symbol for the OR gate is:

The truth table for the OR gate is shown.

Inputs		Output
A	B	
0	0	0
0	1	1
1	0	1
1	1	1

You can see that the output is 1 (and the lights come on in the corridor) if either one switch OR the other is pressed. Pressing both switches also turns on the lights, as the last row in the table shows.

Extension: OR and addition

Sometimes you will see A OR B written mathematically as $A+B$. This makes sense, since if $A=0$ and $B=0$, then A OR $B=A+B=0$. Similarly, if $A=0$ and $B=1$, then A OR $B=A+B=1$. If $A=1$ and $B=0$, then $A O R B=A+B=1$ once again. The only case where the OR function differs from normal addition is when $A=1$ and $B=1$. Here $A O R B=1$ in logic, but $A+B=2$ in arithmetic. However, there is no such thing as ' 2 ' in logic, so we define + to mean 'OR', and write $1+1=1$ with impunity!

If you wish, you can prove that the normal rules of algebra still work using this notation: $A+(B+C)=(A+B)+C, A(B C)=(A B) C$, and $A(B+C)=A B+A C$. This special kind of algebra where variables can only be 0 (representing false) or 1 (representing true) is called Boolean algebra.

The NOR Gate

The last gate you need to know is the NOR gate. This is opposite to the OR gate. The output is 1 if both inputs are 0 . In other words, the output switches on if neither the first NOR the second input is 1 . The symbol for the NOR gate is:

The truth table for the NOR gate is shown below.

Inputs		Output
A	B	
0	0	1
0	1	0
1	0	0
1	1	0

The examples given were easy. Each job only needed one logic gate. However any 'decision making' circuit can be built with logic gates, no matter how complicated the decision. Here is an example.

Worked Example 181: An Economic Heating Control

Question: A sensor in a building detects whether a room is being used. If it is empty, the output is 0 , if it is in use, the output is 1 . Another sensor measures the temperature of the room. If it is cold, the output is 0 . If it is hot, the output is 1 . The heating comes on if it receives a 1 . Design a control circuit so that the heating only comes on if the room is in use and it is cold.

Answer

The first sensor tells us whether the room is occupied. The second sensor tells us whether the room is hot. The heating must come on if the room is occupied AND cold. This means that the heating should come on if the room is occupied AND (NOT hot). To build the circuit, we first attach a NOT gate to the output of the temperature sensor. This output of the NOT gate will be 1 only if the room is cold. We then attach this output to an AND gate, together with the output from the other sensor. The output of the AND gate will only be 1 if the room is occupied AND the output of the NOT gate is also 1 . So the heating will only come on if the room is in use and is cold. The circuit is shown below.

Worked Example 182: Solving a circuit with two logic gates

Question: Compile the truth table for the circuit below.

Answer

Firstly, we label the inputs A and B. We also label the point where the two gates are connected C .

Next we prepare a truth table. There is a column for each of the inputs, for the intermediate point C and also for the output. The truth table has four rows, since there are four possible inputs - $00,01,10$ and 11 .

A	B	C	Output
0	0		
0	1		
1	0		
1	1		

Next we fill in the C column given that we know what a NOR gate does.

A	B	C	Output
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Next, we can fill in the output, since it will always be the opposite of C (because of the NOT gate).

A	B	C	Output
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

Finally we see that this combination of gates does the same job as an OR gate.

Each logic gate is manufactured from two or more transistors. Other circuits can be made using logic gates, as we shall see in the next section. We shall show you how to count and store numbers using logic gates. This means that if you have enough transistors, and you connect them correctly to make the right logic gates, you can make circuits which count and store numbers.

In practice, the cheapest gate to manufacture is usually the NAND gate. Additionally, Charles Peirce showed that NAND gates alone (as well as NOR gates alone) can be used to reproduce all the other logic gates.

Exercise: The Principles of Digital Electronics

1. Why is digital electronics important to modern technology and information processing?
2. What two symbols are used in digital electronics, to represent a "high" and a "low"? What is this system known as?
3. What is a logic gate?
4. What are the five main types of logic gates? Draw the symbol for each logic gate.
5. Write out the truth tables for each of the five logic gates.
6. Write out the truth table for the following circuit. Which single gate is this circuit equivalent to?

7. Write out the truth table for the following circuit. Which single gate is this circuit equivalent to?

29.6 Using and Storing Binary Numbers

In the previous section, we saw how the numbers 0 and 1 could represent 'false' and 'true' and could be used in decision making. Often we want to program a computer to count with numbers. To do this we need a way of writing any number using nothing other than 0 and 1 . When written in this way, numbers are called binary numbers.

Definition: Binary

A way of writing any number using only the digits 0 and 1 .

29.6.1 Binary numbers

In normal (denary) numbers, we write $9+1$ as 10 . The fact that the ' 1 ' in 10 is the second digit from the right tells us that it actually means 10 and not 1 . Similarly, the ' 3 ' in 365 represents 300 because it is the third digit from the right. You could write 365 as $3 \times 100+6 \times 10+5$. You will notice the pattern that the nth digit from the right represents 10^{n-1}. In binary, we use the nth digit from the right to represent 2^{n-1}. Thus 2 is written as 10 in binary. Similarly $2^{2}=4$ is written as 100 in binary, and $2^{3}=8$ is written as 1000 in binary.

Worked Example 183: Conversion of Binary Numbers to Denary Numbers

Question: Convert the binary number 10101 to its denary equivalent.

Answer

We start on the right. The ' 1 ' on the right does indeed represent one. The next ' 1 ' is in the third place from the right, and represents $2^{2}=4$. The next ' 1 ' is in the fifth place from the right and represents $2^{4}=16$. Accordingly, the binary number 10101 represents $16+4+1=21$ in denary notation.

Worked Example 184: Conversion of Denary Numbers to Binary Numbers

Question: Convert the decimal number 12 to its binary equivalent.

Answer

Firstly we write 12 as a sum of powers of 2 , so $12=8+4$. In binary, eight is 1000 , and four is 100 . This means that twelve $=$ eight + four must be $1000+100=1100$ in binary. You could also write 12 as $1 \times 8+1 \times 4+0 \times 2+0 \times 1=1100$ in binary.

How do you write numbers as a sum of powers of two? The first power of two (the largest) is the largest power of two which is not larger than the number you are working with. In our last example, where we wanted to know what twelve was in binary, the largest power of two which is not larger than 12 is 8 . Thus $12=8+$ something. By arithmetic, the 'something' must be 4 , and the largest power of two not larger than this is 4 exactly. Thus $12=8+4$, and we have finished.

A more complicated example would be to write one hundred in binary. The largest power of two not larger than 100 is 64 (1000000 in binary). Subtracting 64 from 100 leaves 36 . The largest power of two not larger than 36 is 32 (100000 in binary). Removing this leaves a remainder of 4, which is a power of two itself (100 in binary). Thus one hundred is $64+32+4$, or in binary $1000000+100000+100=1100100$.

Once a number is written in binary, it can be represented using the low and high voltage levels of digital electronics. We demonstrate how this is done by showing you how an electronic counter works.

29.6.2 Counting circuits

To make a counter you need several 'T flip flops', sometimes called 'divide by two' circuits. A T flip flop is a digital circuit which swaps its output (from 0 to 1 or from 1 to 0) whenever the input changes from 1 to 0 . When the input changes from 0 to 1 it doesn't change its output. It is called a flip flop because it changes (flips or flops) each time it receives a pulse.

If you put a series of pulses 10101010 into a T flip flop, the result is 01100110 . Figure 29.18 makes this clearer.

As you can see from Figure 29.18, there are half as many pulses in the output. This is why it is called a 'divide by two' circuit.

If we connect T flip flops in a chain, then we make a counter which can count pulses. As an example, we connect three T flip flops in a chain. This is shown in Figure 29.19.

When this circuit is fed with a stream of pulses, the outputs of the different stages change. The table below shows how this happens. Each row shows a different stage, with the first stage at the top. We assume that all of the flip flops have 0 as their output to start with.

Figure 29.18: The output of a T flip flop, or 'divide by two' circuit when a square wave is connected to the input. The output changes state when the input goes from 1 to 0 .

Figure 29.19: Three T flip flops connected together in a chain to make a counter. The input of each flip flop is labelled T, while each output is labelled Q. The pulses are connected to the input on the left. The outputs Q_{0}, Q_{1} and Q_{2} give the three digits of the binary number as the pulses are counted. This is explained in the text and in the next table.

Input	Output 1	Output 2	Output 3	Number of pulse	Number in binary
1	0	0	0	0	000
0	1	0	0	1	001
1	1	0	0	1	001
0	0	1	0	2	010
1	0	1	0	2	010
0	1	1	0	3	011
1	1	1	0	3	011
0	0	0	1	4	100
1	0	0	1	4	100
0	1	0	1	5	101
1	1	0	1	5	101
0	0	1	1	6	110
1	0	1	1	6	110
0	1	1	1	7	111
1	1	1	1	7	111
0	0	0	0	8	1000
1	0	0	0	8	1000
0	1	0	0	9	1101
1	1	0	0	9	1101

The binary numbers in the right hand column count the pulses arriving at the input. You will notice that the output of the first flip flop gives the right most digit of the pulse count (in binary). The output of the second flip flop gives the second digit from the right (the 'twos' digit) of the pulse count. The output of the third flip flop gives the third digit from the right (the 'fours' digit) of the pulse count. As there are only three flip flops, there is nothing to provide the next digit (the 'eights' digit), and so the eighth pulse is recorded as 000, not 1000.

This device is called a modulo 8 counter because it can count in eight stages from 000 to 111 before it goes back to 000. If you put four flip flops in the counter, it will count in sixteen stages from 0000 to 1111 , and it is called a modulo 16 counter because it counts in sixteen stages before going back to 0000 .

Definition: Modulo

The modulo of a counter tells you how many stages (or pulses) it receives before going back to 0 as its output. Thus a modulo 8 counter counts in eight stages 000, 001, 010, 011, $100,101,110,111$, then returns to 000 again.

If a counter contains n flip flops, it will be a modulo 2^{n} counter. It will count from 0 to $2^{n}-1$.

29.6.3 Storing binary numbers

Counting is important. However, it is equally important to be able to remember the numbers. Computers can convert almost anything to a string of 0 s and 1 s , and therefore to a binary number. Unless this number can be stored in the computer's memory, the computer would be useless.

The memory in the computer contains many parts. Each part is able to store a single 0 or 1 . Since 0 and 1 are the two binary digits, we say that each part of the memory stores one bit.

Figure 29.20: A bistable circuit made from two NOR gates. This circuit is able to store one bit of digital information. With the two inputs set to 0 , you can see that the output could be (and will remain) either 0 or 1 . The circuit on the left shows an output of 0 , the circuit on the right shows an output of 1 . Wires carrying high logic levels (1) are drawn thicker. The output of the bistable is labelled Q.

Definition: Bit

One bit is a short way of saying one 'binary digit'. It is a single 0 or 1 .

If you have eight bits, you can store a binary number from 00000000 to 11111111 (0 to 255 in denary). This gives you enough permutations of 0s and 1 s to have one for each letter of the alphabet (in upper and lower case), each digit from 0 to 9 , each punctuation mark and each control code used by a computer in storing a document. When you type text into a word processor, each character is stored as a set of eight bits. Each set of eight bits is called a byte. Computer memories are graded according to how many bytes they store. There are 1024 bytes in a kilobyte $(\mathrm{kB}), 1024 \times 1024$ bytes in a megabyte (MB), and $1024 \times 1024 \times 1024$ bytes in a gigabyte (GB).

To store a bit we need a circuit which can 'remember' a 0 or a 1 . This is called a bistable circuit because it has two stable states. It can stay indefinitely either as a 0 or a 1 . An example of a bistable circuit is shown in Figure 29.20. It is made from two NOR gates.

To store the 0 or the 1 in the bistable circuit, you set one of the inputs to 1 , then put it back to 0 again. If the input labelled ' S ' (set) is raised, the output will immediately become 1 . This is shown in Figure 29.21.

To store a 0, you raise the ' R ' (reset) input to 1 . This is shown in Figure 29.22.
Once you have used the S or R inputs to set or reset the bistable circuit, you then bring both inputs back to 0 . The bistable 'remembers' the state. Because of the ease with which the circuit can be Reset and Set it is also called a RS flip flop circuit.

A computer memory will be able to store millions or billions of bits. If it used our circuit above, it would need millions or billions of NOR gates, each of which is made from several transistors. The computer memory is made of many millions of transistors.

Figure 29.21: The output of a bistable circuit is set (made 1) by raising the ' S ' input to 1 . Wires carrying high logic levels (1) are shown with thicker lines.

Figure 29.22: The output of a bistable circuit is reset (made 0) by raising the ' R ' input to 1 . Wires carrying high logic levels (1) are shown with thicker lines.

The bistable circuits drawn here don't remember 0s or 1s for ever - they lose the information if the power is turned off. The same is true for the RAM (Random Access Memory) used to store working and temporary data in a computer. Some modern circuits contain special memory which can remember its state even if the power is turned off. This is used in FLASH drives, commonly found in USB data sticks and on the memory cards used with digital cameras. These bistable circuits are much more complex.

You can also make T flip flops out of logic gates, however these are more complicated to design.

Exercise: Counting Circuits

1. What is the term bit short for?
2. What is 43 in binary?
3. What is 1100101 in denary?
4. What is the highest number a modulo 64 counter can count to? How many T flip flops does it contain?
5. What is the difference between an RS flip flop and a T flip flop?
6. Draw a circuit diagram for a bistable circuit (RS flip flop). Make three extra copies of your diagram. On the first diagram, colour in the wires which will carry high voltage levels (digital 1) if the R input is low, and the S input is high. On the second diagram, colour in the wires which carry high voltage levels if the S input of the first circuit is now made low. On the third diagram, colour in the wires which carry high voltage levels if the R input is now made high. On the final diagram, colour in the wires carrying high voltage levels if the R input is now made low again.
7. Justify the statement: a modern computer contains millions of transistors.

Exercise: End of Chapter Exercises

1. Calculate the reactance of a 3 mH inductor at a frequency of 50 Hz .
2. Calculate the reactance of a $30 \mu \mathrm{~F}$ capacitor at a frequency of 1 kHz .
3. Calculate the impedance of a series circuit containing a 5 mH inductor, a 400 $\mu \mathrm{F}$ capacitor and a $2 \mathrm{k} \Omega$ resistor at a frequency of 50 kHz .
4. Calculate the frequency at which the impedance of the circuit in the last question will be the smallest.
5. Which component can be used to block low frequencies?
6. Draw a circuit diagram with a battery, diode and resistor in series. Make sure that the diode is forward biased so that a current will flow through it.
7. When building a complex electronic circuit which is going to be powered by a battery, it is always a good idea to put a diode in series with the battery. Explain how this will protect the circuit if the user puts the battery in the wrong way round.
8. Summarize the differences betwen a bipolar and field effect transistor.
9. What does an operational amplifier (op-amp) do?
10. What is the difference between a digital signal and an analogue signal?
11. What are the advantages of digital signals over analogue signals?
12. Draw the symbols for the five logic gates, and write down their truth tables.
13. Draw a circuit diagram with an AND gate. Each input should be connected to the output of a separate NOT gate. By writing truth tables show that this whole circuit behaves as a NOR gate.
14. Convert the denary number 99 into binary.
15. Convert the binary number 11100111 into denary.
16. Explain how three T flip flops can be connected together to make a modulo 8 counter. What is the highest number it can count up to?
17. Draw the circuit diagram for an RS flip flop (bistable) using two NOR gates.
18. Show how the circuit you have just drawn can have a stable output of 0 or 1 when both inputs are 0 .
19. Operational (and other) amplifiers, logic gates, and flip flops all contain transistors, and would not work without them. Write a short newspaper article for an intelligent reader who knows nothing about electronics. Explain how important transistors are in modern society.

Appendix A

GNU Free Documentation License

Version 1.2, November 2002

Copyright (c) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, A TEX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the
actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

